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Abstract

Digital signatures provide authenticity and nonrepudiation. They are a standard crypto-

graphic primitive with many applications in higher-level protocols. Groups featuring a com-

putable bilinear map are particularly well suited for signature-related primitives. For some

signature variants the only construction known uses bilinear maps. Where constructions

based on, e.g., RSA are known, bilinear-map–based constructions are simpler, more efficient,

and yield shorter signatures. We describe several constructions that support this claim.

First, we present the Boneh-Lynn-Shacham (BLS) short signature scheme. BLS signa-

tures with 1024-bit security are 160 bits long, the shortest of any scheme based on standard

assumptions.

Second, we present Boneh-Gentry-Lynn-Shacham (BGLS) aggregate signatures. In an

aggregate signature scheme it is possible to combine n signatures on n distinct messages

from n distinct users into a single aggregate that provides nonrepudiation for all of them.

BGLS aggregates are 160 bits long, regardless of how many signatures are aggregated. No

construction is known for aggregate signatures that does not employ bilinear maps. BGLS

aggregates give rise to verifiably encrypted signatures, a signature variant with applications

in contract signing.

Third, we present Boneh-Boyen-Shacham (BBS) group signatures. Group signatures

provide anonymity for signers. Any member of the group can sign messages, but the re-

sulting signature keeps the signer’s identity secret. Only the group manager can trace

the signature, undoing its anonymity, using a special trapdoor. BBS group signatures are

1443 bits long, shorter than any previous scheme by an order of magnitude. The signing

operation is also an order of magnitude more efficient than in previous schemes.

Finally, we consider variants and extensions of the BBS group signature scheme, in-

cluding a group signature with a novel revocation mechanism that we call verifier-local

revocation (VLR). In a VLR group signature, messages announcing the revocation of some

iv



users need only be processed by the verifiers; the signers are stateless. We present the

Boneh-Shacham VLR group signature scheme, which has signatures even shorter than in

BBS.

v



Acknowledgments

This thesis is dedicated to Helen Vincent, Meraud Grant Ferguson, and the memory of

Michael Gearin-Tosh.

This thesis would have been impossible without the support and mentoring of my advisor,

Dan Boneh and the Applied Crypto Group at Stanford.

I have had helpful discussions and received comments and suggestions from many peo-

ple, a non-exhaustive list of whom includes: Paulo Barreto, Stefan Bechtold, Mihir Bel-

lare, Alexandra Boldyreva, Xavier Boyen, Ernie Brickell, Jan Camenisch, Liqun Chen,

Cynthia Dwork, Steven Galbraith, Stanis law Jarecki, Craig Gentry, Eu-Jin Goh, Susan

Hohenberger, Yoshi Kohno, Caroline Kudla, Ben Lynn, Anna Lysyanskaya, Ilya Mironov,

Nagendra Modadugu, Moni Naor, Kenny Paterson, Samuel Pepys, Zulfikar Ramzan, Eric

Rescorla, Leonid Reyzin, Victor Shoup, Alice Silverberg, Nigel Smart, Martijn Stam, and

Brent Waters, as well as the anonymous referees who reviewed the papers that make up the

thesis.

I’d like to thank the Crom Contingent — Cullen Jennings, Nagendra Modadugu, Eric

Rescorla, Terence Spies, and Steve and everyone at Flex-It; and C.C. better halves Lisa

Dusseault and Wendy Spies.

I would, finally, like to thank my friends Susan Rea, Joy Su, Mike Sawka, Rosina Lozano,

and, especially, Nick Vossbrink — without whom this thesis would doubtless not have come

out when it did.

vi



Contents

Abstract iv

Acknowledgments vi

1 Introduction 1

1.1 Previous Publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Mathematical Background 4

2.1 Mathematical Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 The Bilinear Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.3 Running Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.4 Hashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Complexity Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Computational and Decisional co-Diffie-Hellman . . . . . . . . . . . 6

2.2.2 The Strong Diffie-Hellman Assumption . . . . . . . . . . . . . . . . 7

2.2.3 The Decision Linear Diffie-Hellman Assumption . . . . . . . . . . . 8

2.2.4 Implications of DDH Hardness on G1 . . . . . . . . . . . . . . . . . 9

2.3 Elliptic Curves and Bilinear Maps . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Notation and Background . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 Intractability of co-CDH on (G1, G2) . . . . . . . . . . . . . . . . . . 11

2.3.3 Hashing onto elliptic curves . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.4 Suitable Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.5 The bad news . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

vii



3 Short Signatures 17

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Signature Security Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Short Signatures based on CDH . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.1 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Short Signatures based on SDH . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.1 Proof of Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.2 A BB Variant Secure without Random Oracles . . . . . . . . . . . . 27

3.4.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Signature Variants and Extensions 30

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Threshold Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Multisignatures and Batch Signature Verification . . . . . . . . . . . . . . . 32

4.4 Aggregate Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4.1 Aggregate Signature Definitions . . . . . . . . . . . . . . . . . . . . . 34

4.4.2 Aggregate Signatures from Bilinear Maps . . . . . . . . . . . . . . . 36

4.5 Verifiably Encrypted Signatures . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5.1 Verifiably Encrypted Signature Definitions . . . . . . . . . . . . . . . 43

4.5.2 Aggregate Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5.3 Verifiably Encrypted Signatures via Aggregation . . . . . . . . . . . 46

4.5.4 Verifiably-Encrypted Signatures from Bilinear Maps . . . . . . . . . 47

4.5.5 Proofs of Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5.6 Observations on Verifiably Encrypted Signatures . . . . . . . . . . . 54

4.6 Conclusions and Open Problems . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Sequential Aggregate Signatures from Trapdoor Permutations 56

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.1 Trapdoor One-Way Permutations . . . . . . . . . . . . . . . . . . . . 58

5.2.2 Certified Trapdoor Permutations . . . . . . . . . . . . . . . . . . . . 58

5.2.3 Claw-Free Permutations, Homomorphic Trapdoor Permutations . . . 59

5.2.4 Full-Domain Signatures . . . . . . . . . . . . . . . . . . . . . . . . . 60

viii



5.3 Sequential Aggregate Signatures . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4 Sequential Aggregates from Trapdoor Permutations . . . . . . . . . . . . . . 63

5.4.1 The Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4.2 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.5 Aggregating with RSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5.1 Concrete Proposals for Sequential Aggregates with RSA . . . . . . . 77

5.5.2 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Group Signatures 79

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 A Zero-Knowledge Protocol for SDH . . . . . . . . . . . . . . . . . . . . . . 81

6.3 Short Group Signatures from SDH . . . . . . . . . . . . . . . . . . . . . . . 84

6.4 BBS Group Signature Security . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7 Group Signature Variants and Extensions 94

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.2 Strong Exculpability for BBS . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.3 Revocation for BBS using Accumulators . . . . . . . . . . . . . . . . . . . . 96

7.4 Verifier-Local Revocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.4.2 Short VLR Group Signatures from SDH . . . . . . . . . . . . . . . . 102

7.4.3 Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.4.4 Proof of Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.4.5 Efficient Revocation for BS Signatures . . . . . . . . . . . . . . . . . 116

7.4.6 Backward Unlinkability . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.4.7 Strong Exculpability for BS . . . . . . . . . . . . . . . . . . . . . . . 117

7.5 Conclusions and Open Problems . . . . . . . . . . . . . . . . . . . . . . . . 118

Bibliography 119

ix



List of Tables

2.1 Suitable supersingular elliptic curves with k = 6 . . . . . . . . . . . . . . . . 14

2.2 Suitable MNT curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Suitable Barreto-Naehrig curves . . . . . . . . . . . . . . . . . . . . . . . . . 16

x



Chapter 1

Introduction

In a digital signature scheme, Alice uses her private key to sign a message of her choice.

This procedure creates a signature, a short string that binds Alice to the message and the

message to her. Anyone who has Alice’s public key, the signature, and the message can

verify that the signature is valid, i.e., was produced by Alice on the message at hand. No

one but Alice can generate a signature on any message that verifies as valid under Alice’s

public key.

Digital signatures thus provide authenticity and integrity. That is, a signature by Alice

on a message demonstrates that it was Alice who signed (and, therefore, intended to send)

that message; and that the message is exactly the message sent by Alice, and was not

tampered with. In a legal setting, they are sometimes said to provide nonrepudiation;

however, this term is not well defined [77].

Signatures are a standard cryptographic primitive with many applications in higher-level

protocols.

My Thesis. Groups featuring a computable bilinear map are particularly well suited for

signature-related primitives.

For some signature variants the only construction known is based on bilinear maps.

Where constructions based on, e.g., RSA are known, bilinear-map–based constructions are

simpler, more efficient, and yield shorter signatures.

Evidence. In this thesis, we describe several constructions that support the claim above.

First, we consider Boneh-Lynn-Shacham (BLS) and Boneh-Boyen short signatures. BLS

1



CHAPTER 1. INTRODUCTION 2

signatures with security comparable to 1024-bit RSA are 160 bits long, the shortest of any

scheme based on standard assumptions. BB signatures can be as short as BLS or (in a

variant with longer signatures) can be proved secure without random oracle.

Next, we present several extension and variants of BLS signatures. Amongst these is

the Boneh-Gentry-Lynn-Shacham (BGLS) aggregate signature scheme. In an aggregate

signature scheme, it is possible, given n signatures on n distinct messages from n distinct

users, to aggregate all these signatures into a single short signature. This single aggregate

suffices to convince a verifier that the the users did indeed sign their respective messages.

BGLS aggregates are based on BLS signatures and are 160 bits long, regardless of how

many signatures are aggregated. No construction is known for aggregate signatures that

does not employ bilinear maps.

We also show that BGLS aggregates give rise to verifiably encrypted signatures, a sig-

nature variant with applications in contract signing.

In a digression, we show how one can construct sequential aggregate signatures based

only on the existence of trapdoor permutations. Sequential aggregate signatures is variant

of aggregate signatures in which signing-and-aggregation is a single operation, in which each

signer adds her signature to the aggregate signature of all the signers before her.

Next, we present the Boneh-Boyen-Shacham (BBS) group signature scheme. Group

signatures provide anonymity for signers. Any member of the group can sign messages, but

the resulting signature keeps the identity of the signer secret. In some systems there is a

third party that can trace the signature, or undo its anonymity, using a special trapdoor.

BBS group signatures with security comparable to 1024-bit RSA are 1443 bits long, shorter

than any previous scheme by an order of magnitude. The signing operation is also an order

of magnitude more efficient than in previous schemes.

Finally, we consider variants and extensions of the BBS group signature scheme, in-

cluding a group signature with a novel revocation mechanism that we call verifier-local

revocation (VLR). In a VLR group signature, messages announcing the revocation of some

users need only be processed by the verifiers; the signers are stateless. We present the

Boneh-Shacham VLR group signature scheme, which has signatures even shorter than in

BBS.



CHAPTER 1. INTRODUCTION 3

1.1 Previous Publication

The BLS short signature scheme of Section 3.3 and the notes on elliptic curve families in

Section 2.3 originally appeared in “Short Signatures from the Weil Pairing,” joint work

with Dan Boneh and Ben Lynn, of which an extended abstract was presented at Asiacrypt

2001 [27] and which appeared in the Journal of Cryptology [28].

The BGLS aggregate signature scheme of Section 4.4 and the BGLS2 verifiably en-

crypted signature scheme of Section 4.5 originally appeared in “Aggregate and Verifiably

Encrypted Signatures from Bilinear Maps,” joint work with Dan Boneh, Craig Gentry, and

Ben Lynn, which was presented at Eurocrypt 2003 [26].

The LMRS sequential aggregate signature scheme of Chapter 5 originally appeared

in “Sequential Aggregate Signatures from Trapdoor Permutations,” joint work with Anna

Lysyanskaya, Silvio Micali, and Leonid Reyzin, which was presented at Eurocrypt 2004 [79].

The BBS group signature scheme of Chapter 6, along with its extensions in Sections

7.2 and 7.3 originally appeared in “Short Group Signatures,” joint work with Xavier Boyen

and Dan Boneh, which was presented at Crypto 2004 [24].

The BS group signature with verifier-local revocation of Section 7.4 originally appeared

in “Group Signatures with Verifier-Local Revocation,” joint work with Dan Boneh, which

was presented at ACM CCS 2004 [29].



Chapter 2

Mathematical Background

2.1 Mathematical Setting

2.1.1 Groups

Throughout the thesis, we use the following notation:

• G1 is a multiplicative cyclic group of prime order p;

• G2 is a multiplicative group of exponent p, whose order is some power of p.

• ψ is a homomorphism from G2 onto G1.

• g2 is an order-p element of G2 and g1 is a generator of G1 such that ψ(g2) = g1.

The elements g1 and g2 are selected at random as part of system setup. Having selected g2,

we typically restrict G2 to its cyclic order-p subgroup 〈g2〉. The restriction of ψ to this

subgroup gives an isomorphism onto G1.1

One could set G1 = G2, but we allow for the more general case where G1 6= G2 so that

we can take advantage of certain families of non-supersingular elliptic curves as described

in Sections 2.3.5 and 2.3.5.

Some schemes described in this thesis make explicit use of the map ψ. For others (e.g.,

the BLS short signature scheme of Section 3.3), the map is used only in the proof of security.

Even so, the map isn’t merely a proof artifact. We give in Section 3.3.1 an example of a
1When G2 is not restricted in this way, it is possible to use the pairing to test whether two points

g2, h ∈ G2 are such that h ∈ 〈g2〉. Protocols in which messages include elements of G2 can thus leak
information. None of the protocols in this thesis transmits elements of G2.

4



CHAPTER 2. MATHEMATICAL BACKGROUND 5

bilinear group pair on which the BLS signature scheme is insecure precisely because ψ does

not exist.

2.1.2 The Bilinear Map

We also employ bilinear maps. For these, we use the following notation:

• GT is a multiplicative cyclic group of order p.

• e is a map e : G1 ×G2 → GT with the following properties:

– Bilinear: for all u ∈ G1, v ∈ G2 and a, b ∈ Z, e(ua, vb) = e(u, v)ab.

– Non-degenerate: e(ψ(g2), g2) 6= 1 for all but at most a (2/p)-fraction of g2 ∈ G2.

When provided a generator g2 by an untrusted party, one can use the pairing to verify that

e(ψ(g2), g2) 6= 1 holds.

2.1.3 Running Times

Throughout this thesis, we use a concrete analysis in which time is measured according to

some fixed computational model — say, state transitions in a probabilistic (oracle) Turing

machine — and then normalized so that the following operations take unit time:

• computing the group operation on G1 and on G2;

• evaluating the homomorphism ψ;

• selecting an element of G1 or G2 uniformly at random; and

• evaluating the bilinear map e.

2.1.4 Hashing

Some schemes in this thesis make use of a hash function H : {0, 1}∗ → Zp. Others require

that H map onto G1 or (in the case of BS group signatures, Section 7.4.2) onto G2. In

Section 2.3.3, we discuss how one might instantiate a hash function onto these groups.
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2.2 Complexity Assumptions

2.2.1 Computational and Decisional co-Diffie-Hellman

With the setup above we obtain natural generalizations of the CDH and DDH problems:

Computational co-Diffie-Hellman (co-CDH) on (G1, G2): Given g2, ga
2 ∈ G2 and h ∈

G1 as input, compute ha ∈ G1.

Decision co-Diffie-Hellman (co-DDH) on (G1, G2): Given g2, g
a
2 ∈ G2 and h, hb ∈ G1

as input, output yes if a = b and no otherwise.

We call a tuple of the form (g2, ga
2 , h, h

a) a co-Diffie-Hellman tuple. When G1 = G2 these

problems reduce to standard CDH and DDH.

We define the success probability of an algorithm A in solving the Computational co-

Diffie-Hellman problem on (G1, G2) as

Advco-cdh
A

def= Pr
[
A(g2, ga

2 , h) = ha : g2
R← G2, a

R← Zp, h
R← G1

]
.

The probability is over the uniform random choice of g2 from G2, a from Zp, h from G1,

and over the coin tosses of A. We say that an algorithm A (t, ε)-breaks Computational

co-Diffie-Hellman on (G1, G2) if A runs in time at most t, and Advco-cdh
A is at least ε.

We are interested in the case where a computable bilinear map exists, but Computational

co-Diffie-Hellman is hard, motivating the following definition:

Definition 2.2.1. We say that two groups (G1, G2) as in Section 2.1 above are a (t, ε)-bi-

linear group pair if no algorithm (t, ε)-breaks Computational co-Diffie-Hellman on (G1, G2).

If G1 = G2, we say that G1 is a bilinear group.

Joux and Nguyen [70] showed that an efficiently-computable bilinear map e provides

an algorithm for solving the Decision co-Diffie-Hellman problem as follows: For a tuple

(g2, ga
2 , h, h

b) where h ∈ G1 we have

a = b mod p ⇐⇒ e(h, ga
2) = e(hb, g2) .

This test succeeds except when e(ψ(g2), g2) = 1 and therefore e(h, g2) = 1; but this only

happens with negligible probability. Consequently, Decision co-Diffie-Hellman can be solved

in 2 time units on a bilinear group pair (G1, G2).
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When we wish to highlight that a scheme requires only that it be easy to solve Decision

co-Diffie-Hellman on (G1, G2), we refer to (G1, G2) as a Gap co-Diffie-Hellman group pair.

Specifically, two groups (G1, G2) as in Section 2.1 above (omitting the bilinear map e) are

a (t, ε)-Gap co-Diffie-Hellman group pair if there is a procedure for solving Decision co-

Diffie-Hellman on (G1, G2) in 2 time units, but no algorithm (t, ε)-break Computational

co-Diffie-Hellman on (G1, G2). If G1 = G2, we say that G1 is a Gap Diffie-Hellman group.

Currently, the only examples of such Gap co-Diffie-Hellman groups arise from bilinear

maps. It is possible that other constructions for useful Gap co-Diffie-Hellman groups exist.

2.2.2 The Strong Diffie-Hellman Assumption

We present the q-Strong Diffie-Hellman (SDH) problem. This problem, introduced by

Boneh and Boyen [23], has similar properties to the Strong-RSA problem [10], as we will

see.

q-Strong Diffie-Hellman Problem: Given a (q + 2)-tuple (g1, g2, g
γ
2 , g

(γ2)
2 , . . . , g

(γq)
2 ) as

input, with g1 = ψ(g2), output a pair (g1/(γ+x)
1 , x), where x ∈ Zp.

We define the success probability of an algorithm A in solving the q-Strong Diffie-

Hellman problem on (G1, G2) as

Advsdh
A (q) def= Pr

 A(g1, g2, g
γ
2 , . . . , g

(γq)
2 ) = (g

1
γ+x

1 , x) :

g2
R← G2, γ

R← Z∗p, g1 ← ψ(g2)


The probability is over the uniform random choice of g2 from G2, a from Zp, h from G1, and

over the coin tosses of A. An algorithm A (t, q, ε)-breaks Strong Diffie-Hellman on (G1, G2)

if A runs in time at most t, and Advsdh
A (q) is at least ε.

Definition 2.2.2. We say that the (q, t, ε)-SDH assumption holds in (G1, G2) if no t-time

algorithm (t, q, ε)-breaks Strong Diffie-Hellman on (G1, G2).

Occasionally we drop the t and ε and refer to the q-SDH assumption rather than the

(q, t, ε)-SDH assumption.

Mitsunari et al. [90] use a related assumption (where x is specified in advance rather

than chosen by the adversary) in a tracing-traitors system.

To gain confidence in the q-SDH assumption, Boneh and Boyen prove [23] that it holds

in generic groups in the sense of Shoup [108].
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2.2.3 The Decision Linear Diffie-Hellman Assumption

With the setup as above, along with arbitrary generators u, v, and h of G1, consider the

following problem:

Decision Linear Problem in G1: Given u, v, h, ua, vb, hc ∈ G1 as input, output yes if

a+ b = c and no otherwise.

One can easily show that an algorithm for solving Decision Linear in G1 gives an algo-

rithm for solving DDH in G1. The converse is believed to be false. That is, it is believed

that Decision Linear is a hard problem even in bilinear groups where DDH is easy (e.g.,

when G1 = G2). More precisely, we define the advantage of an algorithm A in deciding the

Decision Linear problem in G1 as

Advlinear
A

def=

∣∣∣∣∣∣ Pr
[
A(u, v, h, ua, vb, ha+b) = yes : u, v, h R← G1, a, b

R← Zp

]
− Pr

[
A(u, v, h, ua, vb, η) = yes : u, v, h, η R← G1, a, b

R← Zp

] ∣∣∣∣∣∣ .

The probability is over the uniform random choice of the parameters to A, and over the

coin tosses of A. We say that an algorithm A (t, ε)-decides Decision Linear in G1 if A runs

in time at most t, and Advlinear
A is at least ε.

Definition 2.2.3. We say that the (t, ε)-Decision Linear Assumption holds in G1 if no

t-time algorithm has advantage at least ε in solving the Decision Linear problem in G1.

Boneh, Boyen, and Shacham show [24] that the Decision Linear Assumption holds in

generic bilinear groups [108].

Linear Encryption

The Decision Linear problem gives rise to the Linear encryption scheme, a natural extension

of ElGamal encryption. Unlike ElGamal encryption, Linear encryption can be secure even in

groups where a DDH-deciding algorithm exists. In this scheme, a user’s public key is a triple

of generators u, v, h ∈ G1; her private key is the exponents x, y ∈ Zp such that ux = vy = h.

To encrypt a message M ∈ G1, choose random values a, b ∈ Zp, and output the triple

(ua, vb,m ·ha+b). To recover the message from an encryption (T1, T2, T3), the user computes

T3/(T x
1 ·T

y
2 ). By a natural extension of the proof of security of ElGamal, Linear encryption

is semantically secure against a chosen-plaintext attack, assuming Decision Linear holds.
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2.2.4 Implications of DDH Hardness on G1

When G1 and G2 are distinct groups, the Boneh-Boyen-Shacham proof [24] shows that,

in the generic model, the standard Decision Diffie-Hellman (DDH) problem is hard in the

group G1 (even though DDH in G2 is easy). For DDH to be hard in a specific group

G1, the map ψ : G2 → G1 must be computationally one-way. This requirement may hold

when the bilinear groups are instantiated using the Weil or Tate pairing over MNT and

Barreto-Naehrig curves, which we discuss in Section 2.3.4 below. In this instantiation,

G1 is defined over the ground field of the curve where as G2 is defined over a low-degree

extension. Supersingular curves do not have this property since DDH is known to be easy

on all cyclic subgroups [55].

Now suppose that for MNT curves the DDH assumption holds in G1. In this case we

can construct even shorter group signatures and group signatures that satisfy CCA2-full-

anonymity.

Shorter Group Signatures. If DDH holds in G1 then ElGamal encryption is secure

in G1 and can be used as the encryption in the BBS group signature of Section 6.3: T1 = uα,

T2 = A · vα. (The preimages ψ−1(u), ψ−1(v) ∈ G2 of u, v ∈ G1 must not be revealed.) The

group signature then comprises only two elements of G1 and four of Zp. With parameters

chosen as in Section 6.3, we obtain a 1022-bit group signature whose security is comparable

to that of standard 1024-bit RSA signatures. This is about 30% shorter than the signatures

in Section 6.3.

Full-CCA-Anonymity. Likewise, if DDH holds inG1 then the Cramer-Shoup encryption

scheme [44] is secure in G1, and can be used in the BBS group signature scheme. Since

Cramer-Shoup encryption is semantically secure against an adaptive CCA2 attack, the

resulting group signature scheme is CCA2-fully-anonymous and thus secure in the full BMW

model. Cramer-Shoup encryption entails a four-tuple (T1, T2, T3, T4) of elements of G1. The

proof of security entails four elements of Zp. Instantiated with the same parameters as

above, the resulting group signature is 1364 bits long.

We emphasize that currently nothing is known about the complexity of the DDH problem

in the ground field of an MNT curve and relying on this assumption seems risky. This

question deserves further study.
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2.3 Elliptic Curves and Bilinear Maps

We quickly summarize the results from elliptic curves on which we rely. For more details, see

Blake, Seroussi, and Smart [20], Galbraith [53], Menezes [83], Lang [76], and Silverman [110].

2.3.1 Notation and Background

Let q be a prime power. We use E/Fq to denote an elliptic curve with coefficients in Fq.

For l ≥ 1, we use E(Fql) to denote the group of points on E in Fql . We use #E(Fql) to

denote the number of points in E(Fql).

Let r be a prime dividing #E(Fq) such that r - q. The embedding degree of E/Fq is

the smallest positive integer k such that r | qk − 1. Then F∗
qk contains µr, the group of rth

roots of unity.

Let E(Fqk)[r] be the group of r-torsion points in E(Fqk), i.e., {P ∈ E(Fqk) | rP = O}.
Then E(Fqk)[r] is a group of exponent r, and is isomorphic to Zr×Zr. Similarly, let rE(Fqk)

be the group {rP | P ∈ E(Fqk)}. Then E(Fqk)/rE(Fqk) is also a group of exponent r, and

is isomorphic to Zr × Zr.

For the curves of interest, E(Fqk)[r]r̂E(Fqk) = ∅, and we can represent elements of

E(Fqk)/rE(Fqk) using E(Fqk)[r].

The Weil and Tate pairings. The Weil pairing is a map e : E(Fqk)[r]×E(Fqk)[r]→ µr

with the following properties:

(i) Identity: for all R ∈ E(Fqk)[r], e(R,R) = 1.

(ii) Bilinear: for all R1, R2 ∈ E(Fqk)[r] and a, b ∈ Z we have e(aR1, bR2) = e(R1, R2)ab.

(iii) Non-degenerate: if for R ∈ E(Fqk)[r] we have e(R,R′) = 1 for all R′ ∈ E(Fqk)[r], then

R = O.

(iv) Computable: for all R1, R2 ∈ E[p], the pairing e(R1, R2) can be computed in polyno-

mial time [88].

The Tate pairing [52] (with final powering by (qk − 1)/r) is a map e : E(Fqk)[r] ×
E(Fqk)/rE(Fqk) → µr. This pairing is again bilinear, computable, and non-degenerate,

though the non-degeneracy condition is more complicated.
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The Groups G1, G2, and GT . We define G1 to be E(Fq)[r], the r-torsion points of E

over the base field Fq. This group has r points. (Pairing evaluation is more efficient when

the first argument has coordinates in the base field.) We define G2 to be E(Fqk)[r] for the

Weil pairing, or E(Fqk)/rE(Fqk) for the Tate pairing. (Again, these are equivalent for our

purposes.) This is a group of exponent r, with r2 points.2 Finally, GT is the group µr.

The Trace Map. We present a computable homomorphism ψ : G2 → G1, using the trace

map, tr, which sends points in E(Fqk) to E(Fq). Let σ1, . . . , σk be the Galois maps of Fqk

over Fq. Also, for R = (x, y) ∈ E(Fqk) define σi(R) = (σi(x), σi(y)). Then the trace map

tr : E(Fqk)→ E(Fq) is defined by:

tr(R) = (1/k)
[
σ1(R) + · · ·+ σk(R)

]
.

In fact, for points in E(Fqk)[r] = G2, the output of tr is in E(Fq)[r] = G1. It is easy to

show that tr is a homomorphism from G2 to G1. It is computable in time polynomial in k

and log q as required.

2.3.2 Intractability of co-CDH on (G1, G2)

The remaining question is the difficulty of the co-CDH problem on (G1, G2). We review

necessary conditions for CDH intractability. The best known algorithm for solving co-CDH

on (G1, G2) is to compute discrete-log in G1. In fact, the discrete-log and CDH problems

in G1 are known to be computationally equivalent given some extra information about

the group G1 [81]. Therefore, it suffices to consider necessary conditions for making the

discrete-log problem on E(Fq) intractable.

Let 〈P 〉 be a subgroup of E(Fq) of order r with embedding degree k. We briefly discuss

two standard ways for computing discrete-log in 〈P 〉.

1. MOV: Use an efficiently computable homomorphism, as in the Menezes-Okamoto-

Vanstone reduction [82], to map the discrete log problem in 〈P 〉 to a discrete log

problem in some extension of Fq, say Fqi . We then solve the discrete log problem in

F∗
qi using the Number Field Sieve algorithm [106]. The image of 〈P 〉 under this homo-

morphism must be a subgroup of F∗
qi of order r. Thus we have r | qi−1, which by the

2Of the r2 points, r will coincide with G1, and r will have trace O. This motivates the (2/p) constant in
Section 2.1.2 above.
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definition of k implies that i ≥ k. Hence, the MOV method can, at best, reduce the

discrete log problem in 〈P 〉 to a discrete log problem in a subgroup of F∗
qk . Therefore,

to ensure that discrete log is hard in 〈P 〉 we want curves where k is sufficiently large

to make discrete log in F∗
qk intractable.

2. Generic: Generic discrete log algorithms such as Baby-Step-Giant-Step and Pollard’s

Rho method [84] have a running time proportional to
√
p log p. Therefore, we must

ensure that p is sufficiently large.

In summary, we want curves E/Fq where both a generic discrete log algorithm in E(Fq)

and the Number Field Sieve in F∗
qk are intractable. At the same time, since elements

of G1 have representation of length dlog2 qe and elements G2 have representation of length

dk log2 qe, we wish to keep q as small as possible.

2.3.3 Hashing onto elliptic curves

Many schemes based in this thesis require a hash function H : {0, 1}∗ → G1. In the elliptic

curve setting above, this requires a map onto E(Fq)[r]. Since it is difficult to build hash

functions that hash directly onto a subgroup of an elliptic curve we slightly relax the hashing

requirement.

Let Fq be a field of characteristic greater than 2. Let E/Fq be an elliptic curve defined

by y2 = f(x) and let E(Fq) have order m. Let P ∈ E(Fq) be a point of prime order r,

where p2 does not divide m. We wish to hash onto the subgroup G1 = 〈P 〉. Suppose we are

given a hash function H ′ : {0, 1}∗ → Fq × {0, 1}. Such hash functions H ′ can be built from

standard cryptographic hash functions. The security analysis will view H ′ as a random

oracle. We use the following deterministic algorithm called MapToGroup to hash messages

in {0, 1}∗ onto G1. Fix a small parameter I = dlog2 log2(1/δ)e, where δ is some desired

bound on the failure probability.

MapToGroupH′: The algorithm defines H : {0, 1}∗ → G1 as follows:

1. Given M ∈ {0, 1}∗, set i← 0;

2. Set (x, b)← H ′(i ‖M) ∈ Fq × {0, 1}, where i is represented as an I-bit string;

3. If f(x) is a quadratic residue in Fq then do:
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3a. Let y0, y1 ∈ Fq be the two square roots of f(x). We use b ∈ {0, 1} to choose

between these roots. Choose some full ordering of Fq and ensure that y1 is

greater than y0 according to this ordering (swapping y0 and y1 if necessary). Set

P̃M ∈ E(Fq) to be the point P̃M = (x, yb).

3b. Compute PM = (m/r)P̃M . Then PM is in G1. If PM 6= O, declare that

MapToGroupH′(M) = PM and stop; otherwise, continue with Step 4.

4. Otherwise, increment i, and go to Step 2; if i reaches 2I , report failure.

The failure probability can be made arbitrarily small by picking an appropriately large I.

For each i, the probability that H ′(i ‖ M) leads to a point on G1 is approximately 1/2

(where the probability is over the choice of the random oracle H ′). Hence, the expected

number of calls to H ′ is approximately 2, and the probability that a given message M will

be found unhashable is 1/2(2I) ≤ δ.
It can be shown [28] that BLS signatures remain secure when the when the hash function

H is computed with MapToGroupH′ and H ′ is a random oracle hash function H ′ : {0, 1}∗ →
Fq × {0, 1}. Similar arguments apply to other schemes.

Hashing onto G2. A similar procedure can be used to construct a hash function with

domain in G2. In this case, it is important that by G2 we mean the full r2-element group

E(Fqk)[r]. It is an open problem to construct a hash onto the r-element subgroup 〈Q〉 when

Q /∈ E(Fq)[r] = G1.

2.3.4 Suitable Curves

We briefly describe three families of elliptic curves with useful embedding degrees. The first

two families have embedding degrees k = 6; the third has embedding degree k = 12.

Supersingular Curves

Boneh, Lynn, and Shacham note [28] that the supersingular curves E± : y2 = x3 + 2x± 1

over F3l have embedding degree k = 6, the most of any supersingular curves (cf. citeWater-

house,Koblitz1). They also show that curves E+ and E− have a useful automorphism that

make the prime-order subgroups of E+(F3l) and E−(F3l) into bilinear groups (as opposed

to bilinear group pairs).
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curve l Sig Size DLog Security MOV Security
dlog2 3le dlog2 re d6 log2 3le

E− 79 126 126 752
E+ 97 154 151 923
E+ 121 192 155 1151
E+ 149 237 220 1417
E+ 163 259 256 1551
E− 163 259 259 1551

Table 2.1: Supersingular elliptic curves with k = 6. Here r is the largest prime divisor of
#E(F3l) The MOV reduction maps the curve onto a field of characteristic 3 of size 36l.

Some useful instantiations of these curves are presented in Table 2.1. Note that we

restrict these instantiations to those where ` is prime, to avoid Weil-descent attacks [56, 59],

except for ` = 121. It has recently been shown that certain Weil-descent attacks are not

effective for this case [46].

Performance There is a substantial literature on speeding up pairing evaluation on su-

persingular curves over fields of low characteristic [54, 12, 11]. Accordingly, pairing-based

protocols implemented using the curves E± will be much faster than using the other curves

discussed in this section.

Shorter Representation for G1. To obtain larger embedding degree, Rubin and Sil-

verberg [105] propose certain Abelian varieties. They show that elements of G1 using the

supersingular curves proposed here can be shortened by 20%. The result is an n-bit signa-

ture where the pairing reduces the discrete log problem to a finite field of size approximately

27.5n.

2.3.5 The bad news

MOV reduces the discrete log problem on E+(F3l) and E−(F3l) to a discrete log problem

in F∗
36l . A discrete-log algorithm due to Coppersmith [38, 106] is specifically designed to

compute discrete log in small characteristic fields. Consequently, a discrete-log problem in

F∗3n is much easier than a discrete-log problem in F∗p where p is a prime of approximately

the same size as 3n. To get security equivalent to DSA using a 1024-bit prime, we would

have to use a curve E(F3l) where 36l is much larger than 1024 bits. This leads to much
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Discriminant Signature Size DLog Security MOV Security
D dlog2 qe dlog2 re d6 log2 qe

13368643 149 149 894
254691883 150 147 900
8911723 157 157 942
62003 159 158 954

12574563 161 161 966
1807467 163 163 978
6785843 168 166 1008
28894627 177 177 1062
153855691 185 181 1110

658779 199 194 1194
1060147 203 203 1218
20902979 204 204 1224
9877443 206 206 1236

Table 2.2: Suitable MNT curves. Here E is a curve over the prime field Fq and r is the
largest prime dividing its order. The MOV reduction maps the curve onto the field Fq6 . D
is the discriminant of the complex multiplication field of E/Fq.

longer signatures, defeating the point of using these curves.

MNT Curves

Miyaji, Nakabayashi, and Takano [91] describe a family of ordinary (non-supersingular)

elliptic curves with k = 6.

These curves are constructed using complex multiplication [20, chapter VIII].

Table 2.2 gives some values of the discriminant D that lead to suitable curves.

Barreto-Naehrig Curves

Recently, Barreto and Naehrig [13] described a family of ordinary curves with k = 12.

Table 2.3 describes some suitable curves produced by the Barreto-Naehrig method.
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Signature Size DLog Security MOV Security
dlog2 qe dlog2 re d6 log2 qe

160 160 1920
192 192 2304
224 224 2688
256 256 3072

Table 2.3: Suitable Barreto-Naehrig curves. Here E is a curve over the prime field Fq and
r is the largest prime dividing its order. The MOV reduction maps the curve onto the field
Fq6 . D is the discriminant of the complex multiplication field of E/Fq.



Chapter 3

Short Signatures

3.1 Introduction

Short digital signatures are needed in environments with strong bandwidth constraints. For

example, product registration systems often ask users to key in a signature provided on a

CD label. When a human is asked to type in a digital signature, the shortest possible

signature is needed. Similarly, due to space constraints, short signatures are needed when

one prints a bar-coded digital signature on a postage stamp [101, 92]. As a third example,

consider legacy protocols that allocate a fixed short field for non-repudiation [3, 69]. One

would like to use the most secure signature that fits in the allotted field length.

The two most frequently used signatures schemes, RSA and DSA, produce relatively

long signatures compared to the security they provide. For example, when one uses a

1024-bit modulus, RSA signatures are 1024 bits long. Similarly, when one uses a 1024-bit

modulus, standard DSA signatures are 320 bits long. Elliptic curve variants of DSA, such

as ECDSA, are also 320 bits long [4]. A 320-bit signature is too long to be keyed in by a

human.

In this Chapter, we describe two signature schemes in which signature length is ap-

proximately 160 bits and which provide a level of security similar to that of 320-bit DSA

signatures. The first, BLS, is secure against existential forgery under a chosen-message

attack (in the random oracle model), assuming the Computational Diffie-Hellman problem

(CDH) is hard on certain elliptic curves over a finite field. The second, BB, is secure as-

suming the Strong Diffie-Hellman problem is hard. A BB variant can also be proven secure

without random oracles, but signatures in this variant are twice as long.

17
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For both BLS and BB, generating a signature is a simple multiplication on the curve.

Verifying the signature is done using a bilinear pairing on the curve. Both schemes inherently

use properties of curves. Consequently they have no equivalent in F∗q , the multiplicative

group of a finite field.

Constructing short signatures is an old problem. Several proposals show how to shorten

DSA while preserving the same level of security. Naccache and Stern [92] propose a variant

of DSA where the signature length is approximately 240 bits. Mironov [89] suggests a

DSA variant with a similar length and gives a concrete security analysis of the construction

in the random oracle model. Other work aims at reducing the length of signature in the

RSA setting. For example, Gentry shows how to compress Rabin signatures to two-thirds

of their original length. [63]. Another technique proposed for reducing signature length

is signatures with message recovery [94, 101]. In such systems one encodes a part of the

message into the signature thus shortening the total length of the message-signature pair.

For long messages, one can then achieve a DSA signature overhead of 160 bits. However,

for very short messages (e.g., 64 bits) the total length remains 320 bits. Using BLS or BB,

the signature length is always on the order of 160 bits, however short the message. We also

note that Patarin et al. [98, 43] construct short signatures whose security depends on the

Hidden Field Equation problem.

The BLS signature scheme resembles the undeniable signature scheme of Chaum and

Pedersen [35]. Because of its simple mathematical structure, the scheme has several useful

properties. These are described in the next chapter. The BB signature scheme is related to

the group signature schemes presented in Chapters 6 and 7.

3.2 Signature Security Definitions

Formally, a signature scheme is a triple of algorithms SIG = (Kg,Sig,Vf), which behave as

follows.

Sig.Kg. This randomized algorithm outputs a public verification key pk and a private

signing key sk.

Sig.Sig(sk,M). This algorithm takes as input a private key sk and a message M in some

message space (typically {0, 1}∗) to be signed, and returns a signature σ on M .
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Sig.Vf(pk,M, σ). The verification algorithm takes as input a public key pk, and a purported

signature σ on a message M . It returns either valid or invalid.

The signing algorithm Sig can also be a randomized algorithm, in which case we say

that the signature scheme is randomized. In a randomized signature scheme, the signing

algorithm will typically issue different signatures if reinvoked with different randomness.

Even if the signing algorithm is not randomized, there might still be more than one valid

signature on a given message under a given public key.1 A signature scheme where this

never occurs — where for every valid public key and message there is only a single signature

that Vf accepts as valid — is said to be unique.

We now recall the standard definition for signature scheme security. Existential unforge-

ability under a chosen message attack [66] for a signature scheme SIG is defined using the

following game between a challenger and an adversary A:

Setup. The challenger runs algorithm Kg to obtain a public key pk and private key sk.

The adversary A is given pk.

Queries. Proceeding adaptively, A requests signatures with pk on at most qS mes-

sages of his choice M1, . . . ,Mqs ∈ {0, 1}∗. The challenger responds to each query

with a signature σi = Sig(sk,Mi). In the random oracle model, the adversary

can also make qH queries to a hash oracle H.

Output. Eventually, A outputs a pair (M,σ) and wins the game if (1) M is not any

of M1, . . . ,Mqs , and (2) Vf(pk,M, σ) = valid.

We define Advsig-ef-cma
SIG,A to be the probability that A wins in the above game, taken over

the coin tosses of Kg, of A, and of Sig if it randomized.

For non-unique signature schemes, it is possible that the adversary can obtain a sig-

nature σ on a message M from its signing oracle and transform it into a different valid

signature σ′. Under the definition above, this is not considered a forgery. (Under a re-

lated security definition, strong existential unforgeability, this would be a forgery [2]. The

signature schemes in this thesis are all unique, however, so we do not consider strong un-

forgeability further.)

Definition 3.2.1. A forger A (t, qS, qH , ε)-breaks a signature scheme SIG if A runs in time

at most t, A makes at most qS signature queries and at most qH queries to the hash function,
1An example is the BLS variant with tight security reduction given by Katz and Wang [71], where every

message has two valid signatures, only one of which is ever output by the signing algorithm.
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and Advsig-ef-cma
SIG,A is at least ε. A signature scheme is (t, qS, qH , ε)-existentially unforgeable

under an adaptive chosen-message attack if no forger (t, qS, qH , ε)-breaks it.

3.3 Short Signatures based on CDH

We present a signature scheme that works on any Gap co-Diffie-Hellman group pair (G1, G2).

We prove security of the scheme and, in the next section, show how it leads to short

signatures. The scheme resembles the undeniable signature scheme proposed by Chaum

and Pedersen [35]. Okamoto and Pointcheval [97] briefly note that gap problems can give

rise to signature schemes. However, most gap problems will not lead to short signatures.

Let (G1, G2) be (t, ε)-Gap co-Diffie-Hellman group pair where |G1| = |G2| = p. A

signature σ is an element of G1. The signature scheme comprises three algorithms, Kg, Sig,

and Vf. It makes use of a full-domain hash function H : {0, 1}∗ → G1. In Section 2.3.3

we weaken the requirement on the hash function H. The security analysis views H as a

random oracle [16, 17].

BLS.Kg. Pick random x
R← Zp and compute v ← gx

2 . The public key pk is v ∈ G2. The

private key sk is x.

BLS.Sig(sk,M). Parse the user’s private key sk as x ∈ Zp. Compute h← H(M) ∈ G1 and

σ ← hx. The signature is σ ∈ G1.

BLS.Vf(pk,M, σ). Parse the user’s public key pk as v ∈ G2. Compute h ← H(M) ∈ G1

and verify that (g2, v, h, σ) is a valid co-Diffie-Hellman tuple. If so, output valid; if

not, output invalid.

A signature is a single element of G1. To construct short signatures, therefore, we

need co-GDH group pairs where elements in G1 have a short representation. We briefly

describe how to construct such groups in Section 2.3. Using the Barreto Naehrig curves of

Section 2.3.5, we can obtain 160-bit signatures with 1024-bit security.

3.3.1 Security

We prove the security of the BLS signature scheme against existential forgery under adaptive

chosen-message attacks in the random oracle model. Security follows from the hardness of
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co-CDH on (G1, G2). When G1 = G2 security is based on the standard Computational

Diffie-Hellman assumption in G1.

Theorem 3.3.1. Let (G1, G2) be a (t′, ε′)-co-GDH group pair of order p. Then BLS on

(G1, G2) is (t, qS, qH , ε)-secure against existential forgery under an adaptive chosen-message

attack (in the random oracle model), for all t and ε satisfying

ε ≥ e(qS + 1) · ε′ and t ≤ t′ − cG1
(qH + 2qS) .

Here cG1
is a constant that depends on G1, and e is the base of the natural logarithm.

Proof. Suppose A is a forger algorithm that (t, qS, qH , ε)-breaks the signature scheme. We

show how to construct a t′-time algorithm B that solves co-CDH on (G1, G2) with probability

at least ε′. This will contradict the fact that (G1, G2) is a (t′, ε′)-co-GDH group pair.

Let g2 be a generator of G2. Algorithm B is given g2, u ∈ G2 and h ∈ G1, where u = ga
2 .

Its goal is to output ha ∈ G1. Algorithm B simulates the challenger and interacts with

forger A as follows.

Setup. Algorithm B starts by giving A the generator g2 and the public key u · gr
2 ∈ G2,

where r is random in Zp.

H-queries. At any time algorithm A can query the random oracle H. To respond to these

queries algorithm B maintains a list of tuples 〈Mj , wj , bj , cj〉 as explained below. We

refer to this list as the H-list. The list is initially empty. When A queries the oracle

H at a point Mi ∈ {0, 1}∗, algorithm B responds as follows:

1. If the query Mi already appears on the H-list in a tuple 〈Mi, wi, bi, ci〉 then

algorithm B responds with H(Mi) = wi ∈ G1.

2. Otherwise, B generates a random coin ci ∈ {0, 1} so that Pr[ci = 0] = 1/(qS + 1).

3. Algorithm B picks a random bi ∈ Zp and computes wi ← h1−ci · ψ(g2)bi ∈ G1.

4. Algorithm B adds the tuple 〈Mi, wi, bi, ci〉 to the H-list and responds to A by

setting H(Mi) = wi.

Note that either way wi is uniform in G1 and is independent of A’s current view as

required.
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Signature queries. Let Mi be a signature query issued by A. Algorithm B responds to

this query as follows:

1. Algorithm B runs the above algorithm for responding to H-queries to obtain a

wi ∈ G1 such that H(Mi) = wi. Let 〈Mi, wi, bi, ci〉 be the corresponding tuple

on the H-list. If ci = 0 then B reports failure and terminates.

2. Otherwise, we know ci = 1 and hence wi = ψ(g2)bi ∈ G1. Define σi = ψ(u)bi ·
ψ(g2)rbi ∈ G1. Observe that σi = wa+r

i and therefore σi is a valid signature on

Mi under the public key u · gr
2 = ga+r

2 . Algorithm B gives σi to algorithm A.

Output. Eventually algorithm A produces a message-signature pair (Mf , σf ) such that

no signature query was issued for Mf . If there is no tuple on the H-list containing

Mf then B issues a query itself for H(Mf ) to ensure that such a tuple exists. We

assume σf is a valid signature on Mf under the given public key; if it is not, B
reports failure and terminates. Next, algorithm B finds the tuple 〈Mf , w, b, c〉 on the

H-list. If c = 1 then B reports failure and terminates. Otherwise, c = 0 and therefore

H(Mf ) = w = h ·ψ(g2)b. Hence, σ = ha+r ·ψ(g2)b(a+r). Then B outputs the required

ha as ha ← σ/(hr · ψ(u)b · ψ(g2)rb).

This completes the description of algorithm B. It remains to show that B solves the given

instance of the co-CDH problem on (G1, G2) with probability at least ε′. To do so, we

analyze the three events needed for B to succeed:

E1: B does not abort as a result of any of A’s signature queries.

E2: A generates a valid message-signature forgery (Mf , σf ).

E3: Event E2 occurs and c = 0 for the tuple containing Mf on the H-list.

B succeeds if all of these events happen. The probability Pr[E1 ∧ E3] is:

Pr[E1 ∧ E3] = Pr[E1] · Pr[E2 | E1] · Pr[E3 | E1 ∧ E2] . (3.1)

The following claims give a lower bound for each of these terms.

Claim 1. The probability that algorithm B does not abort as a result of A’s signature queries

is at least 1/e. Hence, Pr[E1] ≥ 1/e.
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Proof. Without loss of generality we assume that A does not ask for the signature of the

same message twice. We prove by induction that after A makes i signature queries the

probability that B does not abort is at least (1− 1/(qS + 1))i. The claim is trivially true for

i = 0. Let Mi be A’s i’th signature query and let 〈Mi, wi, bi, ci〉 be the corresponding tuple

on the H-list. Then prior to issuing the query, the bit ci is independent of A’s view — the

only value that could be given to A that depends on ci is H(Mi), but the distribution on

H(Mi) is the same whether ci = 0 or ci = 1. Therefore, the probability that this query

causes B to abort is at most 1/(qS +1). Using the inductive hypothesis and the independence

of ci, the probability that B does not abort after this query is at least (1−1/(qS +1))i. This

proves the inductive claim. Since A makes at most qS signature queries the probability that

B does not abort as a result of all the signature queries is at least (1−1/(qS+1))qS ≥ 1/e.

Claim 2. If algorithm B does not abort as a result of A’s signature queries then algo-

rithm A’s view is identical to its view in the real attack. Hence, Pr[E2 | E1] ≥ ε.

Proof. The public key given to A is from the same distribution as a public key produced

by algorithm Kg. Responses to H-queries are as in the real attack since each response is

uniformly and independently distributed in G1. All responses to signature queries are valid.

Therefore, A will produce a valid message-signature pair with probability at least ε. Hence,

Pr[E2 | E1] ≥ ε.

Claim 3. The probability that algorithm B does not abort after A outputs a valid forgery

is at least 1/(qS + 1). Hence, Pr[E3 | E1 ∧ E2] = 1/(qS + 1).

Proof. Given that events E1 and E2 happened, algorithm B will abort only if A generates

a forgery (Mf , σf ) for which the tuple 〈Mf , w, b, c〉 on the H-list has c = 1. At the time

A generates its output it knows the value of ci for those Mi for which it issued a signature

query. All the remaining ci’s are independent of A’s view. Indeed, if A did not issue a

signature query for Mi then the only value given to A that depends on ci is H(Mi), but the

distribution on H(Mi) is the same whether ci = 0 or ci = 1. Since A could not have issued

a signature query for Mf we know that c is independent of A’s current view and therefore

Pr[c = 0 | E1 ∧ E2] = 1/(qS + 1) as required.

Using the bounds from the claims above in equation (3.1) shows that B produces the

correct answer with probability at least ε/
(
e(qS + 1)

)
≥ ε′ as required. Algorithm B’s

running time is the same as A’s running time plus the time it takes to respond to (qH + qS)
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hash queries and qS signature queries. Each query requires an exponentiation in G1 which

we assume takes time cG1
. Hence, the total running time is at most t+ cG1

(qH + 2qS) ≤ t′

as required. This completes the proof of Theorem 3.3.1.

The analysis used in the proof of Theorem 3.3.1 resembles Coron’s analysis of the Full

Domain Hash (FDH) signature scheme [39]. We note that the security analysis can be made

tight using Probabilistic Full Domain Hash (PFDH) [40], at the cost of increasing signature

length. The security reduction in Theorem 3.3.1 can also be made tight without increasing

signature length via the technique of Katz and Wang [71].

The BLS signature scheme requires an algorithm for deciding DDH. In groups where a

DDH-deciding algorithm is not available, Goh and Jarecki [65] show that it is still possible to

construct a signature scheme based on CDH, at the cost of substantially greater signature

length. (Previous signature schemes based on CDH had only loose security reductions,

through the forking lemma [102].) The scheme analyzed by Goh and Jarecki has since been

improved by Katz and Wang [71] and by Chevallier-Mames [37], but signatures in these

variants are still longer than BLS signatures.

The Necessity of the Map ψ : G2 → G1. Recall that the proof of security relied on the

existence of an efficiently computable isomorphism ψ : G2 → G1. To show the necessity of

ψ we give an example of a bilinear map e : G1 ×G2 → GT for which the co-CDH problem

is believed to be hard on (G1, G2) and yet the resulting signature scheme is insecure.

Let q be a prime and let G2 be a subgroup of Z∗q of prime order p with generator g. Let

G1 be the group G1 = Zp with addition. Define the map e : G1 ×G2 → G2 as e(x, y) = yx.

The map is clearly bilinear since e(ax, yb) = e(x, y)ab. The co-CDH problem on (G1, G2)

is as follows: Given g, ga ∈ G2 and x ∈ G1 compute ax ∈ G1. The problem is believed

to be hard since an algorithm for computing co-CDH on (G1, G2) gives an algorithm for

computing discrete log in G2. Hence, (G1, G2) satisfies all the conditions of Theorem 3.3.1

except that there is no known computable isomorphism ψ : G2 → G1. It is is easy to see

that the resulting signature scheme from this bilinear map is insecure. Given one message-

signature pair, it is easy to recover the private key.

We comment that one can avoid using ψ at the cost of making a stronger complexity

assumption [111]. Without ψ the necessary assumption for proving security is that no

polynomial time algorithm can compute ha ∈ G1 given g2, g
a
2 ∈ G2 and g1, g

a
1 , h ∈ G1.

Since ψ naturally exists in all the group pairs (G1, G2) we are considering, there is no
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reason to rely on this stronger complexity assumption.

3.4 Short Signatures based on SDH

Boneh and Boyen give a simple signature scheme based on the Strong Diffie-Hellman as-

sumption [23]. In their paper, they present several variants. We will describe two of them:

one that gives a signature as short as BLS, secure in the random oracle model; and another

that gives signatures secure without random oracles. The first of these was independently

discovered by Zhang et al. [118]. It proceeds as follows.

BB.Kg. Select γ R← Z∗p, and set w ← gγ
2 . key pk is w ∈ G2. The private key sk is γ.

BB.Sig(sk,M). Parse the user’s private key sk as γ ∈ Zp. Compute x ← H(M) ∈ Zp and

σ ← g
1/(γ+x)
1 . (If it happens that γ + x equals 0, the message cannot be signed.) The

signature is σ ∈ G1.

BB.Vf(pk,M, σ). Parse the user’s public key pk as w ∈ G2. Compute x← H(M) ∈ Zp and

verify that e(σ, wgx
2 ) = e(g1, g2) holds. If so, output valid; if not, output invalid.

It is easy to see that the scheme is valid: for a correctly formed signature, we have

e(σ, wgx
2 ) = e(g1/(γ+x)

1 , gγ
2 · gx

2 ) = e(g1, g2), as required.

3.4.1 Proof of Security

We begin by describing a technique, used in Lemma 3.2 [23], of which we will make use

again in proving the security of the BBS group signature scheme (Section 6.4) and the

BS VLR group signature scheme (Section 7.4.4). A similar construction occurs also in the

traitor-tracing scheme of Mitsunari, Sakai, and Kasahara [90].

Using this technique, we prove the security of the BB scheme in the random oracle

model.

The Fundamental SDH Technique. We are given a q-SDH instance (g′1, g
′
2, (g

′
2)γ ,

(g′2)γ2
, . . . , (g′2)γq

), where g′1 = psi(g′2). We compute generators g1 ∈ G1, g2 ∈ G2, w = gγ
2 ,

and q − 1 SDH pairs (Ai, xi) such that e(Ai, wg
xi
2 ) = e(g1, g2) for each i.
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We do this as follows. Consider q − 1 values x1, . . . , xq−1 (chosen arbitrarily). Define

formal products f(X) and g(X) as

f(X) =
q−1∏
i=1

(X + xi) and g(X) = X ·
q−1∏
i=1

(X + xi)

and, for each i, 1 ≤ i ≤ q − 1, define the products fi(X) as

fi(X) =
∏

1≤j≤q−1
i6=j

(X + xj) .

Each of these is a polynomial of degree at most q; for each, we can compute the coefficients

of the X-powers in O(q) time.

Suppose g(X) expands as
∑q

i=0 aiX
i. Using the coefficients ai and the SDH problem

parameters, we can evaluate (g′2)g(γ) as
∏q

i=0

[
(g′2)γi]ai . The same holds true for the other

formal products. Each such evaluation takes O(q) time.

Now, we make the assignment

g2 ← (g′2)f(γ) w ← (g′2)g(γ) g1 ← ψ(g2)

Ai ← ψ
(
(g′2)fi(γ)

)
, 1 ≤ i ≤ q − 1

It is easy to see that w = gγ
2 holds and, for each i that Aγ+xi

i = g1 holds; thus we have

q − 1 SDH pairs for the SDH problem instance (g1, g2, w). Note that if g′2 is a random

generator of G2, so is g2.

Now suppose we find another SDH pair (A, x), where x /∈ {x1, . . . , xq−1}. We transform

this pair into an SDH pair for the original problem instance. Let t(X) be the rational

function f(X)/(X + x). Using long division, we can write t(X) as t(X) = α
X+x + τ(X),

where τ(X) is a (q− 2)-degree polynomial. Because x /∈ {x1, . . . , xq−1}, α cannot be 0. By

the the procedure used above, we can evaluate gτ(γ)
2 . By the SDH equation and the setup

above, we have Aγ+x = g1 = ψ
(
(g′2)f(γ)

)
and A = ψ

(
(g′2)t(γ)

)
= ψ

(
(g′2)

α
γ+x

+τ(γ)). Now set

A′ ←

[
A

ψ
(
g

τ(γ)
2

)]1/α

=

[
ψ

(
(g′2)

α
γ+x

+τ(γ))
ψ

(
g

τ(γ)
2

) ]1/α

= ψ
(
(g′2)

α
γ+x

)1/α = (g′1)1/γ+x ;

then (A′, x) is an SDH solution for the original SDH parameters, as required. As before,
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this step takes O(q) time.

We are now ready to prove that the BB scheme is secure.

Theorem 3.4.1. Suppose (q′, t′, ε′)-SDH holds on (G1, G2). Then BB on (G1, G2) is

(t, qS, qH , ε)-secure against existential forgery under an adaptive chosen-message attack (in

the random oracle model), for all t and ε satisfying

ε ≥ e(qS + 1) · ε′ and t ≤ t′ −O(q2H) ,

and for q ≥ qH + 1. Here e is the base of the natural logarithm.

Proof. We assume that A is well-behaved in the sense that it always requests the hash of

a message M before it requests a signature on M and at M∗ before it forges at M∗. It is

trivial to modify any forger algorithm A to have this property.

Given a q-SDH instance (g′1, g
′
2, (g

′
2)γ , (g′2)γ2

, . . . , (g′2)γq
), we apply the fundamental SDH

technique above, obtaining generators g1 ∈ G1, g2 ∈ G2, w = gγ
2 , and q−1 SDH pairs (Ai, xi)

such that xi is uniformly chosen from Zp and e(Ai, wg
xi
2 ) = e(g1, g2) for each i. We will

obtain from the adversary A another SDH pair (A, x), which will be transformed into a

solution to the original q-SDH instance, again using the fundamental technique.

The proof now proceeds much as the proof of Theorem 3.3.1 did. We run A with

parameters (g1, g2, w). To respond to the ith hash query, on message Mi, we generate a

random coin ci ∈ {0, 1} so that Pr[ci = 0] = 1/(qS + 1). If ci is 1, we set hi ← xi; otherwise,

we set hi
R← Zp. In either case, we respond with H(Mi) = hi. To signature query on Mi we

respond with Ai if ci is 1, or report failure and exit if ci is 0. Finally, A outputs a forgery

(M∗, σ∗), where M∗ = Mi∗ for some i∗. If ci∗ is 1, we report failure and exit. Otherwise,

we have an SDH pair (σ∗, hi∗), and hi∗ /∈ {x1, . . . , xq−1} with overwhelming probability.

The same independence analysis as in the Claims of Theorem 3.3.1 shows that we succeed

with probability ε/
(
e(qS + 1)

)
≥ ε′, as required. The running time overhead is essentially

just that of the fundamental technique, which is O(q2).

3.4.2 A BB Variant Secure without Random Oracles

Boneh and Boyen also show that a simple modification of the BB scheme above can be

proved secure in the standard model, i.e., without random oracles. We obtain this modified

BB2 scheme as follows. We add to the private key a value γ′
R← Z∗p and to the public
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key the value w′ ← gγ′

2 . To sign a message M ∈ Zp, choose a random r ∈ Zp, compute

σ ← g
1/(γ+rγ′+M)
1 , and output the pair (σ, r). (If it happens that γ + rγ′ +M equals 0, try

again with a different r.) To verify, check that e
(
σ, w · (w′)r · gM

2

)
= e(g1, g2) holds.

The BB2 proof of security also uses the fundamental SDH technique. We use the free

choice of r in the signing oracle to force γ + rγ′ +M to hit one of the γ + xi values which

we precomputed; this allows us to do away with the hash oracle. We must deal with two

types of forger, as follows.

Type-I Forger. This adversary either makes a hash query Mi = −γ, or issues a forgery

(σ∗, r∗) at M∗ such that r∗γ′+M∗ /∈ r1γ′ +M1, . . . , rqγ
′ +Mq. Against this adversary

we pick γ′
R← Z∗p and set w′ ← gγ′

2 . We answer a signing query on message Mi by

setting ri ← (xi−Mi)/γ′ so that xi = riγ
′+Mi and we can use the SDH pair (Ai, xi).

(We also check whether Mi equals −γ; if so, we can compute any SDH pair we wish.)

Finally, the forgery (σ∗, r∗) on M∗ gives us an SDH pair (σ∗, r∗γ′ + M∗) which is

different from each pair (Ai, xi) by hypothesis.

Type-II Forger. This adversary never makes a hash query Mi = −γ, and issues a forgery

(σ∗, r∗) at M∗ such that r∗γ′ + M∗ = ri∗γ
′ + Mi∗ for some i∗. For this adversary,

we choose γ R← Zp ourselves, set w ← gγ
2 , and use the values from the fundamental

SDH technique for γ′ and w′; that is, we have pairs (Ai, xi such that e(Ai, (w′)gxi
2 ) =

e(g1, g2). Now we answer a signature query on Mi by choosing ri ← (γ+Mi)/xi) and

σi ← A
1/ri

i . Then

e
(
σi, w · (w′)ri · gMi

2

)
= e

(
A

1/ri

i , (w′)ri · gγ+Mi
2

)
= e(Ai, w

′ · gxi
2 ) = e(g1, g2) ,

as required. Finally, the adversary returns the forgery (σ∗, r∗) on M∗, such that r∗γ′+

M∗ = xi∗ for some i∗. (We can find i∗ by testing e
(
(w′)r∗ · gM∗

2

) ?= e
(
(w′)ri · gMi

2

)
for

each i.) But this means that we have r∗γ′+M∗ = ri∗γ
′+Mi∗ for (r∗,M∗) 6= (ri∗ ,Mi∗)

since otherwise the forgery would be trivial, and we recover γ′ as (M∗−Mi∗)/(r∗−ri∗),

from which we can compute any SDH pair we wish.

The omitted details of the reduction are quite straightforward. Note that BB2 is secure if

q-SDH holds where q = qS + 1, not qH + 1 as for BB.

BB2 signatures are about twice as long as BLS signatures. However, they are much

shorter than those in previous schemes with proofs in the standard model: in particular,
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the Cramer-Shoup scheme [45], which is based on the Strong RSA assumption. We note

that the Waters identity-based encryption scheme [117] gives a signature secure in the

standard model under CDH. This follows from Naor’s observation (recorded by Boneh and

Franklin [25]) that every IBE gives rise to a signature scheme.

3.4.3 Performance

Though BLS.Sig and BB.Sig appear to be equally fast, BB (and BB2) signing is in fact

substantially faster. First, a hash function mapping into Zp can be computed without

the iterated trials suggested in Section 2.3.3 for hashing onto G1. Second, the inversion

in Zp, required for computing 1/(γ + x), is faster than taking roots in Zp, again required

for hashing onto g1. Third, for BB the exponentiation is with respect to the fixed base g1,

and is amenable to speedup using lookup tables.2 For BLS, the best we can do is to find

an addition chain for the fixed exponent x. Taken together, these differences make BB

signing about 5 times as fast as BLS signing. BB verification is also somewhat faster, since

it requires computing a single pairing rather than the product of two pairings.

3.5 Conclusions

We presented two short signature schemes, BLS and BB, based on bilinear maps on elliptic

curves. In both schemes, a signature is only one element in a finite field, much shorter

than all current variants of DSA for the same security. BLS is existentially unforgeable

under a chosen message attack (in the random oracle model), assuming the Computational

Diffie-Hellman problem is hard on certain elliptic-curve groups; BB is secure assuming the

Strong Diffie-Hellman problem is hard.

Both schemes are simple and elegant, and therefore amenable to extension. In Chapter 4,

we consider several variants of BLS. In Chapters 6 and 7 we build group signature schemes

related to BB.

2Specifically, precomputing
ˆ
u, u2, . . . , u2b−1

˜
;
ˆ
u2b

, u2b·2, . . . , u2b·(2b−1)
˜
;
ˆ
u22b

, u22b·2, . . . , u22b·(2b−1)
˜
; . . .

allows one to evaluate ux in d(lg p)/be multiplications, at the cost of 2b · d(lg p)/be elements of storage. This
technique was communicated to me by Xavier Boyen.



Chapter 4

Signature Variants and Extensions

4.1 Introduction

The BLS signature scheme presented in Chapter 3 is very flexible. In this chapter, we show

how to add a number of features to it.

We begin by surveying, in Sections 4.2 and 4.3, how BLS has been extended to construct

some of the standard signature variants in the literature, including threshold signatures,

batch signature verification, and multisignatures. For further extensions, such as blind

signatures, refer to Verheul [116], Boldyreva [22], Steinfeld et al. [113], and the survey of

pairing-based cryptosystems by Paterson [99].

We then introduce, in Section 4.4, a generalization of multisignatures called an aggre-

gate signatures: a single short object that stands for n signatures by n different signers

on n different messages. Aggregate signatures have several important applications. For

example, they can be used to reduce the size of certificate chains and reduce communica-

tion bandwidth in protocols such as SBGP. We construct an efficient aggregate signature

scheme based on bilinear maps. Key generation, aggregation, and verification require no

interaction. We prove security in a model that gives the adversary his choice of public keys

and messages to forge.

Finally, as a further application for aggregate signatures we show in Section 4.5 that cer-

tain aggregate signature schemes give rise to simple verifiably encrypted signatures. These

signatures enable user Alice to give Bob a signature on a message M encrypted using a third

party’s public key and enable Bob to verify that the encrypted signature is valid. Unlike

previous schemes, our verifiably encrypted are short and can be validated efficiently; and

30
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verifiably encrypted signing requires no interaction with the third party.

4.2 Threshold Signatures

Boldyreva shows [22] that BLS signatures give rise to a robust t-out-of-n threshold signature

scheme through standard secret sharing techniques [84, 62, 60]. In a threshold signature

scheme, there are n parties where each possesses a share of a private key. Each party can

use its share of the private key to produce a share of a signature on some message M . A

complete signature on M can only be constructed if at least t shares of the signature are

available.

A robust t-out-of-n threshold signature scheme derives from BLS as follows. A central

authority generates a public/private key pair. Let x ∈ Zp be the private key and v = gx
2 ∈ G2

be the public key. The central authority picks a random polynomial ω ∈ Zp[X] of degree

at most t − 1 such that ω(0) = x. For i = 1, . . . , n, the authority gives user i the value

xi = ω(i), its share of the private key. The authority publishes the public key v and n

values ui = gxi
2 ∈ G2.

When a signature on a message M ∈ {0, 1}∗ is needed each party that wishes to par-

ticipate in signature generation publishes its share of the signature as σi = H(M)xi ∈ G1.

Without loss of generality, assume users 1, . . . , t participate and generate shares σ1, . . . , σt.

Anyone can verify that share σi is valid by checking that (g2, ui,H(M), σi) is a co-Diffie-

Hellman tuple. When all t shares are valid, the complete signature is recovered as

σ ←
t∏

i=1

σλi
i where λi =

∏t
i=1,j 6=i(0− j)∏t
i=1,j 6=i(i− j)

(mod p) .

If fewer than t users are able to generate a signature on some message M then these

users can be used to solve co-CDH on (G1, G2) [22]. This threshold scheme is robust: A

participant who contributes a bad partial signature σi will be detected immediately since

(g2, ui,H(M), σi) will not be a co-Diffie-Hellman tuple.

The same result can also be achieved without recourse to a trusted third party for

generating private key shares. The n users can generate these shares without the help of

a trusted party using the protocol due to Gennaro et al. [61], which is a modification of a

protocol due to Pedersen [100]. This protocol does not rely on the difficulty of DDH for

security and can thus be employed on gap Diffie-Hellman groups.
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4.3 Multisignatures and Batch Signature Verification

Suppose n users all sign the same message M ∈ {0, 1}∗. We obtain n signatures σ1, . . . , σn.

We show that these n signatures can be verified as a batch much faster than verifying them

one by one. A similar property holds for other signature schemes [14].

Let (G1, G2) be a co-GDH group pair of prime order p. Suppose user i’s private key is

xi ∈ Zp and his public key is vi = gxi
2 ∈ G2. Signature σi is σi = H(M)xi ∈ G1. To verify

the n signatures as a batch we use a technique due to Bellare et al. [14]:

1. Pick random integers c1, . . . , cn from the range [0, B] for some value B. This B controls

the error probability as discussed below.

2. Compute V ←
∏n

i=1 v
ci
i ∈ G2 and U ←

∏n
i=1 σ

ci
i ∈ G1.

3. Test that (g2, V,H(M), U) is a co-Diffie-Hellman tuple. Accept all n signatures if so;

reject otherwise.

Theorem 3.3 of [14] shows that we incorrectly accept the n signatures with probability

at most 1/B. Hence, verifying the n signatures as a batch is faster than verifying them one

by one. Note that if all signers are required to prove knowledge of their private keys, then

taking c1 = · · · = cn = 1 is sufficient, yielding even faster batch verification [22].

In fact, if we take c1 = · · · = cn = 1, we can transmit U =
∏

i σi instead of the individual

signatures. Since U is the same size as any single signature, we get a substantial bandwidth

savings. This is a multisignature: a single short object that stands for n signatures by

n signers on the same message.

There is a large literature on multisignatures [96, 95]. Micali, Ohta, and Reyzin [86]

were the first to define a security model for multisignatures. Boldyreva [22] introduced the

BLS-based multisignature scheme given above and showed, using a variant of the Micali-

Ohta-Reyzin definitions, that it secure in gap Diffie-Hellman groups. The proof requires, as

above, that all signers prove knowledge of their private keys. This is to address an attack

that we consider further in Section 4.4.2, in the context of BGLS aggregate signatures.

A similar batch verification procedure can be used to verify quickly, and a similar mul-

tisignature can be used to compress, n signatures on n messages issued by the same public

key.
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4.4 Aggregate Signatures

Many real-world applications involve signatures on many different messages generated by

many different users. For example, in a Public Key Infrastructure (PKI) of depth n, each

user is given a chain of n certificates. The chain contains n signatures by n Certificate Au-

thorities (CAs) on n distinct certificates. Similarly, in the Secure BGP protocol (SBGP) [72]

each router receives a list of k signatures attesting to a certain path of length k in the net-

work. A router signs its own segment in the path and forwards the resulting list of k + 1

signatures to the next router. As a result, the number of signatures in routing messages is

linear in the length of the path. Both applications would benefit from a method for com-

pressing the list of signatures on distinct messages issued by distinct parties. Specifically,

X.509 certificate chains could be shortened by compressing the n signatures in the chain

into a single signature.

An aggregate signature scheme enables us to achieve precisely this type of compression.

Suppose each of n users has a public-private key pair (pki, ski). User ui signs message Mi to

obtain a signature σi. Then there is a public aggregation algorithm that takes as input all

of σ1, . . . , σn and outputs a short compressed signature σ. Anyone can undertake the aggre-

gation. Moreover, the aggregation can be incremental: Signatures σ1, σ2 can be aggregated

into σ12 which can then be further aggregated with σ3 to obtain σ123. In the generation of

a certificate chain, each CA can incrementally aggregate its own signature into the chain.

There is also an aggregate verification algorithm that takes pk1, . . . ,pkn, M1, . . . ,Mn, and σ

and decides whether the aggregate signature is valid. Intuitively, the security requirement

is that the aggregate signature σ is declared valid only if the aggregator who created σ

was given all of σ1, . . . , σn. Precise security definitions are given in Sect. 4.4.1. Thus, an

aggregate signature provides non-repudiation at once on many different messages by many

users.

We construct an aggregate signature scheme based on BLS short signatures. Surpris-

ingly, though BLS signatures can be instantiated on any gap group, general gap groups

are insufficient for constructing efficient aggregate signatures. Our construction relies on

properties of bilinear maps beyond their use — noted by Joux and Nguyen [70] — for solving

DDH.

Related Work. Aggregate signatures are related to multisignatures, which we described

in Section 4.3. Multisignatures are insufficient for the applications we have in mind, such as
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certificate chains and SBGP. For these applications we must be able to aggregate signatures

on distinct messages.

Also relevant are threshold signatures, in particular the BLS-based threshold signa-

ture considered in Section 4.2 and the non-interactive threshold signature scheme due to

Shoup [109], where we have a set of n signers, and a threshold t, such that signature shares

from any t < k ≤ n signers can be combined into one signature. These differ from aggre-

gate signatures in several important respects: threshold signatures require an expensive (or

trusted) setup procedure; each piece of a threshold signature is not a stand-alone signa-

ture; pieces of a threshold signature can be combined into a signature only once there are

enough of them; and a threshold signature looks the same no matter which of the signers

contributed pieces to it.

Our application of aggregate signatures to compressing certificate chains is related to an

open problem posed by Micali and Rivest [87]: Given a certificate chain and some special

additional signatures, can intermediate links in the chain be cut out? Aggregate signatures

allow the compression of certificate chains without any additional signatures, but a verifier

must still be aware of all intermediate links in the chain. We note that batch RSA [50] also

provides some signature compression, but only for signatures produced by a single signer.

4.4.1 Aggregate Signature Definitions

Consider a set U of users. Every user u ∈ U has a signing keypair (pku, sku). We wish to

aggregate the signatures of some subset U ⊆ U. Each user u ∈ U produces a signature σu on

a message Mu of her choice. These signatures are then combined into a single aggregate σ by

an aggregating party. This aggregating party, which can be different from and untrusted by

the users in U , has access to the users’ public keys, to the messages, and to the signatures on

them, but not to any private keys. The result of this aggregation is an aggregate signature σ

whose length is the same as that of any of the individual signatures. This aggregate has the

property that a verifier given σ along with the identities of the parties involved and their

respective messages is convinced that each user signed her respective message.

Formally, an aggregate signature scheme AS is a signature scheme (as in Section 3.2)

with two additional algorithms, Agg and AVf, which provide the aggregation capability.

These algorithms behave as follows.

AS.Kg, AS.Sig, AS.Vf. As in standard signature schemes.
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AS.Agg({pki,Mi, σi}ki=1). For each user in the aggregate the algorithm takes, as input: a

public key pki, a message Mi in some message space; and a signature σi on Mi. The

algorithm combines the signatures into an aggregate signature σ, and outputs σ.

AS.AVf({pki,Mi}ki=1, σ). For each user in the aggregate, the algorithm takes a public key

and a message. The algorithm also takes a purported aggregate signature σ. It returns

either valid or invalid.

The notion of aggregate signature security we consider is a generalization of existential

unforgeability of ordinary signatures, which we recalled in Section 3.2. Specifically, the

adversary attempts to forge an aggregate signature, on messages of his choice, by some

set of users; clearly, at least one of the users in the set must not be under the adversary’s

control.

We formalize the intuition above as the aggregate chosen-key security model. In this

model, the adversary A is given a single public key. His goal is the existential forgery of

an aggregate signature that includes the challenge key; aside from that challenge key the

adversary may choose all public keys in the forgery. The adversary is also given access

to a signing oracle on the challenge key. His advantage, Advagg-forge
AS,A , is defined to be his

probability of success in the following game.

Setup. The challenger runs algorithm Kg to obtain a public key pk1 and private

key sk1. The aggregate forger A is given pk1.

Queries. Proceeding adaptively, A requests signatures with pk1 on at most qS mes-

sages of his choice M (1)), . . . ,M (qs) ∈ {0, 1}∗. The challenger responds to each

query with a signature σ(i) = Sig(sk,M (i)). In the random oracle model, A can

also make qH queries to a hash oracle H.

Response. Finally, A outputs k − 1 additional public keys pk2, . . . ,pkk. Here k

is at most n, a game parameter. These keys, along with the initial key pk1,

will be included in A’s forged aggregate. A also outputs messages M1, . . . ,Mk;

and, finally, an aggregate signature σ by the k users, each on his corresponding

message.

The forger wins if the aggregate signature σ is a valid aggregate under public keys

pk1, . . . ,pkk on respective messages M1, . . . ,Mk and σ is nontrivial, i.e., A did not

request a signature on M1 under pk1. The probability is over the coin tosses of the

key-generation algorithm and of A.
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Definition 4.4.1. An aggregate forger A (t, qH , qS, n, ε)-breaks an n-user aggregate signa-

ture scheme in the aggregate chosen-key model if: A runs in time at most t; Amakes at most

qH queries to the hash function and at most qS queries to the signing oracle; Advagg-forge
AS,A is

at least ε; and the forged aggregate signature is by at most n users. An aggregate signature

scheme is (t, qH , qS, n, ε)-secure against existential forgery in the aggregate chosen-key model

if no forger (t, qH , qS, n, ε)-breaks it.

4.4.2 Aggregate Signatures from Bilinear Maps

We describe the BGLS aggregate signature scheme. This scheme is based on the BLS scheme

presented in Sect. 3.3 above. Individual signatures in the aggregate signature scheme are

created and verified precisely as in BLS. Aggregate verification makes use of a bilinear map

on G1 and G2.

The BGLS scheme allows the creation of signatures on arbitrary distinct messages Mi ∈
{0, 1}∗. An individual signature σi is an element of G1. The base groups G1 and G2, their

respective generators g1 and g2, the computable isomorphism ψ from G2 to G1, and the

bilinear map e : G1×G2 → GT , with target group GT , are system parameters. The scheme

employs a full-domain hash function H : {0, 1}∗ → G1, viewed as a random oracle.

We describe the algorithms making up BGLS below. The first three are the same as in

BLS, and we recall them here for convenience.

BGLS.Kg. For a particular user, pick random x
R← Zp, and compute v ← gx

2 . The user’s

public key pk is v ∈ G2. The user’s private key sk is x ∈ Zp.

BGLS.Sig(sk,M). Parse the user’s private key sk as x ∈ Zp. The message M to be signed

is an arbitrary string. Compute h ← H(M) ∈ G1 and σ ← hx. The signature is

σ ∈ G1.

BGLS.Vf(pk,M, σ). Parse the user’s public key pk as v ∈ G2. Compute h← H(M); accept

if e(σ, g2) = e(h, v) holds.

BGLS.Agg({pki,Mi, σi}ki=1). For each user in the aggregate the algorithm takes, as input:

a public key pki, which we parse as vi ∈ G2; a message Mi ∈ {0, 1}∗; and a signature

σi ∈ G1 on Mi. The messages must all be distinct. Compute σ ←
∏k

i=1 σi. The

aggregate signature is σ ∈ G1.
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BGLS.AVf({pki,Mi}ki=1, σ). For each user in the aggregate, the algorithm takes a public

key and a message, which we parse as above; further, the algorithm takes a purported

aggregate signature σ ∈ G1. To verify the aggregate signature σ,

1. ensure that the messages Mi are all distinct, and reject otherwise; and

2. compute hi ← H(Mi) for 1 ≤ i ≤ k = |U |, and accept if e(σ, g2) =
∏k

i=1 e(hi, vi)

holds.

A BGLS aggregate signature, like a BLS signature, is a single element of G1. Note that

incremental aggregation is possible.

The intuition behind BGLS aggregation is as follows. Each user ui has a private key xi ∈
Zp and a public key vi = gxi

2 . User ui’s signature, if correctly formed, is σi = hxi
i , where hi

is the hash of the user’s chosen message, Mi. The aggregate signature σ is thus σ =
∏

i σi =∏
i h

xi
i . Using the properties of the bilinear map, the left-hand side of the verification

equation expands:

e(σ, g2) = e
(∏

i
hxi

i , g2
)

=
∏

i
e(hi, g2)xi =

∏
i
e(hi, g

xi
2 ) =

∏
i
e(hi, vi) ,

which is the right-hand side, as required.

A Potential Attack. The adversary’s ability in the chosen-key model to generate keys

suggests the following attack, previously considered in the context of multisignatures [86].

Alice publishes her public key vA. Bob generates a private key x′B and a public key v′B = g
x′B
2 ,

but publishes as his public key vB = v′B/vA, a value whose discrete log he does not know.

Then H(M)x′B verifies as an aggregate signature on M by both Alice and Bob. Note that

in this forgery Alice and Bob both sign the same message M .

One countermeasure is to require the adversary to prove knowledge of the discrete

logarithms (to base g2) of his published public keys. For example, Boldyreva, in her mul-

tisignature scheme [22], requires, in effect, that the adversary disclose the corresponding

private keys x2, . . . , xk. Micali et al. [86] discuss a series of more sophisticated approaches

based on zero-knowledge proofs, again with the effect that the adversary is constrained in

his key selection. These defenses apply equally well to our aggregate signature scheme. For

aggregate signatures, though, there is a simpler defense.
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A Simple Defense. In the context of aggregate signatures we can defend against the

attack above by simply requiring that an aggregate signature is valid only if it is an aggre-

gation of signatures on distinct messages. This restriction, codified in Step 1 of BGLS.AVf,

suffices to prove the security of the bilinear aggregate signature scheme in the chosen-key

model. There is no need for zero-knowledge proofs or the disclosure of private keys.

The requirement that all messages in an aggregate be distinct is naturally satisfied for

the applications to certificate chains and SBGP we have in mind. Even in more general

environments it is easy to ensure that all messages are distinct: The signer simply prepends

her public key to every message she signs prior to the application of the hash function H.

The implicit prefix need not be transmitted with the signature, so signature and message

length is unaffected.

The next theorem shows that this simple constraint is in fact sufficient for proving

security in the chosen-key model.

Theorem 4.4.2. Let (G1, G2) be a (t′, ε′)-bilinear group pair for co-Diffie-Hellman, with

each group of order p, with respective generators g1 and g2, with an isomorphism ψ com-

putable from G2 to G1, and with a bilinear map e : G1 × G2 → GT . Then the BGLS

aggregate signature scheme on (G1, G2) is (t, qH , qS, n, ε)-secure against existential forgery

in the aggregate chosen-key model for all t and ε satisfying

ε ≥ e(qS + n) · ε′ and t ≤ t′ − cG1
(qH + 2qS + n+ 4)− (n+ 1) ,

where e is the base of natural logarithms, and exponentiation and inversion on G1 take

time cG1
.

Proof. Suppose A is a forger algorithm that (t, qS, qH , n, ε)-breaks BGLS. We show how to

construct a t′-time algorithm C that solves co-CDH in (G1, G2) with probability at least ε′.

This will contradict the fact that (G1, G2) are a (t′, ε′)-co-GDH group pair.

Let g2 be a generator of G2. Algorithm C is given g2, u ∈ G2 and h ∈ G1, where u = ga
2 .

Its goal is to output ha ∈ G1. Algorithm C simulates the challenger and interacts with

forger A as follows.

Setup. Algorithm C starts by giving A the generator g2 and the public key v1 = u·gr
2 ∈ G2,

where r is random in Zp.

Hash Queries. At any time algorithm A can query the random oracle H. To respond to
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these queries, C maintains a list of tuples 〈M (i), w(i), b(i), c(i)〉 as explained below. We

refer to this list as the H-list. The list is initially empty. When A queries the oracle

H at a point M ∈ {0, 1}∗, algorithm C responds as follows:

1. If the query M already appears on the H-list in some tuple 〈M,w, b, c〉 then

algorithm C responds with H(M) = w ∈ G1.

2. Otherwise, C generates a random coin c ∈ {0, 1} so that Pr[c = 0] = 1/(qS + n).

3. Algorithm C picks a random b ∈ Zp. If c = 0 holds, C computes w ← h ·ψ(g2)b ∈
G1. If c = 1 holds, C computes w ← ψ(g2)b ∈ G1.

4. Algorithm C adds the tuple 〈M,w, b, c〉 to the H-list and responds to A as

H(M) = w.

Note that, either way, w is uniform in G1 and is independent of A’s current view as

required.

Signature queries. Algorithm A requests a signature on some message M under the

challenge key v1. Algorithm C responds to this query as follows:

1. Algorithm C runs the above algorithm for responding to H-queries on M , ob-

taining the corresponding tuple 〈M,w, b, c〉 on the H-list. If c = 0 holds then C
reports failure and terminates.

2. We know that c = 1 holds and hence w = ψ(g2)b ∈ G1. Let σ = ψ(u)b ·ψ(g2)rb ∈
G1. Observe that σ = wa+r and therefore σ is a valid signature on M under the

public key v1 = u · gr
2 = ga+r

2 . Algorithm C gives σ to algorithm A.

Output. Finally, A halts. It either concedes failure, in which case so does C, or it returns

a value k (where k ≤ n), k−1 public keys v2, . . . , vk ∈ G2, k messages M1, . . .Mk, and

a forged aggregate signature σ ∈ G1. The messages Mi must all be distinct, and A
must not have requested a signature on M1. Algorithm C runs its hash algorithm at

each Mi, 1 ≤ i ≤ k, obtaining the k corresponding tuples 〈Mi, wi, bi, ci〉 on the H-list.

Algorithm C now proceeds only if c1 = 0 and, for 2 ≤ i ≤ k, ci = 1; otherwise C
declares failure and halts. Since c1 = 0, it follows that w1 = h · ψ(g2)b1 . For i > 1,

since ci = 1, it follows that wi = ψ(g2)bi . The aggregate signature σ must satisfy
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the aggregate verification equation, e(σ, g2) =
∏k

i=1 e(wi, vi). For each i > 1, C sets

σi ← ψ(vi)bi . Then, for i > 1,

e(σi, g2) = e(ψ(vi)bi , g2) = e(ψ(vi), g2)bi = e(ψ(g2), vi)bi = e(ψ(g2)bi , vi) = e(wi, vi) ,

So σi is a valid signature on Mi (whose hash is wi) by the key whose public component

is vi. Now C constructs a value σ1: σ1 ← σ · (
∏k

i=2 σi)
−1
. Then

e(σ1, g2) = e(σ, g2) ·
k∏

i=2

e(σi, g2)−1 =
k∏

i=1

e(wi, vi) ·
k∏

i=2

e(wi, vi)
−1 = e(w1, v1) .

Thus σ1 is a valid BLS signature by key v1 = u · gr
2 = ga+r

2 on a message whose

hash is w1 = h · ψ(g2)b1 . Then C calculates and outputs the required ha as ha ←
σ1 · (ψ(u)b1 · hr · ψ(g2)rb1)−1.

This completes the description of algorithm C. It remains to show that C solves the given

instance of the co-CDH problem in (G1, G2) with probability at least ε′. To do so, we

analyze the three events needed for C to succeed:

E1: C does not abort as a result of any of A’s signature queries.

E2: A generates a valid, nontrivial aggregate signature forgery (k, v2, . . . , vk,M1, . . . ,Mk, σ).

E3: Event E2 occurs, and, in addition, c1 = 0, and, for 2 ≤ i ≤ k, ci = 1, where for each i

ci is the c-component of the tuple containing Mi on the H-list.

C succeeds if all of these events happen. The probability Pr[E1 ∧ E3] decomposes as

Pr[E1 ∧ E3] = Pr[E1] · Pr[E2 | E1] · Pr[E3 | E1 ∧ E2]. (4.1)

The following claims give a lower bound for each of these terms.

Claim 4. The probability that algorithm C does not abort as a result of A’s aggregate

signature queries is at least (1− 1/(qS + n))qS . Hence, Pr[E1] ≥ (1− 1/(qS + n))qS .

Proof. Without loss of generality we assume that A does not ask for the signature of the

same message twice. We prove by induction that after A makes l signature queries the

probability that C does not abort is at least (1− 1/(qS +n))l. The claim is trivially true for
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l = 0. Let M (l) be A’s l’th signature query and let 〈M (l), w(l), b(l), c(l)〉 be the corresponding

tuple on the H-list. Then, prior to A’s issuing the query, the bit c(l) is independent of A’s

view — the only value that could be given to A that depends on c(l) is H(M (l)), but the

distribution of H(M (l)) is the same whether c(l) = 0 or c(l) = 1. Therefore, the probability

that this query causes C to abort is at most 1/(qS +n). Using the inductive hypothesis and

the independence of c(l), the probability that C does not abort after this query is at least

(1 − 1/(qS + n))l. This proves the inductive claim. Since A makes at most qS signature

queries the probability that C does not abort as a result of all signature queries is at least

(1− 1/(qS + n))qS .

Claim 5. If algorithm C does not abort as a result of A’s queries then algorithm A’s view

is identical to its view in the real attack. Hence, Pr[E2 | E1] ≥ ε.

Proof. The public key given to A is from the same distribution as public keys produced

by algorithm Kg. Responses to hash queries are as in the real attack since each response

is uniformly and independently distributed in G1. Since C did not abort as a result of A’s

signature queries, all its responses to those queries are valid. Therefore A will produce a

valid and nontrivial aggregate signature forgery with probability at least ε. Hence Pr[E2 |
E1] ≥ ε.

Claim 6. The probability that algorithm C does not abort after A outputs a valid and

nontrivial forgery is at least (1− 1/(qS + n))n−1 · 1/(qS + n).

Hence, Pr[E3 | E1 ∧ E2] ≥ (1− 1/(qS + n))n−1 · 1/(qS + n).

Proof. Events E1 and E2 have occurred, and A has generated some valid and nontrivial

forgery (k, v2, . . . , vk,M1, . . . ,Mk, σ). For each i, 1 ≤ i ≤ k, let 〈Mi, wi, bi, ci〉 be the tuple

corresponding to Mi on the H-list. Algorithm C will abort unless A generates a forgery

such that c1 = 0 and, for i > 1, ci = 1.

Since all the messages M1,M2, . . . ,Mk are distinct, the values c1, c2, . . . , ck are all inde-

pendent of each other; as before, H(Mi) = wi is independent of ci for each i.

Since its forgery is nontrivial, A cannot have asked for a signature on M1 under key v1.

It can thus have no information about the value of c1; in the forged aggregate, c1 = 0

occurs with probability 1/(qS + n). For each i > 1, A either asked for a signature under

key v1 on Mi, in which case ci = 1 with probability 1, or it didn’t, and ci = 1 with
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probability 1− 1/(qS + n). Regardless, the probability that ci = 1 for all i, 2 ≤ i ≤ k, is at

least (1− 1/(qS + n))k−1 ≥ (1− 1/(qS + n))n−1.

Therefore Pr[E3 | E1 ∧ E2] ≥ (1− 1/(qS + n))n−1 · 1/(qS + n), as required.

To complete the proof of the theorem, we use the bounds from the claims above in

equation (4.1). Algorithm C produces the correct answer with probability at least

(
1− 1

qS + n

)qS+n−1

· 1
qS + n

· ε ≥ ε/e

qS + n
≥ ε′ ,

as required.

Algorithm C’s running time is the same as A’s running time plus the time is takes to

respond to (qH + qS) hash queries and qS signature queries, and the time to transform

A’s final forgery into the co-CDH solution. Each query requires an exponentiation in G1.

The output phase requires at most n additional hash computations, two inversions, two

exponentiations, and n + 1 multiplications. We assume that exponentiation and inversion

in G1 take time cG1
. Hence, the total running time is at most t+cG1

(qH +2qS+n+4)+n+1 ≤
t′ as required. This completes the proof of the theorem.

Notes on the proof. If hash queries include the intended public key as well as the

message — the countermeasure suggested above — then the challenger can set c← 1 for any

hash query H(M,v) where v isn’t v1, the challenge key. Then all keys except the challenge

key become irrelevant, and the reduction is precisely like that for BLS in Theorem 3.3.1; in

particular, the multiplicative loss of security no longer depends on n.

One can also allow a single key to be responsible for several messages in an aggregate

signature, and thus appear with multiplicity greater than 1 in the list v1, . . . , vk, provided

that no two keys sign the same message (more specifically, that the challenge key and some

other key do not each sign a message with the same hash).

4.5 Verifiably Encrypted Signatures

We now show an application of aggregate signatures to verifiably encrypted signatures.

These signatures are used in applications such as online contract signing [5, 9]. Suppose

Alice wants to show Bob that she has signed a message, but does not want Bob to possess

her signature of that message. (Alice will give her signature to Bob only when a certain
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event has occurred, e.g., Bob has given Alice his signature on the same message.) Alice

can achieve this by encrypting her signature using the public key of a trusted third party,

and sending this to Bob along with a proof that she has given him a valid encryption of

her signature. Bob can verify that Alice has signed the message, but cannot deduce any

information about her signature. Later in the protocol, if Alice is unable or unwilling to

reveal her signature, Bob can ask the third party to reveal Alice’s signature. We note that

the resulting contract signing protocol is not abuse-free in the sense of Garay et al. [57].

We show that a variant of the bilinear aggregate signature scheme allows the creation

of very efficient verifiably encrypted signatures. Previous constructions [5, 103] require zero

knowledge proofs to verify an encrypted signature. The verifiably encrypted signatures in

Section 4.5 are short and can be verified directly.

4.5.1 Verifiably Encrypted Signature Definitions

A verifiably encrypted signature scheme VES comprises seven algorithms. Three, Kg, Sig,

and Vf, are analogous to those in ordinary signature schemes. The others, AKg, ESig, EVf,

and Adj, provide the verifiably encrypted signature capability. The algorithms are described

below. We refer to the trusted third party as the adjudicator.

VES.Kg, VES.Sig, VES.Vf. As in standard signature schemes.

VES.AKg. Generate a public-private key pair (apk, ask) for the adjudicator.

VES.ESig(sk, apk,M) Given a private key sk, an adjudicator’s public key apk, and a mes-

sage M , compute (probabilistically) a verifiably encrypted signature η on M .

VES.EVf(pk, apk,M, η). Given a public key pk, an adjudicator’s public key apk, a mes-

sage M , and a verifiably encrypted signature η, verify that η is a valid verifiably

encrypted signature on M under key pk.

VES.Adj(ask,pk,M, η). Given an adjudicator’s private key ask, a certified public key pk,

and a verifiably encrypted signature η on some message M , extract and output σ, an

ordinary signature on M under key pk.

Besides the ordinary notions of signature security in the signature component, we require

three security properties of verifiably encrypted signatures: validity, unforgeability, and

opacity. We describe these properties below, in the single-user setting.
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Validity requires that verifiably encrypted signatures verify, and that adjudicated ver-

ifiably encrypted signatures verify as ordinary signatures, i.e., that EVf(M,ESig(M)) and

Vf(M,Adj(M,ESig(M))) accept for all M and for all properly-generated keypairs and ad-

judicator keypairs. (The keys provided to the algorithms are here elided for brevity.)

Unforgeability requires that it be difficult to forge a valid verifiably encrypted signature.

The advantage in existentially forging a verifiably encrypted signature of an algorithm F is

Advves-forge
VES,F

def= Pr


EVf(pk, apk,M, η) = valid :

(pk, sk) R← Kg,

(apk, ask) R← AKg,

(M,η) R← FS,A(pk, apk)

 .

The probability is taken over the coin tosses of the key-generation algorithms, of the oracles,

and of the forger. The forger is given access to a verifiably-encrypted–signature creation

oracle S = ESig(sk, apk, ·) and an adjudication oracle A = Adj(ask,pk, ·, ·), along with a

hash oracle. The forger F is additionally constrained in that its forgery on M must be

nontrivial: F must not previously have queried either oracle at M . Note that an ordinary

signing oracle is not provided; it can be simulated by a call to S followed by a call to A.

Definition 4.5.1. A verifiably encrypted signature forger F (t, qH , qS, qA, ε)-forges a ver-

ifiably encrypted signature if: Algorithm F runs in time at most t; F makes at most qH

queries to the hash function, at most qS queries to the verifiably-encrypted–signature cre-

ation oracle S, at most qA queries to the adjudication oracle A; and Advves-forge
VES,F is at least ε.

A verifiably encrypted signature scheme is (t, qH , qS, qA, ε)-secure against existential forgery

if no forger (t, qH , qS, qA, ε)-breaks it.

Opacity requires that it be difficult, given a verifiably encrypted signature, to extract an

ordinary signature on the same message. The advantage in extracting a verifiably encrypted

signature of an algorithm E , again given access to a verifiably-encrypted–signature creation

oracle S and an adjudication oracle A, along with a hash oracle, is

Advves-extr
VES, E

def= Pr


Vf(pk,M, σ) = valid :

(pk, sk) R← Kg,

(apk, ask) R← AKg,

(M,σ) R← ES,A(pk, apk)

 .
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The probability is taken over the coin tosses of the key-generation algorithms, of the oracles,

and of the forger. The extraction must be nontrivial: the adversary must not have queried

the adjudication oracle A at M . (It is allowed, however, to query S at M .) Verifiably

encrypted signature extraction is clearly no more difficult than forgery in the underlying

signature scheme.

Definition 4.5.2. An algorithm E (t, qH , qS, qA, ε)-extracts a verifiably encrypted signature

if E runs in time at most t, makes at most qH queries to the hash function, at most qS

queries to the verifiably-encrypted–signature creation oracle S, at most qA queries to the

adjudication oracle, and Advves-extr
VES, E is at least ε. A verifiably encrypted signature scheme

is (t, qH , qS, qA, ε)-secure against extraction if no algorithm (t, qH , qS, qA, ε)-extracts it.

4.5.2 Aggregate Extraction

Our verifiably encrypted signature scheme depends on the assumption that given an aggre-

gate signature of k signatures it is difficult to extract the individual signatures.

Consider the bilinear aggregate signature scheme on a group pair (G1, G2). We posit

that it is difficult to recover the individual signatures σi given their aggregate σ, the public

keys, and the message hashes. In fact, we posit that it is difficult to recover an aggregate σ′

of any proper subset of the signatures. This we term the k-element aggregate extraction

problem.

We formalize this assumption as follows. Let (G1, G2) be a bilinear group pair for

co-Diffie-Hellman, each of order p, with respective generators g1 and g2, a computable

isomorphism ψ : G2 → G1 such that g1 = ψ(g2), and a computable bilinear map e :

G1 ×G2 → GT .

Consider a k-user aggregate in this setting. Each user has a private key xi ∈ Zp and

a public key vi = gxi
2 ∈ G2. Each user selects a distinct message Mi ∈ {0, 1}∗ whose hash

is hi ∈ G1 and creates a signature σi = hxi
i ∈ G1. Finally, the signatures are aggregated,

yielding σ =
∏

i σi ∈ G1.

Let I be the set {1, . . . , k}. Each public key vi can be expressed as gxi
2 , each hash hi

as gyi
1 , each signature σi as gxiyi

1 , and the aggregate signature σ as gz
1 , where z =

∑
i∈I xiyi.

The advantage of an algorithm E in extracting a sub-aggregate from a k-element aggregate
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is

Advaggr-extr
E (k) def= Pr


(∅ 6= I ′ ( I) ∧ (σ′ = g

(
P

i∈I′ xiyi)
1 ) :

x1, . . . , xk, y1, . . . , yk
R← Zp, σ ← g

(
P

i∈I xiyi)
1 ,

(σ′, I ′) R← E
(
gx1
2 , . . . , gxk

2 , gy1
1 , . . . , g

yk
1 , σ

)
 .

The probability is taken over the choices of all xi and yi, and the coin tosses of E .

Definition 4.5.3. An algorithm E (t, k, ε)-extracts a sub-aggregate from an k-element

BGLS aggregate signature if E runs in time at most t and Advaggr-extr
E (k) is at least ε.

An instantiation of the BGLS aggregate signature scheme is (t, k, ε)-secure against aggre-

gate extraction if no algorithm (t, k, ε)-extracts it.

Coron and Naccache have shown that the k-element aggregate extraction assumption is

equivalent to co-CDH [42].

4.5.3 Verifiably Encrypted Signatures via Aggregation

We motivate our construction for verifiably encrypted signatures by considering aggregate

signatures as a launching point. An aggregate signature scheme can give rise to a verifiably

encrypted signature scheme if it is difficult to extract individual signatures from an aggre-

gate, but easy to forge existentially under the adjudicator’s key. Consider the following:

1. Alice wishes to create a verifiably encrypted signature, which Bob will verify; Carol

is the adjudicator. Alice and Carol’s keys are both generated under the underlying

signature scheme’s key-generation algorithm.

2. Alice creates a signature σ on M under her public key. She forges a signature σ′ on

some random message M ′ under Carol’s public key. She then combines σ and σ′,

obtaining an aggregate η. The verifiably encrypted signature is the pair (η,M ′).

3. Bob validates Alice’s verifiably encrypted signature (η,M ′) on M by checking that

η is a valid aggregate signature by Alice on M and by Carol on M ′.

4. Carol adjudicates, given a verifiably encrypted signature (η,M ′) on M by Alice, by

computing a signature σ′ on M ′ under her key, and removing σ′ from the aggregate;

what remains is Alice’s ordinary signature σ.
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In the BGLS aggregate signature scheme, it is difficult to extract individual signatures,

under the aggregate extraction assumption. Moreover, existential forgery is easy when the

random oracle hash function is set aside: Given a public key v ∈ G2 and r ∈ Zp, ψ(v)r is a

valid signature on a message whose hash is ψ(g2)r = gr
1. Below, we describe formally and

give a security proof for the verifiably encrypted signature scheme obtained in this way.

4.5.4 Verifiably-Encrypted Signatures from Bilinear Maps

The BGLS2 verifiably encrypted signature scheme is built on the BGLS aggregate signature

scheme described in Section 4.4.2. It shares the key-generation algorithm with the underly-

ing aggregate scheme. Moreover, the adjudicator’s public and private information is simply

an aggregate-signature keypair. The scheme comprises the seven algorithms described be-

low:

BGLS2.Kg, BGLS2.AKg. Kg and AKg are both the same as BLS.Kg, the key generation

algorithm of the BLS signature scheme (and thus also the same as BGLS.Kg).

BGLS2.Sig, BGLS2.Vf. Sig and Vf are the same as BLS.Sig and BLS.Vf, respectively.

BGLS2.ESig(sk, apk,M) Parse the user’s private key sk as x ∈ Zp and the adjudicator’s

public key apk as v′ ∈ G2. To sign the messageM ∈ {0, 1}∗, compute h← H(M) ∈ G1

and σ ← hx. Select r at random from Zp and set µ ← ψ(g2)r and σ′ ← ψ(v′)r.

Aggregate σ and σ′ as ω ← σσ′ ∈ G1. The verifiably encrypted signature η is the pair

(ω, µ). (It can also be viewed as an ElGamal encryption of σ under the adjudicator’s

key.)

BGLS2.EVf(pk, apk,M, η). Parse the user’s public key pk as v ∈ G2, the adjudicator’s

public key apk as v′ ∈ G2, and the verifiably encrypted signature η as (ω, µ) ∈ G2
1.

Set h← H(M); accept if e(ω, g2) = e(h, v) · e(µ, v′) holds.

BGLS2.Adj(ask,pk,M, η). Parse the adjudicator’s private key ask as x′ ∈ Zp. Parse the

user’s public key pk as v ∈ G2, and check that it has been certified. Verify (using

EVf) that the verifiably encrypted signature η is valid, and parse it as (ω, µ) ∈ G2
1.

Finally, output σ = ω/µx′ ∈ G1.
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Potential Attacks. If the adjudicator does not first validate a purported verifiably en-

crypted signature, a malicious user can trick him into signing arbitrary messages under his

adjudication key.

Similarly, the adjudicator should only adjudicate for certified public keys pk; we assume

that the CA, in issuing a certificate on pk, verifies that the user knows the corresponding

private key. Certification is necessary to prevent an attack devised by Hess [68] that arises

if the adjudicator is willing to open signatures encrypted under keys generated by the

attacker. In this attack, the adversary obtains from the signing oracle a verifiably encrypted

signature (ω, µ) under the challenge key v. He computes from it (ωr, µr) for some r, which

is a verifiably encrypted signature on the same message under the related key vr. He then

queries the adjudication oracle and obtains the underlying signature σr, from which he can

compute σ. Note that the adversary does not know the private key corresponding to vr,

and that the adjudication oracle must be willing to answer queries for keys other than the

challenge key v.

Another countermeasure, suggested by Hess, is for users to tie the verifiably encrypted

signatures to their identity by computing the hash h as H(M,v) rather than H(M).

4.5.5 Proofs of Security

It is easy to see that the BGLS2 scheme is valid. A verifiably encrypted signature cor-

rectly validates under EVf, which is simply the aggregate signature verification algorithm.

Moreover, for any valid verifiably encrypted signature, e(ω/µx′ , g2) = e(ω, g2) ·e(µ, g2)−x′ =

e(h, v) · e(µ, v′) · e(µ, v′)−1 = e(h, v), so the output of Adj is a valid signature on message M

under the key v.

The next two theorems prove the unforgeability and opacity of the scheme.

Theorem 4.5.4. Let G1 and G2 be cyclic groups of prime order p, with respective gen-

erators g1 and g2, with a computable bilinear map e : G1 × G2 → GT . Suppose that the

BLS signature scheme is (t′, q′H , q
′
S, ε

′)-secure against existential forgery on (G1, G2). Then

BGLS2 is (t, qH , qS, qA, ε)-secure against existential forgery on (G1, G2), for all qH ≤ q′H,

qS ≤ q′S, ε ≥ ε′, and all t satisfying t ≤ t′ − 2cG1
(qS + qA + 1) , where exponentiation and

inversion on G1 take time cG1
.

Proof. Given a BGLS2 forger algorithm V, we construct a forger algorithm F for the un-

derlying BLS signature scheme.
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We assume that V is well-behaved in the sense that it always requests the hash of a mes-

sage M before it requests a verifiably encrypted signature or an adjudication involving M ,

and that it never requests adjudication on a message M on which it had not previously

asked for a verifiably encrypted signature. It is trivial to modify any forger algorithm V to

have the first property. The second property is reasonable since the input to the adjudica-

tion oracle in this case would be a nontrivial verifiably encrypted signature forgery; V can

be modified simply to output it and halt.

The BLS forger F is given a public key v, and has access to a signing oracle for v and

a hash oracle. It simulates the challenger and runs interacts with V as follows.

Setup. Algorithm F generates a key, (x′, v′) R← Kg, which serves as the adjudicator’s key.

Now F runs V, providing as input the public keys v and v′.

Hash Queries. Algorithm V requests a hash on some string M . Algorithm F makes a

query on M to its own hash oracle, receiving some value h ∈ G1, with which it

responds to V’s query.

VerSig Creation Queries. Algorithm V requests a signature on some string M . (It will

have already queried the hash oracle at M .) F queries its signing oracle (for v)

at M , obtaining σ ∈ G1. It then selects r at random from Zp, and returns to V the

pair (σ · ψ(v′)r, ψ(g2)r).

Adjudication Queries. Algorithm V requests adjudication for (ω, µ), a verifiably en-

crypted signature on a message M under key v and adjudicator key v′. Algorithm F
checks that the verifiably encrypted signature is valid, then returns ω/µx′ .

Output. Finally, V halts, either declaring failure, in which case F , too, declares failure

and halts, or providing a valid and nontrivial verifiably encrypted signature (ω∗, µ∗)

on a message M∗. F sets σ∗ ← ω∗/(µ∗)x′ . We thus have

e(σ∗, g2) = e(ω∗/(µ∗)x′ , g2) = e(ω∗, g2)
/
e(µ∗, gx′

2 )

= e(H(M∗), v) · e(µ∗, v′)
/
e(µ∗, v′) = e(H(M∗), v) ,

so σ∗ is a valid BLS signature on M∗ under key v. (In the second line, we use the

fact that (ω∗, µ∗) is a valid verifiably encrypted signature, so the verification equation

e(ω∗, g2) = e(H(M∗), v) · e(µ∗, v′) holds.) Since the forgery is nontrivial, V must not
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have queried the verifiably encrypted signature oracle at M∗, from which it follows

that F did not query its signing oracle at M∗. Thus (M∗, σ∗) is a nontrivial BLS

forgery; algorithm F outputs it and halts.

It remains only to analyze the success probability and running time of F . Algorithm F
succeeds whenever V does, that is, with probability at least ε.

Algorithm F ’s running time is the same as V’s running time plus the time it takes to

respond to qH hash queries, qS verifiably-encrypted signature queries, and qA adjudication

queries, and the time to transform V’s final verifiably-encrypted signature forgery into a BLS

signature forgery. Hash queries impose no overhead. Each verifiably-encrypted signature

query requires F to perform two exponentiations in G1. Each adjudication query requires

F to perform an exponentiation and an inversion in G1. The output phase also requires an

exponentiation and an inversion. We assume that exponentiation and inversion in G1 take

time cG1
. Hence, the total running time is at most t+ 2cG1

(qS + qA + 1).

F queries its hash oracle whenever V queries its hash oracle, and its signing oracle

whenever V queries its verifiably encrypted signature oracle.

Combining all this, we see that if V (t, qH , qS, qA, ε)-forges a bilinear verifiably encrypted

signature on (G1, G2), then F (t + 2cG1
(qS + qA + 1), qH , qS, ε)-breaks the BLS signature

scheme on (G1, G2). Conversely, if the BLS signature scheme is (t′, q′H , q
′
S, ε

′)-secure, then

BGLS2 is (t′ − 2cG1
(qS + qA + 1), q′H , q

′
S, qA, ε

′)-secure against existential forgery.

Note that the proof above treats the underlying signature scheme as a black box, except

for two properties: (1) that it is possible to encrypt a signature to obtain a verifiably

encrypted signature, and (2) that the adjudication procedure transforms all valid verifiably

encrypted signatures into valid (unencrypted) signatures — not just those that ESig would

output, as required by the validity property.

Theorem 4.5.5. Let G1 and G2 be cyclic groups of prime order p, with respective gener-

ators g1 and g2, with a computable isomorphism ψ : G2 → G1 such that ψ(g2) = g1 and

a computable bilinear map e : G1 × G2 → GT . Suppose that the bilinear aggregate signa-

ture scheme on (G1, G2) is (t′, 2, ε′)-secure against aggregate extraction. Then BGLS2 is

(t, qH , qS, qA, ε)-secure against extraction on (G1, G2) for all t and ε satisfying

ε ≥ e(qA + 1) · ε′ and t ≤ t′ − cG1
(qH + 4qS + 2qA + 3) ,
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where e is the base of natural logarithms, and exponentiation and inversion on G1 take

time cG1
.

Proof. Given a verifiably-encrypted–signature extractor algorithm V, we construct an ag-

gregate extractor algorithm A. The extractor A is given values gα
2 and gβ

2 in G2, gγ
1 , gδ

1,

and gαγ+βδ
1 in G1. It runs V, answering its oracle calls, and uses V’s verifiably encrypted

signature extraction to calculate gαγ
1 , the answer to its own extraction challenge.

Let g1 be a generator of G1, and g2 of G2, such that ψ(g2) = g1. Algorithm A is given

gα
2 , g

β
2 ∈ G2 and gγ

1 , g
δ
1, g

αγ+βδ
1 ∈ G1. Its goal is to output gαγ

1 ∈ G1. Algorithm A simulates

the challenger and interacts with verifiably-encrypted–signature extractor V as follows.

Setup. Algorithm A sets v ← gα
2 , the signer’s public key, and v′ ← gβ

2 , the adjudicator’s

public key. It gives v and v′ to V.

Hash Queries. At any time algorithm V can query the random oracle H. To respond to

these queries, A maintains a list of tuples 〈M (i), w(i), b(i), c(i)〉 as explained below. We

refer to this list as the H-list. The list is initially empty. When V queries the oracle

H at a point M ∈ {0, 1}∗, algorithm A responds as follows:

1. If the query M already appears on the H-list in some tuple 〈M,w, b, c〉 then

algorithm A responds with H(M) = w ∈ G1.

2. Otherwise, A generates a random coin c ∈ {0, 1} so that Pr[c = 0] = 1/(qA + 1).

3. Algorithm A picks a random b ∈ Zp. If c = 0 holds, A computes w ← gγ
1 ·gb

1 ∈ G1.

If c = 1 holds, A computes w ← gb
1 ∈ G1.

4. Algorithm A adds the tuple 〈M,w, b, c〉 to the H-list and responds to V as

H(M) = w.

VerSig Creation Queries. V requests a verifiably-encrypted signature on some string M

under challenge key v and adjudicator key v′. Algorithm A responds to this query as

follows:

1. Algorithm A runs the above algorithm for responding to H-queries on M , ob-

taining the corresponding tuple 〈M,w, b, c〉 on the H-list.

2. A selects x at random from Zp. If c equals 0, A computes and returns (ω, µ) =

(ψ(gα
2 )b · gαγ+βδ

1 ·ψ(gβ
2 )x, gδ

1 · gx
1 ). If c equals 1, A computes and returns (ω, µ) =
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(ψ(gα
2 )b · ψ(gβ

2 )x, gx
2 ). It is easy to verify that (ε, µ) is in either case a correct

verifiably encrypted signature on the message with hash w.

Adjudication Queries. Algorithm V requests adjudication for (ω, µ), a verifiably en-

crypted signature on a message M under key v and adjudicator key v′. Algorithm A
responds to this query as follows:

1. Algorithm A runs the above algorithm for responding to H-queries on M , ob-

taining the corresponding tuple 〈M,w, b, c〉 on the H-list.

2. Algorithm A checks that the verifiably encrypted signature is valid. If it is not,

A returns ?, a placeholder value.

3. If c equals 0, A declares failure and halts. Otherwise, it computes and returns

σ ← ψ(gα
2 )b. It is easy to verify that σ is the correct BLS signature under key v

on the message with hash w.

Output. Finally, V halts. It either concedes failure, in which case so does A, or returns

a nontrivial extracted signature σ∗ on some message M∗. For the extraction to be

nontrivial, V must not have asked for adjudication on a verifiably encrypted signature

of M∗. Algorithm A runs its hash algorithm at M∗, obtaining the k corresponding

tuples 〈M∗, w∗, b∗, c∗〉 on the H-list.

A now proceeds only if c∗ = 0; otherwise it declares failure and halts. Since c∗ = 0, it

follows that w∗ = gγ
1 ·gb∗

1 . The extracted signature σ∗ must satisfy the BLS verification

equation, e(σ∗, g2) = e(h∗, v). A sets σ ← σ∗/ψ(v)b∗ . Then

e(σ, g2) = e(σ∗, g2) · e(ψ(v), g2)−b∗ = e(w∗, v) · e(ψ(g2), v)−b∗

= e(gγ
1 , v) · e(g1, v)b∗ · e(g1, v)−b∗ = e(gγ

1 , g
α
2 ).

Where in the last equality we substitute v = gα
2 . Thus (g2, gα

2 , g
γ
1 , σ) is a valid co-

Diffie-Hellman tuple, so σ equals gαγ
2 , the answer to the aggregate extraction problem;

algorithm A outputs it and halts.

This completes the description of algorithm A. It remains to show that A solves the given

instance of the aggregate extraction problem on (G1, G2) with probability at least ε′. To

do so, we analyze the three events needed for A to succeed:
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E1: A does not abort as a result of any of V’s adjudication queries.

E2: V generates a valid and nontrivial verifiably-encrypted signature extraction (M∗, σ∗).

E3: Event E2 occurs, and c∗ = 0 holds, where c∗ is the c-component of the tuple containing

M∗ on the H-list.

A succeeds if all of these events happen. The probability Pr[E1 ∧ E3] decomposes as

Pr[E1 ∧ E3] = Pr[E1] · Pr[E2 | E1] · Pr[E3 | E1 ∧ E2]. (4.2)

The following claims give a lower bound for each of these terms.

Claim 7. The probability that algorithm A does not abort as a result of V’s adjudication

queries is at least 1/e. Hence, Pr[E1] ≥ 1/e.

Proof. Without loss of generality we assume that V does not ask for adjudication of the same

message twice. We prove by induction that after V makes l signature queries the probability

that A does not abort is at least (1− 1/(qA + 1))l. The claim is trivially true for l = 0. Let

V’s l’th adjudication query be for verifiably encrypted signature (ω(l), µ(l)), on message M (l)

under the challenge key v, and let 〈M (l), w(l), b(l), c(l)〉 be the corresponding tuple on the

H-list. Then prior to issuing the query, the bit c(l) is independent of V’s view — the only

values that could be given to V that depend on c(l) are H(M (l)) and verifiably-encrypted

signatures on M (l), but the distributions on these values are the same whether c(l) = 0 or

c(l) = 1. Therefore, the probability that this query causes A to abort is at most 1/(qA + 1).

Using the inductive hypothesis and the independence of c(l), the probability that A does

not abort after this query is at least (1 − 1/(qA + 1))l. This proves the inductive claim.

Since V makes at most qA adjudication queries the probability that A does not abort as a

result of all signature queries is at least (1− 1/(qA + 1))qA ≥ 1/e.

Claim 8. If algorithm A does not abort as a result of V’s adjudication queries then V’s
view is identical to its view in the real attack. Hence, Pr[E2 | E1] ≥ ε.

Proof. The challenge public key v given to V is from the same distribution as public keys

produced by Kg; the adjudicator’s public key v′ given to V is from the same distribution

as the adjudicator keys produces by AKg. Responses to hash queries are as in the real

attack since each response is uniformly and independently distributed in G1. Responses to
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verifiably-encrypted signature queries are also as in the real attack: They are valid, and

their µ components are uniformly and independently distributed in G1. Since A did not

abort as a result of V’s adjudication queries, all its responses to those queries are valid.

Therefore V will produce a valid and nontrivial verifiably-encrypted signature extraction

with probability at least ε. Hence Pr[E2 | E1] ≥ ε.

Claim 9. The probability that algorithm A does not abort after V outputs a valid and

nontrivial verifiably-encrypted signature extraction is at least 1/(qA + 1) Hence, Pr[E3 |
E1 ∧ E2] ≥ 1/(qA + 1).

Proof. Given that events E1 and E2 happened, algorithm A will abort only if V generates

a forgery (M∗, σ∗) for which the tuple 〈M∗, w∗, b∗, c∗〉 on the H-list has c = 1. Since its

extraction is nontrivial, V could not have requested adjudication on any verifiably encrypted

signature on M∗, and c∗ must be independent of V’s current view. Therefore Pr[c∗ = 0 |
E1 ∧ E2] ≥ 1/(qA + 1) as required.

Using the bounds from the claims above in equation (4.2) shows that A produces the

correct answer with probability at least ε/e(qA + 1) ≥ ε′ as required.

Algorithm A’s running time is the same as V’s running time plus the time is takes to

respond to A’s oracle queries and to transform V’s verifiably-encrypted signature extraction

into an aggregate extraction. Each verifiably-encrypted signature query, each adjudication

query, and the output phase requires A to run its H-algorithm. It must therefore run this

algorithm (qH +qS +qA +1) times. Each run requires an exponentiation in G1. Algorithm A
must run its verifiably-encrypted signing algorithm qS times, and each run requires at most

three exponentiation in G1. Finally, A’s output phase requires at most one exponentiation

and one inversion in G1. We assume that exponentiation and inversion in G1 take time cG1
.

Hence, the total running time is at most t+ cG1
(qH + 4qS + 2qA + 3) ≤ t′ as required.

4.5.6 Observations on Verifiably Encrypted Signatures

We note some extensions of the BGLS2 verifiably encrypted signature scheme discussed

above.

• Anyone can convert an ordinary unencrypted signature to a verifiably encrypted sig-

nature. The same applies to unencrypted aggregate signatures.
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• An adjudicator’s private key can be shared amongst n parties using k-of-n threshold

cryptography [62, 60], so that k parties are needed to adjudicate a verifiably encrypted

signature.

• A message-signature pair in the BLS signature scheme is of the same form as an

identity–private-key pair in Boneh-Franklin Identity-Based Encryption (IBE) [25].

Thus the verifiably encrypted signature scheme can potentially be modified to yield a

verifiable encryption scheme for IBE private keys. Verifiably encrypted private keys

have many applications [103].

4.6 Conclusions and Open Problems

In this chapter, we have some variants and extensions of which the BLS signature scheme

is capable.

We first showed how BLS has been extended to construct many of the standard signature

variants in the literature, including threshold signatures and multisignatures.

We then introduced the concept of aggregate signatures and constructed an efficient

aggregate signature scheme, BGLS, based on bilinear maps. Key generation, aggregation,

and verification require no interaction. We proved security of the system in a model that

gives the adversary his choice of public keys and messages to forge.

Finally, we introduced verifiably encrypted signatures, and showed that our BGLS ag-

gregate signature scheme gives rise to a simple verifiably encrypted signature scheme.

Unlike most previous signature constructions using bilinear maps [78, 48, 22], which

only required a gap Diffie-Hellman group (i.e., DDH easy, CDH hard), the aggregate and

verifiably encrypted signature constructions described in Sections 4.4.2 and 4.5.4 require the

extra structure provided by the bilinear map. These constructions are an example where a

bilinear map provides more power than a generic gap Diffie-Hellman group.

It is an open problem to construct aggregate signatures that work in any gap Diffie-

Hellman group.



Chapter 5

Sequential Aggregate Signatures

from Trapdoor Permutations

5.1 Introduction

Aggregate signatures, as introduced in Section 4.4, allow a single short aggregate to replace

n signatures by n users on n messages. The BGLS aggregate signature scheme, like the

other schemes in this thesis, requires a computable bilinear map. In this section we propose

a variant — sequential aggregate signatures — with the advantage that it can be constructed

based on a more general assumption: the existence trapdoor permutations.

There is a trade-off. Sequential aggregate signatures do not have the property that

an untrusted aggregating party can combine, after the fact, signatures that were generated

independently. Instead, signing and aggregation are a single operation, and each signer folds

her signature into the aggregate-so-far, which she obtains from the previous signer. More

precisely, User i is given an aggregate on messages M1, . . . ,Mi−1 under keys pk1, . . . ,pki−1

and outputs an aggregate on messages M1, . . . ,Mi−1,Mi under keys pk1, . . . ,pki−1,pki.

For some applications of aggregate signatures — in particular, certificate chains — the

ability to combine preexisting individual signatures into an aggregate is unnecessary. Each

CA, when producing a signature, has already obtained the signatures of CAs above it in

the chain. Thus aggregation for certificate chains can be performed incrementally and

sequentially.

In this chapter, we show how to realize sequential aggregate signatures using any family

56
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of certified1 trapdoor permutations over a single domain, provided that the domain is a

group under some operation. We prove security (with an exact security analysis) of our

construction in the random oracle model; we give a tighter security guarantee for the special

cases of homomorphic and claw-free trapdoor permutations.

Again, compared to the BGLS aggregate signature scheme considered in Section 4.4, the

scheme presented here places more restrictions on the signers (because of the sequentiality

requirement), but relies on a more general assumption.

We also show how to instantiate our construction with the RSA trapdoor permutation.

This instantiation turns out to be more difficult than may be expected, because of the

possibility of maliciously generated RSA keys: We need to provide security for User i

regardless of whether other users are honest. There are essentially four problems. The first

is that our scheme assumes multiple trapdoor permutations over the same domain, which

RSA does not provide. The second is that RSA is not a certified trapdoor permutation: for a

maliciously generated public-key, it can indeed be very far from a permutation. The third is

that the domain of RSA is not the convenient ZN , but rather Z∗N , which can be much smaller

for maliciously generated N . Finally, the natural group operation on Z∗N (multiplication)

is not a group operation on ZN . We overcome these problems with techniques that may be

of independent interest. In particular, we turn RSA into a certified trapdoor permutation

over all of ZN .

Other Related Work. Aggregate signatures are related to multisignatures, which we

considered in Section 4.3. In particular, our LMRS aggregate signature scheme has simi-

larities with the multisignature scheme of Okamoto [96] (though the latter has no security

proof and, indeed, is missing important details that would make the security proof possible,

as shown by Micali et al. [85]).

5.2 Preliminaries

We recall the definitions of trapdoor permutations and the full-domain hash signatures based

upon them. We also define certified trapdoor permutations, which are needed for building

sequential aggregate signatures. Finally, we define claw-free permutations and homomorphic

trapdoor permutations, whose properties we will use to achieve a better security reduction.
1A trapdoor permutation is certified [19] if one can verify from its public description that it is actually

a permutation.
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5.2.1 Trapdoor One-Way Permutations

Let D be a group over some operation �. For simplicity, we assume that choosing an

element of D at random, computing �, and inverting � each take unit time.

A trapdoor permutation family T DP over D is defined as a triple of algorithms, Gen,

Ev, and Inv. The randomized generation algorithm Gen outputs the description s of a

permutation along with the corresponding trapdoor t. The evaluation algorithm Ev, given

the permutation description s and a value x ∈ D, outputs a ∈ D, the image of x under

the permutation. The inversion algorithm Inv, given the permutation description s, the

trapdoor t, and a value a ∈ D, outputs the preimage of a under the permutation.

We require that Ev(s, ·) be a permutation of D for all (s, t) R← Gen, and that x =

Inv(s, t,Ev(s, x)) hold for all (s, t) R← Gen and for all x ∈ D. The algorithms Gen, Ev, and

Inv are also assumed to take unit time for simplicity.

Definition 5.2.1. The advantage of an algorithm A in inverting a trapdoor permutation

family T DP is

Advtdp-inv
T DP,A

def= Pr
[
x = A(s,Ev(s, x)) : (s, t) R← Gen, x

R← D
]
.

The probability is taken over the coin tosses of Gen and of A. An algorithm A (t, ε)-inverts

a trapdoor permutation family if A runs in time at most t and Advtdp-inv
T DP,A is at least ε.

A trapdoor permutation family is (t, ε)-one-way if no algorithm (t, ε)-inverts the trapdoor

permutation family.

Note that this definition of a trapdoor permutation family requires that all permutations

in the trapdoor permutation family operate on the same domain D.

When it engenders no ambiguity, we consider the output of the generation algorithm Gen

as a probability distribution Π on permutations, and write (π, π−1) R← Π; here π is the

permutation Ev(s, ·), and π−1 is the inverse permutation Inv(s, t, ·).

5.2.2 Certified Trapdoor Permutations

The trapdoor permutation families used in sequential aggregation must be certified trapdoor

permutation families [19]. A certified trapdoor permutation family is one such that, for any

string s, it is easy to determine whether s can have been output by Gen, and thereby ensure
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that Ev(s, ·) is a permutation. This is important when permutation descriptions s can be

generated by malicious parties.

Applying the definitions above to the RSA permutation family requires some care. RSA

gives permutations over domains Z∗N , where each user has a distinct modulus N . Moreover,

given just a public key (N, e), certifying that the key actually describes a permutation is

nontrivial. We consider this further in Section 5.5.

5.2.3 Claw-Free Permutations, Homomorphic Trapdoor Permutations

We now describe two variants of trapdoor permutations: claw-free permutations and homo-

morphic trapdoor permutations. The features these variants provide are not needed in the

description of the sequential aggregate signature scheme, but allow a more efficient security

reduction in Theorem 5.4.3.

A claw-free permutation family CFP [66] is a trapdoor permutation family where each

key (s, t) describes not only a permutation π : D → D as before but also an additional

permutation g : D → D, evaluated using the algorithm EvG(s, ·). (More generally, g can

map any domain E onto D as long as the uniform distribution on E induces the uniform

distribution on g(E).) We assume that algorithm EvG runs in unit time and that choosing

an element of E at random also takes unit time, just as above.

Definition 5.2.2. The advantage of an algorithm A in finding a claw in a claw-free per-

mutation family is

Advclaw
CFP,A

def= Pr

[
Ev(s, x) = EvG(s, y) :

(s, t) R← Gen, (x, y) R← A(s)

]
.

The probability is taken over the coin tosses of Gen and of A. An algorithm A (t, ε)-breaks

a claw-free permutation family if A runs in time at most t and Advclaw
CFP,A is at least ε. A

permutation family is (t, ε)-claw-free if no algorithm (t, ε)-breaks the claw-free permutation

family.

Again, when it engenders no ambiguity, we abbreviate EvG(s, ·) as g(·), and write

(π, π−1, g) R← Π. In this compact notation, a claw is a pair (x, y) such that π(x) = g(y).

One can obtain from every claw-free permutation family a trapdoor permutation family,

simply by ignoring EvG [66]. The proof is straightforward. Suppose there exists an algo-

rithm A that inverts π with nonnegligible probability. One selects y R← D, and provides A
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with z = g(y), which is uniformly distributed in D. If A outputs x such that x = π−1(z),

then it has uncovered a claw π(x) = g(y).

A trapdoor permutation family is homomorphic if D is a group with some operation ∗
and if, for all (s, t) generated by Gen, the permutation π : D → D induced by Ev(s, ·) is

an automorphism on D with ∗. That is, if a = π(x) and b = π(y), then a ∗ b = π(x ∗ y).

The group action ∗ is assumed to be computable in unit time. The operation ∗ can be

different from the operation � given above; nor do we require any particular relationship

(e.g., distributivity) between � and ∗.
One can obtain from every homomorphic trapdoor permutation family a claw-free per-

mutation family [49]. Pick some z 6= 1 ∈ D, and define g(x) = z ∗π(x). In this case, E = D.

Then a claw π(x) = g(y) = z ∗ π(y) reveals π−1(z) = x ∗ (1/y) (where the inverse is with

respect to ∗).

5.2.4 Full-Domain Signatures

We review the full-domain hash signature scheme; this scheme underlies our sequential

aggregate signature scheme, just as the BLS signature scheme of Section 3.3 underlies the

BGLS aggregate signature scheme of Sect 4.4.2.

The full-domain hash signature scheme, introduced by Bellare and Rogaway [16], can

be instantiated using any trapdoor one-way permutation family. The more efficient secu-

rity reduction given by Coron [39] additionally requires that the permutation family be

homomorphic. Dodis and Reyzin show that Coron’s analysis can be applied for any claw-

free permutation family [49]. The scheme makes use of a hash function H : {0, 1}∗ → D,

which is modeled as a random oracle. The signature scheme is a three-tuple of algorithms

FDHS = (Kg,Sig,Vf). These behave as follows.

FDHS.Kg. For a particular user, pick random (s, t) R← TDP.Gen. The user’s public key pk

is s. The user’s private key sk is (s, t).

FDHS.Sig(sk,M). Parse the user’s private key sk as (s, t). Compute h ← H(M), where

h ∈ D, and σ ← TDP.Inv(s, t, h). The signature is σ ∈ D.

FDHS.Vf(pk,M, σ). Parse the user’s public key pk as s. Compute h ← H(M); accept if

h = TDP.Ev(s, σ) holds.
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The following theorem, due to Coron, shows the security of full-domain signatures under

the adaptive chosen message attack in the random oracle model. The terms given in the

exact analysis of ε and t have been adapted to agree with the accounting employed elsewhere

in this thesis. A theorem with similar bounds can be given assuming claw-free permutations.

(The comparable theorem for general trapdoor permutations has a security loss proportional

to qH rather than qS.)

Theorem 5.2.3. Let Π be a (t′, ε′)-one-way homomorphic trapdoor permutation family.

Then the full-domain hash signature scheme on Π is (t, qH , qS, ε)-secure against existential

forgery under an adaptive chosen-message attack (in the random oracle model) for all t and

ε satisfying

ε ≥ e(qS + 1) · ε′ and t ≤ t′ − 2(qH + 2qS) .

Here e is the base of the natural logarithm.

5.3 Sequential Aggregate Signatures

In an aggregate signature scheme, as presented in Section 4.4, signatures are first individ-

ually generated and then combined into an aggregate. Sequential aggregate signatures are

different. Each would-be signer transforms a sequential aggregate into another that includes

a signature on a message of his choice. Signing and aggregation are a single operation; se-

quential aggregates are built in layers, like an onion; the first signature in the aggregate is

the inmost. As with non-sequential aggregate signatures, the resulting sequential aggregate

is the same length as an ordinary signature. This behavior closely mirrors the sequential

nature of certificate chains in a PKI.

Let us restate the intuition given above more formally. A sequential aggregate signature

scheme is a three-tuple of algorithms SAS = (Kg,ASig,AVf), which behave as follows.

SAS.Kg. As usual, a randomized algorithm that outputs a public-private keypair (pk, sk).

SAS.ASig(sk,M, σ′, {pki,Mi}k−1
i=1 ). Aggregation and signing is a combined operation. The

sequential aggregate signing algorithm takes as input a private key sk, a message

M in some message space to be signed, and a sequential aggregate σ′ on messages

M1, . . . ,Mk−1 under respective public keys pk1, . . . ,pkk−1, where M1 is the inmost

message. If k is 1, the aggregate σ is taken to be empty. The algorithm adds an out-

most signature on M under sk to the aggregate. outputting a sequential aggregate σ
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on all k messages under all k keys.

SAS.AVf(σ, {pki,Mi}ki=1). The input is a sequential aggregate σ on messages M1, . . . ,Mk

under public keys pk1, . . . ,pkk. The algorithm verifies that σ is a valid sequential

aggregate (with M1 inmost) on the given messages under the given keys.

The notion of sequential aggregate signature security we consider is a generalization

of existential unforgeability of ordinary signatures, which we recalled in Section 3.2, and

a variant of the aggregate chosen-key model of Section 4.4.1. Specifically, the adversary

attempts to forge a sequential aggregate signature, on messages of his choice, by some set of

users; clearly, at least one of the users in the set must not be under the adversary’s control.

We formalize this intuition as the sequential aggregate chosen-key security model. In

this model, the adversary A is given a single public key. His goal is the existential forgery

of a sequential aggregate signature. We give the adversary power to choose all public

keys except the challenge public key. The adversary is also given access to a sequential

aggregate signing oracle on the challenge key. His advantage, Advseqagg
SAS,A, is defined to be

his probability of success in the following game.

Setup. The challenger runs algorithm Kg to obtain a public key pk and private key sk.

The aggregate forger A is given pk.

Queries. Proceeding adaptively, A requests sequential aggregate signatures with pk

on messages of his choice. For each query, he supplies a sequential aggregate

signature σ on some messages M1, . . . ,Mi−1 under distinct keys pk1, . . . ,pki−1,

and an additional message Mi to be signed by the oracle under key pk (where

i is at most n, a game parameter). The challenger responds to these queries by

running ASig using private key sk. In the random oracle model, A can also make

qH queries to a hash oracle H.

Response. Finally, A outputs i distinct public keys pk1, . . . ,pki. Here i is at most n,

and need not equal the lengths (also denoted i) of A’s requests in the query phase

above. One of these keys must equal pk, the challenge key. Algorithm A also

outputs messages M1, . . . ,Mi, and a sequential aggregate signature σ by the

i users, each on his corresponding message, with pk1 inmost.

The forger wins if the sequential aggregate signature σ is a valid sequential aggregate

signature on messages M1, . . . ,Mi under keys pk1, . . . ,pki, and σ is nontrivial, i.e.,
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A did not request a sequential aggregate signature on messages M1, . . . ,Mi∗ under

keys pk1, . . . ,pki∗ , where i∗ is the index of the challenge key pk in the forgery. Note

that i∗ need not equal i: the forgery can be made in the middle of σ. The probability

is over the coin tosses of the key-generation algorithm and of A.

Definition 5.3.1. A sequential aggregate forger A (t, qH , qS, n, ε)-breaks an n-user aggre-

gate signature scheme in the sequential aggregate chosen-key model if: A runs in time

at most t; A makes at most qH queries to the hash function and at most qS queries to

the aggregate signing oracle; Advseqagg
SAS,A is at least ε; and the forged sequential aggregate

signature is by at most n users. A sequential aggregate signature scheme is (t, qH , qS, n, ε)-

secure against existential forgery in the sequential aggregate chosen-key model if no forger

(t, qH , qS, n, ε)-breaks it.

5.4 Sequential Aggregates from Trapdoor Permutations

We describe a sequential aggregate signature scheme arising from any family of trapdoor

permutations, and prove the security of the scheme.

We must first introduce some notation for vectors. We write a vector as x, its length

as |x|, and its elements as x1,x2, . . . ,x|x|. We denote concatenating vectors as x‖y and

appending an element to a vector as x‖z. For a vector x, x|ba is the sub-vector containing

elements xa,xa+1, . . . ,xb. (Obviously we have 1 ≤ a ≤ b ≤ |x|).

5.4.1 The Scheme

We now describe the three algorithms Kg, ASig, and AVf for our sequential aggregate signa-

ture scheme based on certified trapdoor permutations. The scheme employs a full-domain

hash function H : {0, 1}∗ → D, viewed as a random oracle, and resembles full-domain hash

described in Section 5.2.4. The trick to aggregation is to incorporate the sequential aggre-

gate signature of previous users by multiplying it (via the group operation �) together with

the hash of the message. As it happens, the hash now needs to include not only the signer’s

message, but also her public key and the prior messages and keys.2

2This is done not merely because we do not know how to prove the scheme secure otherwise. Micali
et al. [86] pointed out that if the signature does not include the public key, then an adversary may attack
the scheme by deciding on the public key after the signature is issued.
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LMRS.Kg. For a particular user, pick random (s, t) R← TDP.Gen. The user’s public key pk

is s. The user’s private key sk is (s, t).

LMRS.ASig(sk,M, σ′,M,pk). The input is a private key sk, to be parsed as (s, t); a mes-

sage M ∈ {0, 1}∗ to be signed, and a sequential aggregate σ′ ∈ D on messages M

under public keys pk, to be parsed as a vector s. Verify that σ′ is a valid signature

on M under s using the verification algorithm below; if not, output ?, indicating error.

Otherwise, compute h← H(s‖s,M‖M), where h ∈ D, and σ ← TDP.Inv(s, t, h� σ′).
The sequential aggregate signature is σ ∈ D.

LMRS.AVf(σ,M,pk). The input is a sequential aggregate σ ∈ D on messages M under

public keys pk, to be parsed as a vector s. If any key appears twice in s, if any

element of s does not describe a valid permutation, or if |M| and |s| differ, reject.

Otherwise, let i equal |M| = |s|. Set σi ← σ. Then, for j = i, . . . , 1, set σj−1 ←
TDP.Ev(sj , σj) � H(s|j1 , M|

j
1)−1. Accept if σ0 equals 1, the unit of D with respect

to �.

Written using π-notation, a sequential aggregate signature is of the form

π−1
i (hi � π−1

i−1(hi−1 � π−1
i−2(· · ·π−1

2 (h2 � π−1
1 (h1)) · · · ))) ,

where hj = H(s|j1 , M|
j
1). Verification evaluates the permutations in the forward direction,

peeling layers away until the center is reached.

5.4.2 Security

The following theorem demonstrates that our scheme is secure when instantiated on any

certified trapdoor permutation family.

Theorem 5.4.1. Let Π be a certified (t′, ε′)-trapdoor permutation family. Then our se-

quential aggregate signature scheme on Π is (t, qH , qS, n, ε)-secure against existential forgery

under an adaptive sequential aggregate chosen-message attack (in the random oracle model)

for all t and ε satisfying

ε ≥ (qH + qS + 1) · ε′ and t ≤ t′ − (4nqH + 4nqS + 7n− 1) .
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Following Coron’s work [39], a better security reduction is obtained if the trapdoor per-

mutations are, additionally, homomorphic under some operation ∗. (The operation ∗ need

not be the same as the operation � used in the description of the signature scheme in

Section 5.4.)

Theorem 5.4.2. Let Π be a certified homomorphic (t′, ε′)-trapdoor permutation family.

Then our sequential aggregate signature scheme on Π is (t, qH , qS, n, ε)-secure against exis-

tential forgery under an adaptive sequential aggregate chosen-message attack (in the random

oracle model) for all t and ε satisfying

ε ≥ e(qS + 1) · ε′ and t ≤ t′ − ((4n+ 1)qH + (4n+ 1)qS + 7n+ 3) .

Here e is the base of the natural logarithm.

Finally, following the work of Dodis and Reyzin [49], the homomorphic property is not really

necessary, and can be replaced with the more general claw-free property:

Theorem 5.4.3. Let Π be a certified (t′, ε′)-claw-free permutation family. Then the se-

quential aggregate signature scheme on Π is (t, qH , qS, n, ε)-secure against existential forgery

under an adaptive sequential aggregate chosen-message attack (in the random oracle model)

for all t and ε satisfying

ε ≥ e(qS + 1) · ε′ and t ≤ t′ − (4nqH + 4nqS + 7n) .

Here e is the base of the natural logarithm.

The proofs of these theorems are very similar. In fact, Theorem 5.4.2 is just a corollary

of Theorem 5.4.3, because, as we already saw, homomorphic trapdoor permutations are

claw-free. We will prove all three at once.

Proofs. Suppose there exists a forger A that breaks the security of our sequential aggregate

signature scheme. We describe three algorithms that use A to break one of the three

possible security assumptions (trapdoor one-wayness, homomorphic one-wayness, and claw-

freeness). In fact, the algorithms are quite similar regardless of the assumption. Therefore,

we present only one of them: B that uses A to find a claw in a (supposedly) claw-free

permutation family Π. We will point out later the changes needed to make the reduction

to ordinary and homomorphic trapdoor permutations.
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Suppose A is a forger algorithm that (t, qH , qS, n, ε)-breaks the sequential aggregate

signature scheme. We construct an algorithm B that finds a claw in Π.

Crucial in our construction is the following fact about our signature scheme: once the

function H is fixed on i input values (s|j1 , M|
j
1), 1 ≤ j ≤ i, there exists only one valid

aggregate signature on M using keys s. Thus, by answering hash queries properly, B can

prepare for answering signature queries and for taking advantage of the eventual forgery.

Algorithm B is given the description s of an element of Π, and must find values x ∈ D and

y ∈ E such that Ev(s, x) = EvG(s, y). Algorithm B supplies A with the public key s. It

then runs A and answers its oracle queries as follows.

Hash Queries. Algorithm B maintains a list of tuples 〈s(j),M(j), w(j), r(j), c(j)〉, to which

we refer as the H-list. The list is initially empty. When A queries the oracle H at a

point (s,M), algorithm B responds as follows.

First we consider the easy cases.

• If some tuple 〈s,M, w, r, c〉 on the H-list already contains the query (s,M), then

algorithm B answers the query as H(s,M) = w ∈ D.

• If |M| and |s| differ, if |s| exceeds n, if some key is repeated in s, or if any key

in s does not describe a valid permutation, then (s,M) can never be part of a

sequential aggregate signature. Algorithm B picks w R← D, and sets r ← ? and

c← ?, both placeholder values. It adds 〈s,M, w, r, c〉 to the H-list and responds

to the query as H(s,M) = w ∈ D.

Now for the more complicated cases. Set i = |s| = |M|. If i is greater than 1, B runs

the hashing algorithm on input (s|i−1
1 , M|i−1

1 ), obtaining the corresponding entry on

the H-list, 〈s|i−1
1 , M|i−1

1 , w′, r′, c′〉. If i equals 1, B sets r′ ← 1. Algorithm B must

now choose elements r,w, and c to include, along with s and M, in a new entry on

the H-list. There are three cases to consider.

• If the challenge key s does not appear at any index of s, B chooses r R← D at

random, sets c← ?, a placeholder value, and computes

w ← Ev(si, r)� (r′)−1
.
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• If the challenge key s appears in s at index i∗ = i, Algorithm B generates a

random coin c ∈ {0, 1} such that Pr[c = 0] = 1/(qS + 1). If c = 1, B chooses

r
R← D at random and sets

w ← Ev(s, r)� (r′)−1
.

(In this case, w is uniform in D and independent of all other queries because r

has been chosen uniformly and independently at random from D, and Ev and

combining with (r′)−1 are both permutations.) If c = 0, B chooses r R← E at

random and sets

w ← EvG(s, r)� (r′)−1
.

(In this case, w is uniform in D and independent of all other queries because

r has been chosen uniformly and independently at random from E, EvG maps

uniformly onto D, and combining with (r′)−1 is a permutation.)

• If the challenge key s appears in s at index i∗ � i, algorithm B picks w R← D at

random, and sets r ← ? and c← ?, both placeholder values.

Finally, B adds 〈s,M, w, r, c〉 to the H-list, and responds to the query as H(s,M) = w.

In all cases, B’s response, w, is uniform in D and independent of A’s current view, as

required.

Aggregate Signature Queries. Algorithm A requests a sequential aggregate signature,

under key s, on messages M under keys s.

If |s| and |M| differ, if |s| exceeds n, if any key appears more than once in s, or if any

key in s does not describe a valid permutation, (s,M) is not a valid aggregate, and B
responds to A with ?, indicating error. Let i = |s| = |M|. If si differs from s, (s,M) is

not a valid query to the aggregate signing oracle, and B again responds with ?.

Algorithm A also supplies a purported sequential aggregate signature σ′ on mes-

sages M|i−1
1 under keys s|i−1

1 . If i equals 1, B verifies that σ′ equals 1. Other-

wise, B uses AVf to ensure that σ′ is the correct sequential aggregate signature on

(s|i−1
1 , M|i−1

1 ). If σ′ is incorrect, B again responds with ?.

Otherwise, B runs the hash algorithm on (s,M), obtaining the corresponding entry

on the H-list, 〈s,M, w, r, c〉. Since si equals s, c must be 0 or 1. If c = 0 holds, B
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reports failure and terminates. Otherwise, B responds to the query with σ ← r.

Output. Eventually algorithm A halts, outputting a message vector M, a public-key vec-

tor s, and a corresponding sequential aggregate signature forgery σ. The forgery must

be valid: No key may occur more than once in s, each key in s must describe a

valid permutation, the two vectors s and M must have the same length i, which is at

most n. The forgery must also be nontrivial: The challenge key s must occur in s, at

some location i∗, and A must not have asked for a sequential aggregate signature on

messages M|i
∗

1 under keys s|i
∗

1 . If A fails to output a valid and nontrivial forgery, B
reports failure and terminates.

Algorithm B begins by checking the hashes included in σ. For each j, 1 ≤ j ≤ i, B runs

its hash algorithm on (s|j1 , M|
j
1), obtaining a series of tuples 〈s|j1 , M|

j
1 , w

(j), r(j), c(j)〉.
Note that B always returns w as the answer to a hash query so for each j we have

H(s|j1 , M|
j
1) = w(j).

Algorithm B then examines c(i
∗). Since s(i

∗) equals s, c(i
∗) must be 0 or 1. If c(i

∗) = 1

holds, B reports failure and terminates. Then B applies the aggregate signature

verification algorithm to σ. It sets σ(i) ← σ. For j = i, . . . , 1, it sets σ(j−1) ←
Ev(s(j), σ(j))� (w(j))−1.

If σ(0) does not equal 0, σ is not a valid aggregate signature, and B reports failure

and terminates. Otherwise, σ is valid and, moreover, each σ(j) computed by B is the

(unique) valid aggregate signature on messages M|j1 under keys s|j1.

Finally, B sets x← σ(i∗) and y ← r(i
∗).

This completes the description of algorithm B.

It is easy to modify this algorithm for homomorphic trapdoor permutations. Now the

algorithm’s goal is not to find a claw, but to invert the permutation given by s on a given

input z. Simply replace, when answering hash queries for c = 0, invocation of EvG(s, r) with

z ∗Ev(s, r). The a claw (x, y) allows B to recover the inverse of z under the permutation by

computing z = x ∗ (1/y), where 1/y is the inverse of y under ∗.
Finally, it is also easy to modify this algorithm for ordinary trapdoor permutations:

• In answering hash queries where the challenge key s is outmost in s, instead of letting

c = 0 with probability 1/(qS + 1), set c = 0 for exactly one query, chosen at random.

There can be at most qH + qS + 1 such queries.
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• For the c = 0 query, set w ← z � (r′)−1. Then w is random given A’s view.

• If Algorithm A’s forgery is such that c(i
∗) = 0, B′′ outputs x← σ(i∗).

To complete the proof, we now show that B correctly simulates A’s environment, and

analyze its running time and success probability.

Recall that we suppose that A is a forger algorithm that (t, qH , qS, n, ε)-breaks the se-

quential aggregate signature scheme. Our goal is to show that algorithm B, described above,

correctly simulates A’s environment, runs in time t′, and finds a claw in Π with probability

at least ε′, which will contradict the (t′, ε′)-claw-freeness of Π (almost identical arguments

work for the modifications of B for ordinary and homomorphic trapdoor permutations).

We introduce some notation, which we will use to demonstrate that B correctly answers

A’s oracle queries. Consider public keys s and respective messages M, where i = |s| = |M|,
and the entries in s are all distinct. For each j, 1 ≤ j ≤ i, B’s hash algorithm associates

with (s|j1 , M|
j
1) a tuple 〈s|j1 , M|

j
1 , w

(j), r(j), c(j)〉. The last three elements of these tuples

we view as i-element vectors w, r, and c. Algorithm B always returns w as the answer

to a hash query, so, for each j, H(s|j1 , M|
j
1) = wj . Using the compact notation suggested

above, we also abbreviate the permutation evaluation Ev(sj , ·) as πj(·). For each j there is a

unique correct sequential aggregate signature σj on messages M|j1 under keys s|j1. Finally,

for the challenge key s, we abbreviate the second function of the claw-free permutation pair,

EvG(s, ·), as g(·).
Note that, for the keys s and messages M output by A as its forgery, B, in its output

phase, computes and makes use of the vectors w, r, and c as defined here, along with

the correct sequential aggregate signatures σj . In our analysis, we will also consider these

vectors for keys and messages other than those forged on by A.

The proof proceeds in a series of claims. In particular, Claim 13 below shows that B
answers A’s signature queries with the correct sequential aggregate signature, and Claim 14

below shows that B outputs a claw π(x) = g(y).

Claim 10. If the challenge key s does not equal any of the elements of s, then σj = rj for

each j, 1 ≤ j ≤ i.

Proof. We proceed by induction. Since s1 6= s, w1 = π1(r1) � 1, or, equivalently, r1 =

π−1
1 (w1) = π−1

1 (H(s|11 , M|
1
1)) = σ1. Thus the claim holds for j = 1. If the claim holds for

j − 1, then, since sj 6= s, wj = πj(rj) � rj−1
−1, or, equivalently, rj = π−1

j (wj � rj−1) =

π−1
1 (H(s|j1 , M|

j
1)� σj−1) = σj , and the claim holds for j.
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Claim 11. If the challenge key s appears at index i∗ of s, and ci∗ = 1, then σj = rj for

each j, 1 ≤ j ≤ i∗.

Proof. If ci∗ equals 1, then B computes wi∗ precisely as it would have had si∗ not been s.

Thus the proof of Claim 10 applies still.

Claim 12. If the challenge key s appears at index i∗ of s, and ci∗ = 0, then, for j < i∗,

σj = rj, and, for j = i∗, σj = π−1
i∗ (g(ri∗)).

Proof. For j < i∗, the result follows from Claim 10. We consider the case j = i∗. If

i∗ equals 1, B calculates the hash wi∗ as

w1 = g(r1)� 1−1 = g(r1) .

Thus the correct aggregate signature σ1 is

σ1 = π−1
1 (w1) = π−1

1 (g(r1)) .

If i∗ is greater than 1, B calculates the hash wi∗ as

wi∗ = g(ri∗)� (ri∗−1)−1 ,

and thus

σi∗ = π−1
i∗ (wi∗ � σi∗−1) = π−1

i∗ (wi∗ � ri∗−1) = π−1
i∗ (g(ri∗)) ,

where the first substitution follows from the first half of this claim. Thus the claim also

holds for j = i∗ > 1.

Using the claims above, we can demonstrate that B correctly answers A’s aggregate

signing queries, and that, except when it declares failure, B correctly computes a claw

π(x) = g(y), the solution to the challenge posed it.

Claim 13. If A makes a valid sequential aggregate query, supplying messages M, keys s,

and sequential aggregate signature σ′ on all but the last message, then B either declares

failure and halts or outputs the correct sequential aggregate signature σ on the messages.

Proof. If the request is valid then no key appears twice in s, |s| = |M| = i ≤ n, and si = s.

Algorithm B examines ci. If ci equals 0, B declares failure and exits; if it equals 1, B outputs
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ri as the answer to the signature query. In this case, the antecedent of Claim 11 is satisfied,

and σ = σi equals ri, as required.

Claim 14. If A outputs a valid and nontrivial aggregate signature forgery σ on messages M

under keys s then B either declares failure and halts, or outputs the correct solution x to

the given challenge.

Proof. If the forgery is valid and nontrivial, then no key appears twice in s, |s| = |M| =

i ≤ n, and si∗ = s for some i∗. Algorithm B examines ci∗ . If ci∗ equals 1, B declares failure

and exits. If ci∗ equals 0, the antecedent of Claim 12 is satisfied, and

σi∗ = π−1
i∗ (g(ri∗)) .

That is,

π(σi∗) = g(ri∗) ,

where we note that πi∗(·) = π(·), the challenge permutation. Algorithm B outputs (in our

notation) x = σi∗ and y = ri∗ ; it therefore outputs a claw on π(·) and g(·), as required.

It remains to show that B outputs the claw with probability at least ε′. To do so, we

analyze the three events needed for B to succeed:

E1: B does not abort as a result of any of A’s sequential aggregate signature queries.

E2: A generates a valid and nontrivial sequential aggregate forgery σ on messages M under

keys s.

E3: Event E2 holds, and c = 0 for the tuple containing (s|i
∗

1 , M|
i∗

1 ) on the H-list, where i∗

is the index of s in s.

B succeeds if all of these events happen. The probability Pr[E1 ∧ E3] decomposes as

Pr[E1 ∧ E3] = Pr[E1] · Pr[E2 | E1] · Pr[E3 | E1 ∧ E2] . (5.1)

The following claims give a lower bound for each of these terms.

Claim 15. The probability that algorithm B does not abort as a result of A’s aggregate

signature queries is at least 1/e. Hence, Pr[E1] ≥ 1/e.
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Proof. Without loss of generality we assume that A does not ask for the signature of the

same message twice. We prove by induction that after A makes k signature queries the

probability that B does not abort is at least (1 − 1/(qS + 1))k. The claim is trivially true

for k = 0. Let (s(k),M(k)) be A’s k’th signature query and let 〈s(k),M(k), w(k), r(k), c(k)〉
be the corresponding tuple on the H-list. Then, prior to A’s issuing the query, the bit

c(k) is independent of A’s view — the only value that could be given to A that depends on

c(k) is H(s(k),M(k)), but the distribution of H(s(k),M(k)) is the same whether c(k) = 0 or

c(k) = 1. Therefore, the probability that this query causes B to abort is at most 1/(qS + 1),

the probability that c(k) equals 0. Using the inductive hypothesis and the independence of

c(k), the probability that B does not abort after this query is at least (1−1/(qS +1))k. This

proves the inductive claim. Since A makes at most qS signature queries, the probability

that B does not abort as a result of all signature queries is at least (1−1/(qS + 1))qS ≥ 1/e.

Hence Pr[E1] ≥ 1/e.

Claim 16. If algorithm B does not abort as a result of A’s queries then algorithm A’s view

is identical to its view in the real attack. Hence, Pr[E2 | E1] ≥ ε.

Proof. The public key given to A is from the same distribution as public keys produced

by algorithm Kg. Responses to hash queries are as in the real attack since each response

is uniformly and independently distributed in D. All responses to sequential aggregate

signature queries are valid. Therefore A will produce a valid and nontrivial aggregate

signature forgery with probability at least ε. Hence Pr[E2 | E1] ≥ ε.

Claim 17. The probability that algorithm B does not abort after A, outputs a valid and

nontrivial forgery is at least 1/(qS + 1). Hence, Pr[E3 | E1 ∧ E2] ≥ 1/(qS + 1).

Proof. Given that events E1 and E2 occurred, B will abort only if A generates a forgery

(s,M, σ) for which the tuple 〈s|i
∗

1 , M|
i∗

1 , w
(i∗), r(i

∗), c(i
∗)〉 on the H-list has c(i

∗) = 1, where

i∗ is the index of s in s. At the time A generates its output, it knows the value of c for

those vector pairs (s′,M′) on which it issued a sequential aggregate signature query (and

in which s is necessarily the last key). All the remaining c’s are independent of A’s view.

Indeed, if A did not issue a signature query for (s|i
∗

1 , M|
i∗

1 ), then the only value given to A
that depends on c(i

∗) is H(s|i
∗

1 , M|
i∗

1 ), but the distribution on H(s|i
∗

1 , M|
i∗

1 ) is the same

whether c(i
∗) = 0 or c(i

∗) = 1. Since the forgery is nontrivial, A could not have issued a
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signature query at (s|i
∗

1 , M|
i∗

1 ), so c(i
∗) is independent of A’s current view and therefore

Pr[c = 0 | E1 ∧ E2] ≥ 1/(qS + 1) as required.

Using the bounds from the claims above in equation (5.1) shows that B produces the

correct answer with probability at least 1/e · ε · 1/(qS + 1), as required.

Algorithm B’s running time is the same as A’s running time plus the time is takes to

respond to up to qH hash queries and qS aggregate signature queries. Each hash query may

require as many as n levels of recursion, and each level requires (at most) choosing a random

value from D or E, a call to Ev or EvG, an inversion in D, and a evaluation of the group

operation � in D. Any of these operations is computable in unit time, so each hash query

requires at most 4n time units to answer. Each signature query involves a corresponding

hash computation, and so requires at most 4n time units to answer (σ′ can be verified at

no cost by comparing it to ri−1). Transforming a forgery into a claw (x, y) requires a hash

query and a signature verification. As before, the hash query takes at most 4n time units

to process. The signature verification requires at most n steps, each of which requires a call

to Ev, an inversion in D, and a evaluation of the group operation � in D, and thus takes

at most n time units to process. The output step thus takes at most 7n time units in total.

Hence B’s total running time is at most t+ (4nqH + 4nqS + 7n) ≤ t′ as required.

In the case when case B is modified for homomorphic trapdoor permutations, the

running-time accounting requires some care, since it needs now two time units to com-

pute EvG, not one. Answering a hash oracle query (s,M) may involve up to n nested

computations, but only one entry in s can contain the challenge key s and require a call to

EvG. The same is true of the hashing required to answer signature oracle queries and in the

output phase of B. In addition, B′ takes 2 time units to compute π−1(z). Hence the total

running time of B′ is at most t+ ((4n+ 1)qH + (4n+ 1)qS + 7n+ 3) ≤ t′ as required.

Finally, when B is modified for plain trapdoor permutations, we analyze the running

time and the success probability as follows. The challenge z is embedded in only one hash

response (s,M). If A asks for a signature on (s,M), it cannot later forge on it — the

forgery would be trivial — and so B can then never succeed in inverting z, and its not

being able to answer A’s query is of no consequence. Algorithm B′′ succeeds if A succeeds

in creating a forgery, which happens with probability ε, and if that forgery includes the

challenge (s,M), which happens with probability at least 1/(qH + qS + 1). These two

probabilities are independent since the placement of the challenge is independent of A’s
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view. The running time of B does not change. (The only difference is that, for the single

hash query for which c = 0, B need not compute EvG, saving one time unit overall).

5.5 Aggregating with RSA

Here we consider the details of instantiating the sequential aggregate signature scheme

presented in Section 5.4 using the RSA permutation family.

The RSA function was introduced by Rivest, Shamir, and Adleman [104]. If N =

pq is the product of two large primes and ed = 1 mod φ(N), then π(x) = xe mod N is a

permutation on Z∗N , and π−1(x) = xd mod N is its inverse. Setting s = (N, e) and t = (d)

gives a one-way trapdoor permutation that is multiplicatively homomorphic.

A few difficulties arise when we try to instantiate the above scheme with RSA. We tackle

them individually.

The first problem is that RSA is not a certified trapdoor permutation. Raising to

the power e may not be a permutation over Z∗N if e is not relatively prime with φ(N).

Moreover, even if it is a permutation of Z∗N , it may not be a permutation of all of ZN if N

is maliciously generated (in particular, if N is not square-free). Note that, for maliciously

generated N , the difference between Z∗N and ZN may be considerable. The traditional

argument used to dismiss this issue (that if one finds x outside Z∗N , one factors N) has no

relevance here: N may be generated by the adversary, and our ability to factor it has no

positive impact on the security of the scheme for the honest signer who is using a different

modulus. Our security proof substantially relied on the fact that even the adversarial

public keys define permutations for uniqueness of signatures and proper distribution of

hash query answers. Indeed, this is not just a “proof problem,” but a demonstrable security

concern: If the adversary is able to precede the honest user’s key (Ni, ei) with multiple

keys (N1, e1), . . . , (Ni−1, ei−1), each of which defines a collision-prone function rather than

a permutation, then it is quite possible that no matter value one takes for σi, it will be

likely to verify correctly: for example, there will be two valid σ1 values, four valid σ2 values,

eight valid σ3 values, . . . , and 2i valid σi values.

One way to resolve this problem is to make sure that every key participating in an

aggregate signature has been verified to be of correct form. This could be accomplished

by having a trusted certification authority check that N is a product of two large primes

and e is relatively prime to φ(N) before issuing a certificate. This check, however, requires
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one to place more trust in the authority than usual: the authority must be trusted not

just to verify the identity of a key’s purported owner, but also to perform verification of

some complicated properties of the key. Moreover, the security of an honest signer can

be compromised without the signer’s knowledge or participation by dishonest signers whose

keys are of incorrect form, when the dishonest signers form an aggregate signature that

verifies with the honest signer’s public key. The only way to prevent this is to trust that

the verifier of the aggregate signature only accepts certificates from certification authorities

who verify the correctness of the key.

In the case when it is best to avoid assuming such complex trust relationships, we

propose to tackle this problem in the same way as Micali et al. [85], though at the expense

of longer verification time. First, we require e to be a prime larger than N (this idea also

appeared in a paper by Cachin et al. [31]). Then e is guaranteed to be relatively prime with

φ(N), and thus to provide a permutation over Z∗N . To extend to a permutation over ZN ,

we define Ev((N, e), x) as follows: if gcd(x,N) = 1, output xe mod N ; else output x.

The second problem is that the natural choice for the group operation �, multiplication,

is not actually a group operation over ZN . Thus, signature verification, which requires

computation of an inverse under �, may be unable to proceed. Further, our security proof

will no longer hold, since it relies on the fact that � is a group operation for uniqueness

of signatures and proper distribution of hash query answers. This difficulty is simple to

overcome: Use addition modulo N as the group operation �. Recall that no properties

were required of � beyond being a group operation on the domain.

The third problem is that two users cannot share the same modulus N . Thus the

domains of the one-way permutations belonging to the aggregating users differ, making it

difficult to treat RSA as a family of trapdoor permutations. Below, we give three approaches

that allow us to create sequential aggregates from RSA nonetheless.

Our first approach is to require the users’ moduli to be arranged in increasing order:

N1 < N2 · · · < Nn. At verification, it is important to check that the i-th signature σi is

actually less than Ni, to ensure that correct signatures are unique if H is fixed. As long as

logN1 − logNn is constant, and the range of H is a subset of ZN1 whose size is a constant

fraction of N1, the scheme will be secure. The same security proof still goes through, with

the following minor modification for answering hash queries. Whenever a hash query answer

w is computed by first choosing a random r in ZNi , there is a chance that w will be outside

of the range of H. In this case, simply repeat with a fresh random r until w falls in the
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right range (the expected number of repetitions is constant). Note that because we insisted

on Ev being a permutation and � being a group operation, the resulting distribution of w is

uniform on the range of H. Therefore, the distribution of answers to hash queries is uniform.

Since signatures are uniquely determined by answers to hash queries, the adversary’s whole

view is correct, and the proof works without other modifications. (This technique is related

to Coron’s partial-domain hash analysis [41], though Coron deals with the more complicated

case when the partial domain is exponentially smaller than the full domain.)

Our second approach allows for more general moduli: We do not require them to be

in increasing order. However, we do require them to be of the same length l (constant

differences in the lengths will also work, but we do not address them here for simplicity of

exposition). The signature will expand by n bits b1 . . . bn, where n is the total number of

users. Namely, during signing, if σi ≥ Ni+1, let bi = 1; else, let bi = 0. During verification,

if bi = 1, add Ni+1 to σi before proceeding with the verification of σi. Always check that

σi is in the correct range 0 ≤ σi < Ni (to ensure, again, uniqueness of signatures). The

security proof requires no major modifications.3

A third approach is to construct from RSA a family of trapdoor permutations with a

common domain. Hayashi et al. [67] describe one such construction. If all the moduli Ni

are such that 2l−1 < Ni < 2l then, under the transformation proposed by Hayashi et al.,

each modulus describes an “RSACD” trapdoor permutation on the range [0, 2l − 1]. Using

these RSACD permutations, we obtain a sequential aggregate signature scheme — based on

the security of the RSA problem — in which moduli need not be placed in increasing order

and in which the aggregates do not expand as more signatures are added. The downside is

that each RSACD evaluation requires two evaluations of the underlying RSA permutation,

so signing and verification take twice as long as in the other approaches. Note that, in the

underlying RSA evaluations, one must still apply the rule laid out above in the case that

gcd(x,N) is not 1.
3We need to argue that correct signatures are unique given the hash answers. At first glance it may

seem that the adversary may have choice on whether to use bi = 0 or bi = 1. However, this will result in
two values σi−1 that are guaranteed to be different: one will be less than Ni and the other at least Ni.
Hence uniqueness of σi−1 implies uniqueness of bi and, therefore, σi. Thus, by induction, signatures are still
unique. In particular, there is no need to include bi in the hash function input.
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5.5.1 Concrete Proposals for Sequential Aggregates with RSA

We now present the RSA-based aggregate signature schemes that are obtained using the

suggestions above. In each case, we consider n users, all with moduli of length l bits. Let

H : {0, 1}∗ → {0, 1}l−1 be a hash function.

When the moduli are ordered by size, the scheme works as follows.

Key Generation. Each user i generates an RSA public key (Ni, ei) and secret key (Ni, di),

ensuring that 2l−1(1 + (i− 1)/n) ≤ Ni < 2l−1(1 + i/n) and that ei > Ni is a prime.

Signing. User i is given an aggregate signature σ′, the messages M1, . . . ,Mi−1, and the

corresponding keys (N1, e1), . . . , (Ni−1, ei−1). User i first verifies σ′, using the ver-

ification procedure below. If this succeeds, user i computes hi = H
(
(M1, . . . ,Mi),

((N1, e1), . . . , (Ni, ei))
)
, y = hi + σ′ and outputs σ = ydi mod Ni. The user may first

check that gcd(y,N) = 1 and, if not, output y; however, the chances that the check

will fail are negligible, because the user is honest.

Verifying. The verifier is given as input an aggregate signature σ, the messagesM1, . . . ,Mi,

and the corresponding keys (N1, e1), . . . , (Ni, ei), and proceeds as follows. Check that

no key appears twice, that ei > Ni is a prime and that Ni is of length l bits (this

needs to be checked only once per key, and need not be done with every signature

verification) and that 0 ≤ σ < Ni. If gcd(σ,Ni) = 1, let y ← σei mod Ni. Else let

y ← σ (this check is crucial, because we do not know if user i is honest). Compute

hi ← H
(
(M1, . . . ,Mi), ((N1, e1), . . . , (Ni, ei))

)
and σ′ ← y − hi mod Ni. Verify σ′

recursively. The base case for recursion is i = 0, in which case simply check that

σ = 0.

In the second scheme, the moduli are unordered, but the aggregates are allowed to

grow with additional signatures. The scheme functions like the previous one, but with the

following modifications. First, the moduli Ni should now satisfy 2l−1 < Ni < 2l. Second,

when signing, when verifying the aggregate-so-far σ′, check if σ′ ≥ Ni. If so, replace σ′ with

σ′ −Ni and set bi = 1; else, set bi = 0. Finally, to verify, replace σ′ with σ′ + biNi before

proceeding with the recursive step.

Finally, in the scheme based on RSACD, the moduli Ni must again satisfy 2l−1 <

Ni < 2l. Aggregate signatures are integers in the range [0, 2l − 1]. One must still check

that each key describes a permutation and that the aggregate-so-far σ′ is a valid aggregate
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signature. The RSACD trapdoor permutation can then be applied to h�σ′ without further

preprocessing. Here �can be taken to be exclusive-or on l-bit strings.

5.5.2 Security

Because RSA over Z∗N is homomorphic with respect to multiplication, it is claw-free (not

just over Z∗N , but over entire ZN , because finding a claw outside of Z∗N implies factoring N

and hence being able to invert RSA). Therefore, the conclusions of Theorem 5.4.3 apply to

the RSA-specific aggregate signature schemes described above.



Chapter 6

Group Signatures

6.1 Introduction

Group signatures, introduced by Chaum and van Heyst [36], provide anonymity for signers.

Any member of the group can sign messages, but the resulting signature keeps the identity

of the signer secret. Often there is a third party that can undo the signature anonymity

(trace) using a special trapdoor [36, 6]. Some systems support revocation [32, 8, 115, 47],

where group membership can be disabled without affecting the signing ability of unrevoked

members. Currently, the most efficient constructions are based on the Strong-RSA assump-

tion introduced by Baric and Pfitzman [10]. These signatures are usually much longer than

RSA signatures of comparable security.

A number of recent projects require properties provided by group signatures. One such

project is the Trusted Computing effort [114] that, among other things, enables a desktop

PC to prove to a remote party what software it is running via a process called attestation.

Group signatures are needed for privacy-preserving attestation [30] [58, Section 2.2]. To

enable attestation, each computer ships with an embedded TCG tamper-resistant chip

that signs certain system components using a secret key embedded in the chip. During

attestation to a remote party (e.g., a bank) these signatures are sent to the remote party.

To maintain user privacy it is desirable that the signatures not reveal the identity of the

chip that issued them. To do so, each tamper resistant chip issues a group signature (rather

than a standard signature) on system components that it signs. Here the group is the set

of all TCG-enabled machines. The group signature proves that the attestation was issued

by a valid tamper-resistant chip, but hides which machine it comes from.

79
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Another is the Vehicle Safety Communications project (VSC), a collaboration of major

car-makers and the U.S. Department of Transportation [34], which has attracted a great

deal of other research [21]. The system embeds short-range transmitters in cars; these

transmit status information to other cars in close proximity. For example, if a car executes

an emergency brake, all cars in its vicinity are alerted. To prevent message spoofing, all

messages are signed by a tamper-resistant chip in each car. (MACs were ruled out for this

many-to-many broadcast environment.) Since VSC messages reveal the speed and location

of the car, there is a strong desire to provide user privacy so that the full identity of the car

sending each message is kept private. Using group signatures — where the group is the set

of all cars — we can maintain privacy while still being able to revoke a signing key in case

the tamper resistant chip in a car is compromised. Due to the number of cars transmitting

concurrently there is a hard requirement that the length of each signature be under 250

bytes.

The two examples above illustrate the need for efficient group signatures. The second

example also shows the need for short group signatures. Currently, group signatures based

on Strong-RSA are too long for this application.

We construct short group signatures whose length is under 200 bytes that offer approx-

imately the same level of security as a regular RSA signature of the same length. The

security of our scheme is based on the SDH and Linear assumptions (Sects. 2.2.2 and 2.2.3).

While SDH is similar to the Strong-RSA assumption, our results suggest that systems based

on SDH are simpler and shorter than their Strong-RSA counterparts.

Our system is based on a new Zero-Knowledge Proof of Knowledge (ZKPK) of the

solution to an SDH problem. We convert this ZKPK to a group signature via the Fiat-

Shamir heuristic [51] and prove security in the random oracle model. Our security proofs

use a variant of the security model for group signatures proposed by Bellare, Micciancio,

and Warinschi [15].

Recently, Camenisch and Lysyanskaya [33] proposed a signature scheme with efficient

protocols for obtaining and proving knowledge of signatures on committed values. They

derive a group signature scheme using these protocols as building blocks. Their signature

scheme is based on the LRSW assumption [80], which, like SDH, is a discrete-logarithm–

type assumption. Their methodology can also be applied to the SDH assumption, yielding

a different SDH-based group signature.
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6.2 A Zero-Knowledge Protocol for SDH

We begin by presenting a protocol for proving possession of a solution to an SDH problem.

The public values are g1, u, v, h ∈ G1 and g2, w ∈ G2. Here u, v, h are random in G1, g2 is

a random generator of G2, g1 equals ψ(g2), and w equals gγ
2 for some (secret) γ ∈ Zp. The

protocol proves possession of a pair (A, x) ∈ G1 × Zp such that Ax+γ = g1. Such a pair

satisfies e(A,wgx
2 ) = e(g1, g2). We use a standard generalization of Schnorr’s protocol for

proving knowledge of discrete logarithm in a group of prime order [107].

Protocol 1. Alice, the prover, selects exponents α, β R← Zp, and computes a Linear en-

cryption of A:

T1 ← uα T2 ← vβ T3 ← Ahα+β . (6.1)

She also computes two helper values δ1 ← xα and δ2 ← xβ ∈ Zp.

Alice and Bob then undertake a proof of knowledge of values (α, β, x, δ1, δ2) satisfying

the following five relations:

uα = T1 vβ = T2

e(T3, g2)x · e(h,w)−α−β · e(h, g2)−δ1−δ2 = e(g1, g2)/e(T3, w)

T x
1 u

−δ1 = 1 T x
2 v

−δ2 = 1 .

This proof of knowledge of (α, β, x, δ1, δ2) proceeds as follows. Alice picks blinding values

rα, rβ , rx, rδ1 , and rδ2 at random from Zp. She computes five values based on all these:

R1 ← urα R2 ← vrβ

R3 ← e(T3, g2)rx · e(h,w)−rα−rβ · e(h, g2)−rδ1
−rδ2 (6.2)

R4 ← T rx
1 · u

−rδ1 R5 ← T rx
2 · v

−rδ2 .

She then sends (T1, T2, T3, R1, R2, R3, R4, R5) to the verifier. Bob, the verifier, sends a

challenge value c chosen uniformly at random from Zp. Alice computes and sends back the

values

sα ← rα + cα sβ ← rβ + cβ sx ← rx + cx sδ1 ← rδ1 + cδ1 sδ2 ← rδ2 + cδ2 .

(6.3)
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Finally, Bob verifies the following five equations:

usα ?= T c
1 ·R1 (6.4)

vsβ
?= T c

2 ·R2 (6.5)

e(T3, g2)sx · e(h,w)−sα−sβ · e(h, g2)−sδ1
−sδ2

?=
(
e(g1, g2)/e(T3, w)

)c ·R3 (6.6)

T sx
1 · u

−sδ1
?= R4 (6.7)

T sx
2 · v

−sδ2
?= R5 . (6.8)

Bob accepts if all five hold.

Theorem 6.2.1. Protocol 1 is a public-coin honest-verifier zero-knowledge proof of knowl-

edge of an SDH pair under the Decision Linear assumption.

The proof of the theorem follows from the following lemmas that show that the protocol

is (1) complete (the verifier always accepts an interaction with an honest prover), (2) zero-

knowledge (can be simulated), and (3) a proof of knowledge (has an extractor).

Lemma 6.2.2. Protocol 1 is complete.

Proof. If Alice is an honest prover in possession of an SDH pair (A, x) she follows the

computations specified for her in the protocol. In this case,

usα = urα+cα = (uα)c · urα = T c
1 ·R1 ,

so (6.4) holds. For analogous reasons (6.5) holds. Further,

T sx
1 u−sδ1 = (uα)rx+cxu−rδ1

−cxα = (uα)rxu−rδ1 = T rx
1 u−rδ1 = R4 ,

so (6.7) holds. For analogous reasons (6.8) holds. Finally,

e(T3, g2)sx · e(h,w)−sα−sβ · e(h, g2)−sδ1
−sδ2

= e(T3, g2)rx+cx · e(h,w)−rα−rβ−cα−cβ · e(h, g2)−rδ1
−rδ2

−cxα−cxβ

= e(T3, g
x
2 )c · e(h−α−β , wgx

2 )c ·
(
e(T3, g2)rx · e(h,w)−rα−rβ · e(h, g2)−rδ1

−rδ2

)
= e(T3h

−α−β , wgx
2 )c · e(T3, w)−c · (R3)

=
(
e(A,wgx

2 )/e(T3, w)
)c ·R3
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=
(
e(g1, g2)/e(T3, w)

)c ·R3 .

so (6.6) holds.

Lemma 6.2.3. For an honest verifier, transcripts of Protocol 1 can be simulated, under

the Decision Linear assumption.

Proof. We describe a simulator that outputs transcripts of Protocol 1. The simulator begins

by picking A
R← G1 and α, β

R← Zp. It sets T1 ← uα, T2 ← vβ, and T3 ← Ahα+β .

Assuming the Decision Linear assumption holds on G1, the tuples (T1, T2, T3) generated by

the simulator are drawn from a distribution that is indistinguishable from the distribution

output by any particular prover.

The remainder of this simulation does not assume knowledge of A, x, α, or β, so it can

also be used when T1, T2, and T3 are pre-specified. When the pre-specified (T1, T2, T3) are a

random Linear encryption of some A, the remainder of the transcript is simulated perfectly,

as in a standard simulation of a Schnorr proof of knowledge.

The simulator chooses a challenge c R← Zp and values sα, sβ , sx, sδ1 , sδ2
R← Zp. It com-

putes R1, R2, R3, R4, R5 as:

R1 ← usα · T−c
1 R2 ← vsβ · T−c

2 R4 ← T sx
1 · u

−sδ1 R5 ← T sx
2 · v

−sδ2

R3 ← e(T3, g2)sx · e(h,w)−sα−sβ · e(h, g2)−sδ1
−sδ2 ·

(
e(T3, w)/e(g1, g2)

)c
.

It is easy to see that the resulting values R1, R2, R3, R4, R5 satisfy Equations (6.4)–(6.8)

and are distributed as in a real transcript.

The simulator outputs the transcript (T1, T2, T3, R1, R2, R3, R4, R5, c, sα, sβ, sx, sδ1 , sδ2).

As discussed above, this transcript is indistinguishable from transcripts of Protocol 1, as-

suming the Decision Linear assumption holds.

Lemma 6.2.4. There exists an extractor for Protocol 1.

Proof. Suppose that an extractor can rewind a prover in the protocol above to the point

just before the prover is given a challenge c. At the first step of the protocol, the prover

sends T1, T2, T3 and R1, R2, R3, R4, R5. Then, to challenge value c, the prover responds with

sα, sβ , sx, sδ1 , and sδ2 . To challenge value c′ 6= c, the prover responds with s′α, s′β, s′x, s′δ1 ,

and s′δ2 . If the prover is convincing, all five verification equations (6.4)–(6.8) hold for each

set of values.
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For brevity, let ∆c = c− c′, ∆sα = sα−s′α, and similarly for ∆sβ, ∆sx, ∆sδ1 , and ∆sδ2 .

Now consider (6.4) above. Dividing the two instances of this equation (one instance

using c and the other using c′), we obtain u∆sα = T∆c
1 . The exponents are in a group of

known prime order, so we can take roots; let α̃ = ∆sα/∆c. Then uα̃ = T1. Similarly, from

(6.5), we obtain β̃ = ∆sβ/∆c such that vβ̃ = T2.

Consider (6.7) above. Dividing the two instances gives T∆sx
1 = u∆sδ1 . Substituting

T1 = uα̃ gives uα̃∆sx = u∆sδ1 , or ∆sδ1 = α̃∆sx. Similarly, from (6.8) we deduce that

∆sδ2 = β̃∆sx.

Finally, dividing the two instances of (6.6), we obtain

(
e(g1, g2)/e(T3, w)

)∆c = e(T3, g2)∆sx · e(h,w)−∆sα−∆sβ · e(h, g2)−∆sδ1
−∆sδ2

= e(T3, g2)∆sx · e(h,w)−∆sα−∆sβ · e(h, g2)−α̃∆sx−β̃∆sx .

Taking ∆c-th roots, and letting x̃ = ∆sx/∆c, we obtain

e(g1, g2)/e(T3, w) = e(T3, g2)x̃ · e(h,w)−α̃−β̃ · e(h, g2)−x̃(α̃+β̃) .

This can be rearranged as

e(g1, g2) = e(T3h
−α̃−β̃, wgx̃

2 ) ,

or, letting Ã = T3h
−α̃−β̃ ,

e(Ã, wgx̃
2 ) = e(g1, g2) .

Thus the extractor obtains an SDH tuple (Ã, x̃). Moreover, the Ã in this SDH tuple is,

perforce, the same as that in the Linear encryption (T1, T2, T3).

6.3 Short Group Signatures from SDH

Armed with Theorem 6.2.1, we obtain from Protocol 1 a regular signature scheme secure

in the random oracle model by applying the Fiat-Shamir heuristic [51, 1]. Signatures ob-

tained from a proof of knowledge via the Fiat-Shamir heuristic are often called signatures

of knowledge.

The resulting signature scheme is, in fact, also a group signature scheme, and we describe

it as such. In our construction we use a variant of the Fiat-Shamir heuristic, used also by
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Ateniese et al. [6], where the challenge c rather than the values R1, . . . , R5 is transmitted

in the signature; the output of the random oracle acts as a checksum for those values not

transmitted.

In describing the group signature, we use the terminology of Bellare et al. [15]. Consider

a bilinear group pair (G1, G2) with a computable isomorphism ψ, as in Section 2.1. Suppose

further that the SDH assumption holds on (G1, G2), and the Linear assumption holds on G1.

The scheme employs a hash function H : {0, 1}∗ → Zp, treated as a random oracle in the

proof of security.

BBS.Kg(n). This randomized algorithm takes as input a parameter n, the number of mem-

bers of the group, and proceeds as follows. Select a generator g2 in G2 uniformly at

random, and set g1 ← ψ(g2). Select h R← G1\{1G1} and ξ1, ξ2
R← Z∗p, and set u, v ∈ G1

such that uξ1 = vξ2 = h. Select γ R← Z∗p, and set w ← gγ
2 .

Using γ, generate for each user i, 1 ≤ i ≤ n, an SDH tuple (Ai, xi): select xi
R← Z∗p,

and set Ai ← g
1/(γ+xi)
1 ∈ G1.

The group public key is gpk = (g1, g2, h, u, v, w). The private key of the group manager

(the party able to trace signatures) is gmsk = (ξ1, ξ2). Each user’s private key is her

tuple gsk[i] = (Ai, xi). No party is allowed to possess γ; it is only known to the

private-key issuer.

BBS.Sig(gpk,gsk[i],M). Given a group public key gpk = (g1, g2, h, u, v, w), a user’s private

signing key gsk[i] = (Ai, xi), and a message M ∈ {0, 1}∗, compute the signature as

follows:

1. Compute the values T1, T2, T3, R1, R2, R3, R4, R5 as specified in the first round

of Protocol 1 (Equations (6.1) and (6.2)).

2. Compute a challenge c using the hash function as:

c← H(M,T1, T2, T3, R1, R2, R3, R4, R5) ∈ Zp . (6.9)

3. Using c construct the values sα, sβ, sx, sδ1 , sδ2 as in the third round of Protocol 1

(Equation (6.3)).

4. Output the signature σ, computed as σ ← (T1, T2, T3, c, sα, sβ, sx, sδ1 , sδ2).
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BBS.Vf(gpk,M, σ). Given a group public key gpk = (g1, g2, h, u, v, w), a message M , and

a group signature σ, verify that σ is a valid signature as follows:

1. Use Equations (6.4)–(6.8) to re-derive R1, R2, R3, R4, and R5 as follows:

R̃1 ← usα · T−c
1 R̃2 ← vsβ · T−c

2 R̃4 ← T sx
1 · u

−sδ1 R̃5 ← T sx
2 · v

−sδ2

(6.10)

R̃3 ← e(T3, g2)sx · e(h,w)−sα−sβ · e(h, g2)−sδ1
−sδ2 ·

(
e(T3, w)/e(g1, g2)

)c
.

2. Check that these, along with the other first-round values included in σ, give the

challenge c, i.e., that

c
?= H(M,T1, T2, T3, R̃1, R̃2, R̃3, R̃4, R̃5) . (6.11)

Accepts if this check succeeds and reject otherwise.

BBS.Open(gpk, gmsk,M, σ). This algorithm is used for tracing a signature to a signer. It

takes as input a group public key gpk = (g1, g2, h, u, v, w) and the corresponding group

manager’s private key gmsk = (ξ1, ξ2), together with a message M and a signature

σ = (T1, T2, T3, c, sα, sβ, sx, sδ1 , sδ2) to trace, and proceeds as follows. First, verify

that σ is a valid signature on M . Second, consider the first three elements (T1, T2, T3)

as a Linear encryption, and recover the user’s A as A ← T3/(T
ξ1
1 · T

ξ2
2 ), following

the decryption algorithm given at the end of Section 2.2.3. If the group manager

is given the elements {Ai} of the users’ private keys, he can look up the user index

corresponding to the identity A recovered from the signature.

Signature Length. A group signature in the system above comprises three elements

of G1 and six elements of Zp. Using either the supersingular or MNT family of curves

described in Section 2.3.5, one can take p to be a 170-bit prime and use a group G1 where

each element is 171 bits. Thus, the total group signature length is 1533 bits or 192 bytes.

With these parameters, security is approximately the same as a standard 1024-bit RSA

signature, which is 128 bytes. Using the Barreto Naehrig curves of Section 2.3.5, we can

instead take p to be a 160-bit prime. This gives 1443-bit group signatures with the same

security level.
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Performance. The pairings e(h,w), e(h, g2), and e(g1, g2) can be precomputed and their

value cached by signers and by verifiers. The signer can cache e(A, g2), and, when signing,

compute e(T3, g2) without evaluating a pairing. Accordingly, creating a group signature

requires eight exponentiations (or multi-exponentiations) and no pairing computations. The

verifier can derive R̃3 efficiently by collapsing the e(T3, g2)sx and e(T3, w)c pairings into a

single e(T3, w
cgsx

2 ) term. Thus verifying a group signature requires six multi-exponentia-

tions and one pairing computation. With parameters selected as above, the exponents are

in every case 170-bit numbers. For the signer, all bases for exponentiation are fixed, which

allows substantial further speedups by precomputation.

6.4 BBS Group Signature Security

We now turn to proving security of the BBS scheme. Bellare, Micciancio, and Warinschi [15]

give three properties that a group signature scheme must satisfy:

• correctness, which ensures that honestly-generated signatures verify and trace cor-

rectly;

• full-anonymity, which ensures that signatures do not reveal their signer’s identity; and

• full-traceability, which ensures that all signatures, even those created by the collusion

of multiple users and the group manager, trace to a member of the forging coalition.

For the details, see Bellare et al. [15]. A notable feature of the BMW definitions is that

all keys are generated and distributed by a trusted dealer. In many earlier schemes (e.g.,

that of Ateniese et al. [6]), the key-generator is not fully trusted, and users engage in an

interactive protocol with him to derive their keys. We consider this further in Section 7.2.

We prove the security of our scheme using a variation of these properties. Specifically,

we relax the full-anonymity requirement. As presented [15, Section 2], the full-anonymity

experiment allows the adversary to query the opening (tracing) oracle before and after

receiving the challenge σ. In this respect, the experiment mirrors the indistinguishability

experiment against an adaptive CCA2 adversary. If we term this experiment CCA2-full-

anonymity, we can analogously define another experiment, CPA-full-anonymity, in which

the adversary cannot query the opening oracle. We prove privacy in the weakened model

that comprises the full-traceability and CPA-full-anonymity experiments.
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Access to the tracing functionality will likely be carefully controlled when group sig-

natures are deployed, so CPA-full-anonymity is a reasonable model to consider. In any

case, anonymity and unlinkability, the two traditional group signature security require-

ments implied by full anonymity [15, Section 3], also follow from CPA-full-anonymity. Thus

a fully-traceable and CPA-fully-anonymous group signature scheme is still secure in the

traditional sense.

In the statements of the theorem, we use big-O notation to elide the specifics of additive

terms in time bounds, noting that, for given groups G1 and G2, operations such as sampling,

exponentiation, and bilinear map evaluation are all constant-time.1

Theorem 6.4.1. The BBS group signature scheme is correct.

Proof. For any group public key gpk = (g1, g2, h, u, v, w), and for any user with key gsk[i] =

(Ai, xi), the key generation algorithm guarantees that Aγ+xi
i = g1, so (Ai, xi) is an SDH

tuple for w = gγ
2 . A correct group signature σ is a proof of knowledge, which is itself a

transcript of the SDH protocol given in Section 6.2. Verifying the signature entails verifying

that the transcript is correct; thus Lemma 6.2.2 shows that σ will always be accepted by

the verifier.

Moreover, an honest signer outputs, as the first three components of any signature σ,

values (T1, T2, T3) = (uα, vβ, Ai · hα+β) for some α, β ∈ Zp. These values form a Linear

encryption of Ai under public key (u, v, h), which the group manager, possessing the corre-

sponding private key (ξ1, ξ2), can always recover. Therefore any valid signature will always

be opened correctly.

Theorem 6.4.2. If Linear encryption is (t′, ε′)-semantically secure on G1 then the BBS

group signature scheme is (t, qH , ε)-CPA-fully-anonymous, where ε = ε′ and t = t′−qHΘ(1).

Here qH is the number of hash function queries made by the adversary and n is the number

of members of the group.

Proof. Suppose A is an algorithm that (t, qH , ε)-breaks the anonymity of the group signature

scheme. We show how to construct a t+ qHΘ(1)-time algorithm B that breaks the semantic

security of Linear encryption from Section 2.2.3 with advantage at least ε.
1This big-O notation can be made more precise by considering a family of bilinear map groups indexed

by a security parameter λ. The only complication that arises is that the basic operations are no longer all
Θ(1) but, e.g., O(λ3) for pairing evaluation.
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Algorithm B is given a Linear encryption public key (u, v, h). It generates the remain-

ing components of the group signature public key by following the group signature’s key

generation algorithm. It then provides to A the group public key (g1, g2, h, u, v, w), and the

users’ private keys (Ai, xi).

At any time, A can query the random oracle H. Algorithm B responds with elements

selected uniformly at random from Zp, making sure to respond identically to repeated

queries.

Algorithm A requests its full-anonymity challenge by providing two indices, i0 and i1,

and a message M . Algorithm B, in turn, requests its indistinguishability challenge by

providing the two user private keys Ai0 and Ai1 as the messages whose Linear encryption

it must distinguish. It is given a Linear encryption (T1, T2, T3) of Aib , where bit b is chosen

by the Linear encryption challenger.

Algorithm B generates from this Linear encryption a protocol transcript (T1, T2, T3,

R1, R2, R3, R4, R5, c, sα, sβ, sx, sδ1 , sδ2) by means of the simulator of Lemma 6.2.3. This

simulator can generate a trace given (T1, T2, T3), even though B does not know α, β, or x.

Since (T1, T2, T3) is a random Linear encryption of Aib , the remainder of the transcript is

distributed exactly as in a real protocol with a prover whose secret A is Aib .

Algorithm B then patches H at (M,T1, T2, T3, R1, R2, R3, R4, R5) to equal c. It encoun-

ters a collision only with negligible probability. In case of a collision, B declares failure and

exits. Otherwise, it returns the valid group signature σ ← (T1, T2, T3, c, sα, sβ , sx, sδ1 , sδ2)

to A.

Finally, A outputs a bit b′. Algorithm B returns b′ as the answer to its own challenge.

Since the encryption of Aib is turned by B into a group signature by user ib, B answers its

challenge correctly whenever A does.

The keys given to A, and the answers to A’s queries, are all valid and properly dis-

tributed. Therefore A succeeds in breaking the anonymity of the group signature σ with

advantage ε, and B succeeds in distinguishing the Linear encryption (T1, T2, T3) with the

same advantage.

Algorithm B’s running time exceeds A’s by the amount it takes to answer A’s queries.

Each hash query can be answered in constant time, and there are at most qH of them.

Algorithm B can also create the challenge group signature σ in constant time. If A runs in

time t, B runs in time t+ qHΘ(1).
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The following theorem proves full traceability of our system. The proof is based on the

Forking Lemma [102].

Theorem 6.4.3. If SDH is (q, t′, ε′)-hard on (G1, G2), then the BBS group signature scheme

is (t, qH , qS, n, ε)-fully-traceable, where n = q − 1, ε = 4n
√

2ε′qH + n/p, and t = Θ(1) · t′.
Here qH is the number of hash function queries made by the adversary, qS is the number of

signing queries made by the adversary, and n is the number of members of the group.

Proof. Our proof proceeds in three parts. First, we describe a framework for interacting

with an algorithm that wins a full-traceability game. Second, we show how to instantiate

this framework appropriately for different types of such breaker algorithms. Third, we

show how to apply the Forking Lemma [102] to the framework instances, obtaining SDH

solutions.

Suppose we are given an algorithm A that breaks the full-traceability of the group

signature scheme. We describe a framework for interacting with A.

Setup. We are given groups (G1, G2) as above. We are given generators g1 and g2 such

that g1 = ψ(g2). We are also given w = gγ
2 ∈ G2, and a list of pairs (Ai, xi) for

i = 1, . . . , n. For each i, either xi = ?, indicating that the xi corresponding to Ai is

not known, or else (Ai, xi) is an SDH pair, and e(Ai, wg
xi
2 ) = e(g1, g2). We pick a

generator h R← G1 \ {1G1} and values ξ1, ξ2
R← Z∗p, and compute u, v ∈ G1 such that

uξ1 = vξ2 = h. We then run A, giving it the group public key (g1, g2, h, u, v, w) and

the group manager’s private key (ξ1, ξ2). We answer its oracle queries as follows.

Hash Queries. When A asks for the hash of (M,T1, T2, T3, R1, R2, R3, R4, R5), we respond

with a random element of G1, memoizing the answer in case the same query is made

again.

Signature Queries. Algorithm A asks for a signature on message M by a key at index i. If

xi 6= ?, we follow the group signing procedure with key (Ai, xi) to obtain a signature σ

on M , and return σ to A. If xi = ?, we pick α, β
R← Zp, set T1 ← uα, T2 = vβ, and

T3 ← Agα+β
1 and run the Protocol 1 simulator with values T1, T2, T3. The simulator

returns a transcript (T1, T2, T3, R1, R2, R3, R4, R5, c, sα, sβ, sx, sδ1 , sδ2), from which we

derive a group signature σ = (T1, T2, T3, c, sα, sβ , sx, sδ1 , sδ2). In addition, we must

patch the hash oracle at (M,T1, T2, T3, R1, R2, R3, R4, R5) to equal c. If this causes a

collision, i.e., if we previously set the oracle at this point to some other c′, we declare
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failure and exit. Otherwise, we return σ to A. A signature query can trigger a hash

query, which we charge against A’s hash query limit to simplify the accounting.

Private Key Queries. Algorithm A asks for the private key of the user at some index i.

If xi 6= ?, we return (Ai, xi) to A. Otherwise, we declare failure and exit.

Output. Finally, if algorithm A is successful, it outputs a forged group signature σ =

(T1, T2, T3, c, sα, sβ, sx, sδ1 , sδ2) on a message M . We use the group manager’s key

(ξ1, ξ2) to trace σ, obtaining some A∗. If A∗ 6= Ai for all i, we output σ. Otherwise,

A∗ = Ai∗ for some i∗. If si∗ = ?, we output σ. If, however, si∗ 6= ?, we declare failure

and exit.

As implied by the output phase of the framework above, there are two types of forger

algorithm. Type I forgers output a forgery σ on a message M that traces to some iden-

tity A∗ /∈ {A1, . . . , An}. Type II forgers output a forgery that traces to an identity A∗ such

that A∗ = Ai∗ for some i∗, and the forger did not make a private-key oracle query at i∗.

We treat these two types of forger differently.

Given a q-SDH instance (g′1, g
′
2, (g

′
2)γ , (g′2)γ2

, . . . , (g′2)γq
), we apply the technique of

Boneh and Boyen’s Lemma 3.2 [23] that we recalled in Section 3.4.1, obtaining generators

g1 ∈ G1, g2 ∈ G2, w = gγ
2 , and q− 1 SDH pairs (Ai, xi) such that e(Ai, wg

xi
2 ) = e(g1, g2) for

each i. Any SDH pair (A, x) besides these q− 1 pairs can be transformed into a solution to

the original q-SDH instance, again using Boneh and Boyen’s Lemma 3.2.

Type I Forger. Against a (t, qH , qS, n, ε)-Type I forger A, we turn an instance of (n+ 1)-

SDH into values (g1, g2, w), and n SDH pairs (Ai, xi). We then apply the framework to A
with these values. Algorithm A’s environment is perfectly simulated, and the framework

succeeds whenever A succeeds, so we obtain a Type I forgery with probability ε.

Type II Forger. Against a (t, qH , qS, n, ε)-Type II forger A, we turn an instance of n-

SDH into values (g1, g2, w), and n−1 SDH pairs. These pairs we distribute amongst n pairs

(Ai, xi). The unfilled entry at random index i∗ we fill as follows. Pick Ai∗
R← G1, and set

xi∗ ← ?, a placeholder value. Now we run A under the framework. The framework declares

success only if A never queries the private key oracle at i∗, but forges a group signature that

traces to Ai∗ . It is easy to see that the framework simulation is perfect unless A queries

the private key oracle at i∗. Because the protocol simulator invoked by the signing oracle
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produces group signatures that are indistinguishable from those of a user whose SDH tuple

includes Ai∗ , the value of i∗ is independent of A’s view unless and until it queries the private

key oracle at i∗. (Since the hash oracle takes as input nine elements of G1 or G2 besides

the message M , the probability of collision in simulated signing queries is bounded above

by (qHqS + q2S)/p9. Assuming qS � qH � p = |G1|, this probability is negligible, and we

ignore it in the analysis.) Finally, when A outputs its forgery σ, implicating some user i

whose private key A has not requested, the value of i∗ (amongst the users whose keys it

has not requested) remains independent of A’s view. It is easy to see, then, that A outputs

a forged group signature that traces to user i∗ with probability at least ε/n.

Now we show how to use the application of our framework to a Type I or Type II

adversaryA to obtain another SDH pair, contradicting the SDH assumption. The remainder

of this proof follows closely the methodology and notation of the Forking Lemma [102].

Let A be a forger (of either type) for which the framework succeeds with probabil-

ity ε′. From here on, we abbreviate signatures as (M,σ0, c, σ1), where σ0 = (T1, T2, T3,

R1, R2, R3, R4, R5), the values given, along with M , to the random oracle H, and from

which c is derived, and where σ1 = (sα, sβ, sx, sδ1 , sδ2). Those values normally omitted

from the signature can be recovered as in Equation (6.10).

A run of the framework on A is completely described by the randomness string ω used

by the framework and A, and by the vector f of responses made by the hash oracle. Let S

be the set of pairs (ω, h) such that the framework, invoked on A, completes successfully with

forgery (M,σ0, c, σ1), and A queried the hash oracle on (M,σ0). In this case, let Ind(ω, f)

be the index of f at which A queried (M,σ0). We define ν = Pr[S] = ε′ − 1/p, where the

1/p term accounts for the possibility that A guessed the hash of (M,σ0) without the hash

oracle’s help. For each j, 1 ≤ j ≤ qH , let Sj be the set of pairs (ω, h) as above, and such

that Ind(ω, f) = j. Let J be the set of auspicious indices j such that Pr[Sj | S] ≥ 1/(2qH).

Then Pr[Ind(ω, f) ∈ J | S] ≥ 1/2.

Let f |ba be the restriction of f to its elements at indices a, a+ 1, . . . , b. For each j ∈ J ,

we consider the heavy-rows lemma [102, Lemma 1] with rows X = (ω, f |j−1
1 ) and columns

Y = (f |qH
j ). Clearly Pr(x,y)[(x, y) ∈ Sj ] ≥ ν/(2qH). Let the heavy rows Ωj be those rows

such that, ∀(x, y) ∈ Ωj : Pry′ [(x, y′) ∈ Sj ] ≥ ν/(4qH). Then, by the heavy-rows lemma,

Pr[Ωj | Sj ] ≥ 1/2. A simple argument then shows that Pr[∃j ∈ J : Ωj ∩ Sj | S] ≥ 1/4.

Thus, with probability ν/4, the framework, invoked on A, succeeds and obtains a forgery

(M,σ0, c, σ1) that derives from a heavy row (x, y) ∈ Ωj for some j ∈ J , i.e., an execution
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(ω, f) such Prf ′
[
(ω, f ′) ∈ Sj

∣∣ f ′|j−1
1 = f |j−1

1

]
≥ ν/(4qH).

If we now rewind the framework and A to the jth query, and proceed with an oracle vec-

tor f ′ that differs from f from the jth entry on, we obtain, with probability at least ν/(4qH),

a successful framework completion and a second forgery (M,σ0, c
′, σ′1), with (M,σ0) still

queried at A’s jth hash query.

By using the extractor of Lemma 6.2.4, we obtain from (σ0, c, σ1) and (σ0, c
′, σ′1) an SDH

tuple (A, x). The extracted A is the same as the A in the Linear encryption (T1, T2, T3)

in σ0. The framework declares success only when the A encrypted in (T1, T2, T3) is not

amongst those whose x it knows. Therefore, the extracted SDH tuple (A, x) is not amongst

those that we ourselves created, and can be transformed, again following the technique of

Boneh and Boyen’s Lemma 3.2 [23], to an answer to the posed q-SDH problem.

Putting everything together, we have proved the following claims.

Claim 18. Using a (t, qH , qS, n, ε)-Type I forger A, we solve an instance of (n + 1)-SDH

with probability (ε− 1/p)2/(16qH) in time Θ(1) · t.

Claim 19. Using a (t, qH , qS, n, ε)-Type II forger A, we solve an instance of n-SDH with

probability (ε/n− 1/p)2/(16qH) in time Θ(1) · t.

We can guess which of the two forger types a particular forger is with probability 1/2;

then assuming the more pessimistic scenario of Claim 2 proves the theorem.

6.5 Conclusions

We presented a group signature scheme based on the Strong Diffie-Hellman (SDH) and Lin-

ear assumptions. The signature makes use of a bilinear map e : G1×G2 → GT . Instantiated

over appropriate curves are used, the group G1 has a short representation and consequently

we get a group signature whose length is under 200 bytes — less than twice the length of

an ordinary RSA signature (128 bytes) with comparable security. Signature generation re-

quires no bilinear pairing computations, and verification requires a single pairing; both also

require a few exponentiations with short exponents.



Chapter 7

Group Signature Variants and

Extensions

7.1 Introduction

The BBS group signature scheme presented in Chapter 6 is very flexible. In this chapter,

we show how to add a number of features to it.

We first consider a modification to key issuing intended to achieve a stronger excul-

pability guarantee. In many group signature schemes, users obtain their private keys by

engaging in a JOIN protocol with a key issuer. At the conclusion of this protocol, the user

obtains the private key she will use to sign, but the key issuer does not. As a result, the

key issuer cannot frame the user using her key, a property known as strong exculpability.

(In the Bellare-Micciancio-Warinschi model [15], the key issuer is fully trusted.)

For the remainder of the chapter, we consider on revocation mechanisms for group

signatures. Group signature research has focused more on key issuing than revocation.

However, in the recent applications described in Section 6.1, whereas it seems reasonable

to trust the device manufacturers that issue the signing keys, revocation is critical: If, for

example, the private key in a TCG chip is exposed, all signatures from that chip must be

invalidated since otherwise attestation becomes meaningless.

Consider three natural communication models for revoking a user’s signing capabilities,

without affecting other group members:

1. The simplest method revokes user i by issuing a new signature verification key and

94
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giving each signer, except user i, a new signing key. This requires an individual secret

message to each signer (e.g., TCG chip) and a public broadcast message to all verifiers.

2. A better revocation mechanism sends a single short public broadcast message to all

signers and verifiers. A recent system by Camenisch and Lysyanskaya [32], based on

dynamic accumulators, provides such a mechanism.

3. Brickell [30] proposes a simpler mechanism where revocation messages are only sent

to signature verifiers, so that there is no need ever to communicate with an end-user

machine. A similar mechanism was considered by Ateniese et al. [8] and Kiayias et

al. [73]. We refer to this as Verifier-Local Revocation (VLR) group signatures.

Of these models, the first can trivially be applied to any group signature scheme.

The second model can also be applied to BBS group signatures, as we show in Section 7.3.

In particular, we adapt the accumulator-based revocation mechanism of Camenisch and

Lysyanskaya to the BBS scheme and its underlying SDH problem.

Finally, we construct VLR group signatures based on BBS. Signatures in our VLR

system are about the same length as standard RSA signatures of comparable security. For

our proof of security, we give a precise security definition, which is modeled on the Bellare-

Micciancio-Warinschi framework [15].

7.2 Strong Exculpability for BBS

Exculpability, a group signature security property introduced by Ateniese and Tsudik [7],

is informally defined by Bellare, Micciancio, and Warinschi [15] as follows: No member of

the group and not even the group manager — the entity that is given the tracing key — can

produce signatures on behalf of other users. Thus, no user can be framed for producing a

signature he did not produce. Bellare et al. argue that a group signature secure in the sense

of full-traceability also has the exculpability property. Thus, in the terminology of Bellare

et al. [15], our BBS group signature scheme has the exculpability property.

A stronger notion of exculpability is considered in much of the group signature litera-

ture — e.g., in Ateniese et al. [6]. In this stronger version, it is required that even the entity

that issues user keys cannot forge signatures under users’ keys. Formalizations of strong

exculpability have recently been proposed by Kiayias and Yung [74, 75] and by Bellare, Shi,

and Zhang [18].
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To achieve this stronger property the system of Ateniese et al. [6] uses a protocol (called

JOIN) to issue a key to a new user. At the end of the protocol, the key issuer does not know

the full private key given to the user and therefore cannot forge signatures under the user’s

key.

The BBS group signature scheme can be extended to provide strong exculpability using

a similar mechanism. Instead of simply giving user i the private key (g1/(γ+xi)
1 , xi), the user

and key issuer engage in a JOIN protocol where at the end of the protocol user i has a triple

(Ai, xi, yi) such that Aγ+xi
i hyi

1 = g1 for some public parameter h1. The value yi is chosen by

the user and is kept secret from the key issuer. The ZKPK of Section 6.2 can be modified

to prove knowledge of such a triple. The resulting system is a short group signature with

strong exculpability.

The JOIN protocol envisaged above would mean that the key generator no longer knows

users’ private keys, though it could still generate different keys and ascribe them to the

users. In the Girault hierarchy [64], this is a move from level 1 to level 2. To ensure that

the authority will be caught if it attempts to frame users with self-generated keys — level 3

in the hierarchy — requires that the users sign their (public) group membership certificate,

and that the the tracing authority produce a proof of correct tracing.

7.3 Revocation for BBS using Accumulators

We now discuss how to revoke users in the BBS group signature scheme of Section 6.3.

A number of revocation mechanisms for group signatures have been proposed [8, 32]. In

this section, we describe a revocation mechanism along the lines of Camenisch and Lysyan-

skaya’s [32], based on dynamic accumulators.

Recall that the group’s public key in our scheme is (g1, g2, h, u, v, w) where w = gγ
2 ∈ G2

for random γ ∈ Z∗p and random h, u, v ∈ G1. User i’s private key is a pair (Ai, xi) where

Ai = g
1/(γ+xi)
1 ∈ G1.

Now, suppose we wish to revoke users 1, . . . , r without affecting the signing capability

of other users. To do so, the revocation authority publishes a revocation list containing

the private keys of all revoked users. More precisely, rl = {(A∗1, x1), . . . , (A∗r, xr)}, where

A∗i = g
1/(γ+xi)
2 ∈ G2. Note that Ai = ψ(A∗i ). Here the SDH secret γ is needed to compute

the A∗i ’s. In the case that G1 and G2 are the same group we have Ai = A∗i and consequently

the revocation list can be derived directly from the private keys of revoked users without
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having to use γ.

The list rl is given to all signers and verifiers in the system. It is used to update the

group public key used to verify signatures. Let y =
∏r

i=1(γ + xi) ∈ Z∗p. The new public

key is (ḡ1, ḡ2, h, u, v, w̄) where ḡ1 = g
1/y
1 , ḡ2 = g

1/y
2 , and w̄ = (ḡ2)γ . We show that, given rl,

anyone can compute this new public key, and any unrevoked user can update her private

key locally so that it is well formed with respect to this new public key. Revoked users are

unable to do so.

We show how to revoke one private key at a time. By repeating the process r times

(as the revocation list grows over time) we can revoke all private keys on the Revocation

List. We first show how given the public key (g1, g2, h, u, v, w) and one revoked private

key (A∗1, x1) ∈ rl anyone can construct the new public key (ĝ1, ĝ2, h, u, v, ŵ) where ĝ1 =

g
1/(γ+x1)
1 , ĝ2 = g

1/(γ+x1)
2 , and ŵ = (ĝ2)γ . This new public key is constructed simply as:

ĝ1 ← ψ(A∗1) ĝ2 ← A∗1 and ŵ ← g2 · (A∗1)−x1 ;

then ĝ1 = ψ(A1)∗ = g
1/(γ+x1)
1 and ŵ = g2 · (A∗1)−x1 = g

1− x1
γ+x1

2 = (A∗1)γ = (ĝ2)γ , as required.

Next, we show how unrevoked users update their own private keys. Consider an un-

revoked user whose private key is (A, x). Given a revoked private key, (A∗1, x1) the user

computes Â ← ψ(A∗1)1/(x−x1)/A1/(x−x1) and sets his new private key to be (Â, x). Then,

indeed,

(Â)γ+x = ψ(A∗1)
γ+x

x−x1

/
A

γ+x
x−x1 = ψ(A∗1)

(γ+x1)+(x−x1)
x−x1

/
g

1
x−x1
1 = ψ(A∗1) = ĝ1 ,

as required. Hence, (Â, x) is a valid private key with respect to (ĝ1, ĝ2, h, u, v, ŵ).

By repeating this process r times (once for each revoked key in rl) anyone can compute

the updated public key (ḡ1, ḡ2, h, u, v, w̄) defined above. Similarly, an unrevoked user with

private key (A, x) can compute his updated private key (Ā, x) where Ā = (ḡ1)1/(γ+x). We

note that it is possible to process the entire rl at once (as opposed to one element at a time)

and compute (ḡ1, ḡ2, h, u, v, w̄) directly; however this is less efficient when keys are added

to rl incrementally.

A revoked user cannot construct a private key for the new public key (ḡ1, ḡ2, h, u, v, w̄).

In fact, the proof of Theorem 6.4.3 shows that, if a revoked user can generate signatures

for the new public key (ḡ1, ḡ2, h, u, v, w̄), then that user can be used to break the SDH

assumption. Very briefly, the reason is that given an SDH challenge one can easily generate a
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public key tuple (ḡ1, ḡ2, h, u, v, w̄) along with the private key for a revoked user (g1/(x+γ)
1 , x).

Then an algorithm that can forge signatures given these two tuples can be used to solve

the SDH challenge.

In the revocation mechanism above a user is revoked by the publication of a value that

exposes that user’s private key. Consequently, it is crucial that updates to the revocation

list be sent simultaneously to all verifiers. Otherwise, someone who obtains a new entry on

the revocation list can fool a verifier who has not yet updated his copy of the revocation list.

The verifier-local revocation method described in the next section addresses this limitation.

7.4 Verifier-Local Revocation

In a group signature with verifier-local revocation, signers are stateless, and revocation

messages are processed by the verifiers alone [30, 8, 73]. Distributing revocation infor-

mation only to the signers simplifies revocation when verifiers are fewer than signers and,

when signing functionality is implemented in a tamper-resistant module, allowing signers

to be stateless gives added robustness and security. Therefore, verifier-local revocation is

advantageous for privacy-preserving attestation in the trusted computing environment.

We implement verifier-Local group signatures by providing to the signature verification

algorithm the Revocation List (rl) as additional argument. The rl contains a token for each

revoked user. The verification algorithm accepts all signatures issued by unrevoked users

and reveals no information about which unrevoked user issued the signature. However, if a

user is ever revoked (by having his revocation token added to the rl), signatures from that

user are no longer accepted. It follows that signatures from a revoked user become linkable:

To test that two signatures were issued by the same revoked user, verify the signatures once

using the rl before the user is revoked and once using the rl after. In the case of trusted

computing, for example, users who break the tamper resistance of their TCG chip and are

revoked would lose their privacy by design.

Our specific VLR group signatures have an additional useful property: given a user’s

private key it is easy to derive that user’s revocation token — the revocation token is the left

half of the private key. Hence, any private key that is published on the web can be trivially

added to the rl and revoked. This potentially eliminates the need for a trusted revocation

authority. Instead, revocation could be done by just scanning the web and newsgroups for

exposed private keys and telling all signature verifiers to add these keys to their rl. We
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discuss this in more detail in the next section.

7.4.1 Definitions

Formally, a VLR group signature scheme comprises three algorithms, Kg, Sig, and Vf, which

behave as follows:

VLR.Kg(n). This randomized algorithm takes as input a parameter n, the number of mem-

bers of the group. It outputs a group public key gpk, an n-element vector of user

keys gsk = (gsk[1],gsk[2], . . . ,gsk[n]), and an n-element vector of user revocation

tokens grt, similarly indexed.

VLR.Sig(gpk,gsk[i],M). The (randomized) signing algorithm takes as input the group

public key gpk, a private key gsk[i], and a message M ∈ {0, 1}∗, and returns a

signature σ.

VLR.Vf(gpk, rl, σ,M). The verification algorithm takes as input the group public key gpk,

a set of revocation tokens rl (whose elements form a subset of the elements of grt),

and a purported signature σ on a message M . It returns either valid or invalid.

The latter response can mean either that σ is not a valid signature, or that the user

who generated it has been revoked.

Implicit Tracing Algorithm Any VLR group signature scheme has an associated im-

plicit tracing algorithm that, using a secret tracing key, can trace a signature to at least

one group member who generated it. The vector of revocation tokens, grt, functions as

this secret tracing key. Given a valid message-signature pair (M,σ), a party possessing all

the revocation tokens grt can determine which user issued the signature using the following

algorithm:

1. For each i = 1, . . . , n run the verification algorithm on M,σ with revocation list

rl = {grt[i]}.

2. Output the index of the first user for which the verification algorithm says invalid.

Output fail if the signature verifies properly for all n users.

Our security definitions below explain why this is a correct tracing algorithm. The algorithm

above demonstrates that the grt vector can function as a secret tracing key, if so desired.
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Note that grt in the BS scheme can be derived from just one value so that there is no need

to store a large vector as a tracing key.

In the constructions we have in mind, a user can derive her revocation token from her

private key, and can therefore determine whether her key was used to generate a particular

signature. We refer to this as selfless-anonymity : a group member can tell whether she

generated a particular signature σ, but if she didn’t she learns nothing else about the origin

of σ. We describe a new security model that captures this notion. We use the framework

of Bellare et al. [15].

A secure VLR group signature scheme must satisfy three requirements: correctness,

traceability, and selfless-anonymity. We describe each in turn.

Correctness This requires that, for all (gpk,gsk,grt) generated by the generation algo-

rithm, every signature generated by a user verify as valid, except when the user is revoked;

or, formally, that

Vf(gpk, rl,Sig(gpk,gsk[i],M),M) = valid ⇐⇒ grt[i] /∈ rl .

Traceability We say that a VLR group signature scheme is traceable if no adversary

can win the traceability game. In the traceability game, the adversary’s goal is to forge a

signature that cannot be traced to one of the users in his coalition using the implicit tracing

algorithm above. Let n be a given group size. The traceability game, between a challenger

and an adversary A, is defined as follows.

Setup. The challenger runs algorithm Kg(n), obtaining group parameters gpk, gsk,

and grt. He provides the adversary A with gpk and grt, and sets U ← ∅.

Queries Algorithm A can make queries of the challenger, as follows.

Signing. Algorithm A requests a signature on an arbitrary message M for

the user at index i, where 1 ≤ i ≤ n. The challenger computes σ ←
Sig(gpk,gsk[i],M) and returns the signature σ to A.

Corruption. Algorithm A requests the private key of the user at index i, 1 ≤
i ≤ n. The challenger appends i to U , the adversary’s coalition, and responds

with gsk[i].

Response. Finally, forger A outputs a message M∗, a set rl∗ of revocation tokens,

and a signature σ∗.
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The forger wins if: (1) σ∗ is accepted by the verification algorithm as a valid signature

onM∗ with revocation-token set rl∗; (2) σ∗ traces (using the implicit tracing algorithm

above) to some user outside of the coalition U \rl∗, or the tracing algorithm fails; and

(3) σ∗ is nontrivial, i.e., A did not obtain σ∗ by making a signing query at M∗.

We denote by Advvlr-trace
VLR,A the probability that A wins the game. The probability is taken

over the coin tosses of A and the randomized key generation and signing algorithms.

The security proof for our system is set in the random oracle model [16] and therefore

we include in our security definitions an extra parameter qH denoting the number of random

oracle queries that the adversary issues.

Definition 7.4.1. An aggregate forger A (t, qH , qS, n, ε)-breaks traceability in an n-user

VLR group signature scheme if: A runs in time at most t; A makes at most qH hash oracle

queries and at most qS signing queries; and Advvlr-trace
VLR,A is at least ε.

Selfless-anonymity In the selfless-anonymity game, the adversary’s goal is to determine

which of two keys generated a signature. He is not given access to either key. The game is

defined as follows.

Setup. The challenger runs the Kg algorithm, obtaining group parameters gpk, gsk,

and grt. It provides the adversary A with gpk.

Queries. Algorithm A can make queries of the challenger, as follows.

Signing. Algorithm A requests a signature on an arbitrary message M for

the user at index i, where 1 ≤ i ≤ n. The challenger computes σ ←
Sig(gpk,gsk[i],M) and returns the signature σ to A.

Corruption. Algorithm A request the private key of the user at index i, 1 ≤
i ≤ n. The challenger responds with gsk[i].

Revocation. Algorithm A can request the revocation token of the user at in-

dex i, 1 ≤ i ≤ n. The challenger responds with grt[i].

Challenge. Algorithm A outputs a message M and two indices i0 and i1. It must

have made neither a corruption nor a revocation query at either index. The

challenger chooses a bit b R← {0, 1} uniformly at random, computes a signature

on M by user ib as σ∗ ← Sig(gpk,gsk[ib],M), and provides σ∗ to A.

Restricted Queries. After obtaining the challenge, algorithm A is allowed to make

additional queries of the challenger, restricted as follows.
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Signing. Algorithm A can make signing queries as before.

Corruption. As before, but A cannot make corruption queries at i0 and i1.

Revocation. As before, but A cannot make revocation queries at i0 and i1.

Output. Finally, A outputs a bit b′, its guess of b. The adversary wins if b′ = b.

We define A’s advantage in winning the game as Advvlr-sanon
VLR,A as |Pr[b = b′] − 1/2|. The

probability is taken over the coin tosses of A, of the randomized key generation and signing

algorithms, and the choice of b. Note that A can make no more than n− 2 corruption and

revocation queries.

Definition 7.4.2. An aggregate adversary A (t, qH , qS, n, ε)-breaks selfless-anonymity in an

n-user VLR group signature scheme if: A runs in time at most t; Amakes at most qH queries

to the hash function and at most qS signing queries; and Advvlr-sanon
VLR,A is at least ε.

Definition 7.4.3. A group signature scheme with verifier-local revocation is (t, qH , qS, n, ε)

secure in the VLR security model if: it is correct; no algorithm (t, qH , qS, n, ε)-breaks its

traceability; and no algorithm (t, qH , qS, n, ε)-breaks its selfless-anonymity.

We note that a signature scheme that satisfies the VLR security model above is exis-

tentially unforgeable under a chosen message attack. This follows immediately from the

traceability game.

7.4.2 Short VLR Group Signatures from SDH

In this subsection, we describe in detail the BS VLR group signature scheme. (In the

next subsection, we give intuition for how the scheme is derived.) As with the BBS group

signature scheme of Section 6.3, we base security on the SDH and Linear assumptions.

Consider bilinear groups (G1, G2) with isomorphism ψ and respective generators g1 and

g2, as in Section 2.1. The scheme employs hash functions H0 and H, with respective ranges

G2
2 and Zp, treated as random oracles.

BS.Kg(n). The key generation algorithm takes as input n, the number of user keys to

generate. It proceeds as follows:

1. Select a generator g2 in G2 uniformly at random, and set g1 ← ψ(g2). (In the

unlikely case that e(ψ(g2), g2) = 1, repeat this step; see Section 2.1.2.)
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2. Select γ R← Z∗p and set w = gγ
2 .

3. Using γ, generate for each user an SDH tuple (Ai, xi) by selecting xi
R← Z∗p such

that γ + xi 6= 0, and setting Ai ← g
1/(γ+xi)
1 .

The group public key is gpk = (g1, g2, w). Each user’s private key is her tuple gsk[i] =

(Ai, xi). The revocation token corresponding to a user’s key (Ai, xi) is grt[i] = Ai.

The algorithm outputs (gpk,gsk,grt). No party is allowed to possess γ; it is only

known to the private-key issuer.

BS.Sig(gpk,gsk[i],M). The signing algorithm takes as input a group public key gpk =

(g1, g2, w), a user private key gsk[i] = (Ai, xi), and a message M ∈ {0, 1}∗, and

proceeds as follows.

1. Pick a random nonce r R← Zp. Obtain generators (û, v̂) in G2 from H0 as

(û, v̂)← H0(gpk,M, r) ∈ G2
2 , (7.1)

and compute their images in G1:

u← ψ(û) , v ← ψ(v̂) .

2. Select an exponent α R← Zp and compute:

T1 ← uα and T2 ← Aiv
α . (7.2)

3. Set δ ← xiα ∈ Zp. Pick blinding values rα, rx, and rδ
R← Zp.

4. Compute helper values R1, R2, and R3:

R1 ← urα R3 ← T rx
1 · u

−rδ

R2 ← e(T2, g2)rx · e(v, w)−rα · e(v, g2)−rδ .
(7.3)

5. Compute a challenge value c ∈ Zp using H:

c← H(gpk,M, r, T1, T2, R1, R2, R3) ∈ Zp . (7.4)

6. Compute sα = rα + cα, sx = rx + cxi, and sδ = rδ + cδ ∈ Zp.
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Output the signature σ ← (r, T1, T2, c, sα, sx, sδ).

BS.Vf(gpk, rl, σ,M). The verification algorithm takes as input a group public key gpk =

(g1, g2, w), a set rl of revocation tokens (each an element of G1), a purported signature

σ = (r, T1, T2, c, sα, sx, sδ), and a message M ∈ {0, 1}∗, and proceeds in two phases.

First, it ensures that the signature σ is valid; then it ensures that σ was not generated

by a revoked user. It accepts only if both conditions hold.

1. Signature Check. Check that σ is a valid signature, as follows.

1. Compute û and v̂ using equation (7.1), and their images u and v in G1:

u← ψ(û) , v ← ψ(v̂) .

2. Re-derive R1, R2, and R3 as:

R̃1 ← usα/T c
1 R̃3 ← T sx

1 u−sδ

R̃2 ← e(T2, g2)sxe(v, w)−sαe(v, g2)−sδ ·
(
e(T2, w)/e(g1, g2)

)c
.

(7.5)

3. Check that the challenge c is correct:

c
?= H(gpk,M, r, T1, T2, R̃1, R̃2, R̃3) . (7.6)

If it is, accept. Otherwise, reject.

2. Revocation Check. For each element A ∈ rl, check whether A is encoded in

(T1, T2) by checking if

e(T2/A, û) ?= e(T1, v̂) .

If no element of rl is encoded in (T1, T2), the signer of σ has not been revoked.

The algorithm outputs valid if both phases accept, invalid otherwise.

Signature Length A group signature in the system above comprises two elements of G1

and five elements of Zp. Using either the supersingular or MNT family of curves described

in Section 2.3.5, one can take p to be a 170-bit prime and use a group G1 where each

element is 171 bits. Thus, the total group signature length is 1192 bits or 149 bytes. With

these parameters, security is approximately the same as a standard 1024-bit RSA signature,
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which is 128 bytes. Using the Barreto Naehrig curves of Section 2.3.5, we can instead take

p to be a 160-bit prime. This gives 1122-bit group signatures with the same security level.

Performance Signature generation requires two applications of the isomorphism ψ. Com-

puting the isomorphism takes roughly the same time as an exponentiation in G1 (using fast

computations of the trace map). Thus, signature generation requires about 8 exponentia-

tions (or multi-exponentiations) and 2 bilinear map computations. Signature verification

takes 6 exponentiations and 3 + 2|rl| computations of the bilinear map. A far more effi-

cient revocation check algorithm, whose running time is independent of |rl|, is described in

Section 7.4.5.

We now prove the correctness of the BS scheme. The proofs of the selfless-anonymity

and traceability are given in Section 7.4.4.

Theorem 7.4.4. The BS VLR signature scheme is correct, as defined in equation (7.4.1).

Proof. Consider public parameters gpk = (g1, g2, w); secret-key vector gsk where, for

each i, gsk[i] = (Ai, xi), an SDH tuple, i.e., a tuple satisfying e(Ai, wg
xi
2 ) = e(g1, g2);

and revocation-token list grt where grt[i] = Ai, as output by the key generation algorithm.

An honest signer with private key (Ai, xi) generates a signature (r, T1, T2, c, sα, sx, sδ)

by following the signing algorithm described above. In particular, the signer computes the

generators û and v̂ according to equation (7.1), so the verifier uses the same generators.

Now, the first phase of the signature verification algorithm accepts a signature if the output

of H equals the challenge c. This will only be true (except with negligible probability)

when all inputs to H are exactly the same for the verifier as for the signer. An honest

signer’s signature includes all these inputs except R1, R2, and R3, which are re-derived

by the verifier. We must therefore show that the values re-derived by the verifier using

equations (7.5) equal those derived by the signer using equations (7.3). First,

R̃1 = usα/T c
1 = urα+cα/(uα)c = urα = R1 ,

so R̃1 = R1. Further,

R̃3 = T sx
1 u−sδ = (uα)rx+cxi · u−rδ−cxiα = (uα)rx · u−rδ = T rx

1 · u
−rδ = R3 ,
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so R̃3 = R3. Finally,

R̃2 = e(T2, g2)sx · e(v, w)−sα · e(v, g2)−sδ ·
(
e(T2, w)
e(g1, g2)

)c

=
(
e(T2, g2)rx · e(v, w)−rα · e(v, g2)−rδ

)
×

(
e(T2, g2)xi · e(v, w)−α · e(v, g2)−xiα · e(T2, w)

e(g1, g2)

)c

= R2 ·
(e(T2v

−α, wgxi
2 )

e(g1, g2)

)c
= R2 ·

(e(Ai, wg
xi
2 )

e(g1, g2)

)c
= R2 ,

so R̃2 = R2. The last equality follows from the SDH equation. Thus (7.6) will be satisfied.

In a signature generated by the signing algorithm, we have T1 = ψ(û)α and T2 = Aiψ(v̂)α

for some α. The revocation check algorithm will reject a signature as originating from a

revoked user with token A exactly when (û, v̂, T1, T2/A) is a co-Diffie-Hellman tuple, i.e.,

when A equals Ai. Thus the group signature verification algorithm will accept a signature

as valid exactly when Ai is not included in its input rl, as required.

7.4.3 Intuition

The BS scheme presented in Section 7.4.2 above is derived, via a variant of the Fiat-Shamir

heuristic [51], from a new protocol for proving possession of an SDH tuple. We present this

protocol below to give intuition into the construction of the BS scheme.

The protocol is a proof of knowledge, which means that by rewinding a prover it is

possible to extract an SDH pair. The protocol is intentionally not zero-knowledge; a verifier

in possession of a revocation token can determine whether he is interacting with a revoked

prover.

The public values are g1 ∈ G1 and g2, w ∈ G2. Here g2 is a random generator of G2,

g1 equals ψ(g2), and w equals gγ
2 for some (secret) γ ∈ Zp. The prover wishes to demonstrate

possession of a pair (A, x), where A ∈ G1 and x ∈ Zp, such that Ax+γ = g1. Such a pair

satisfies e(A,wgx
2 ) = e(g1, g2). We use a generalization of Schnorr’s protocol for proving

knowledge of discrete logarithm [107] in a group of prime order.

Protocol 2. Bob, the verifier, selects elements û and v̂ uniformly at random from G2 and

sends them to Alice, the prover. Alice sets u ← ψ(û) and v ← ψ(v̂). She selects exponent

α
R← Zp, and computes

T1 ← uα and T2 ← Avα .
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Alice and Bob then undertake a proof of knowledge of values (α, x, δ) satisfying the following

three relations:

uα = T1 , T x
1 = uδ , e(T2v

−α, wgx
2 ) = e(g1, g2) .

This proof of knowledge proceeds as follows. Alice computes a helper value δ = xα. She

then picks blinding values rα, rx, and rδ at random from Zp. She computes three values

based on all these:

R1 ← urα R3 ← T rx
1 · u

−rδ

R2 ← e(T2, g2)rx · e(v, w)−rα · e(v, g2)−rδ .

She then sends (T1, T2, R1, R2, R3) to Bob. Bob sends a challenge value c chosen uniformly

at random from Zp. Alice computes and sends back sα = rα + cα, sx = rx + cx, and

sδ = rδ + cδ. Finally, Bob verifies the following three equations:

usα ?= T c
1 ·R1 (7.7)

e(T2, g2)sx · e(v, w)−sα · e(v, g2)−sδ
?=

(
e(g1, g2)/e(T2, w)

)c ·R2 (7.8)

T sx
1 u−sδ

?= R3 . (7.9)

Bob accepts if all three hold. Applying a standard variant of the Fiat-Shamir heuristic to

this protocol produces the signature scheme of the previous section.

The protocol above is (by design) not a zero-knowledge protocol. Given (T1, T2) and

a candidate A, anyone can check whether A is ElGamal-encrypted in (T1, T2) by checking

whether e(T2/A, û) ?= e(T1, v̂) holds. Below, however, we show that the protocol has an

extractor and, given a (T1, T2) pair, can be simulated. The correctness of the protocol

follows from Theorem 7.4.4.

Lemma 7.4.5. For any (û, v̂, T1, T2), Transcripts of Protocol 2 can be simulated.

Proof. Choose challenge c R← Zp. Select sα
R← Zp, and setR1 ← usα/T c

1 . Then equation (7.7)

is satisfied. With α and c fixed, a choice for either of rα or sα determines the other, and

a uniform random choice of one gives a uniform random choice of the other. Therefore sα

and R1 are distributed as in a real transcript.
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Select sx
R← Zp. Now, A and α are fixed by T1 and T2, x is implicitly fixed by the SDH

equation for A, rx is fixed by x and sx, and δ is fixed as xα. Select sδ
R← Zp; a uniform

distribution on this gives a uniform distribution on rδ. Set R3 ← T sx
1 u−sδ . Again, all the

computed values are distributed as in a real transcript. Finally, set

R2 ← e(T2, g2)sx · e(v, w)−sα · e(v, g2)−sδ ·
( e(T2, w)
e(g1, g2)

)c
.

This R2 satisfies (7.8), so it, too, is properly distributed.

Finally, the simulator outputs the transcript (û, v̂, T1, T2, R1, R2, R3, c, sα, sβ, sx, sδ). As

argued above, this transcript is distributed identically to transcripts of actual Protocol 2

interactions for the given (û, v̂, T1, T2).

Lemma 7.4.6. There exists an extractor for Protocol 2 that extracts an SDH pair from a

convincing prover.

Proof. Suppose that an extractor can rewind a prover in the protocol above. The verifier

sends û, v̂ to the prover. Let u = ψ(û) and v = ψ(v̂). The prover then sends T1, T2 and

R1, R2, R3. To challenge value c, the prover responds with sα, sx, and sδ. To challenge

value c′ 6= c, the prover responds with s′α, s′x, and s′δ. If the prover is convincing, all three

verification equations hold for each set of values.

For brevity, let ∆c = c− c′, ∆sα = sα − s′α, and similarly for ∆sx, and ∆sδ.

Consider (7.7) above. Dividing the two instances of this equation, we obtain u∆sα = T∆c
1 .

The exponents are in a group of known prime order, so we can take roots; let α̃ = ∆sα/∆c.

Then uα̃ = T1.

Now consider (7.9) above. Dividing the two instances gives T∆sx
1 = u∆sδ . Substituting

T1 = uα̃ gives uα̃∆sx = u∆sδ , or ∆sδ = α̃∆sx.

Finally, dividing the two instances of (7.8), we obtain

(
e(g1, g2)/e(T2, w)

)∆c = e(T2, g2)∆sx · e(v, w)−∆sα · e(v, g2)−α̃∆sx .

Taking ∆c-th roots, and letting x̃ = ∆sx/∆c, we obtain

e(g1, g2)/e(T2, w) = e(T2, g2)x̃ · e(v, w)−α̃ · e(v, g2)−x̃α̃ .
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This can be rearranged as

e(g1, g2) = e(T2v
−α̃, wgx̃

2 ) ,

or, letting Ã = T2v
−α̃,

e(Ã, wgx̃
2 ) = e(g1, g2) .

Thus the extractor obtains an SDH tuple (Ã, x̃). Moreover, the Ã in this SDH tuple is,

perforce, the same as that in the ElGamal encryption (T1, T2). In other words, the extractor

recovers the same A that a revocation-checker matches.

7.4.4 Proof of Security

We show that the BS scheme described in Section 7.4.2 is a VLR group signature scheme.

Correctness was demonstrated in Theorem 7.4.4, above. Below we give proofs of selfless-

anonymity and traceability, as defined in Section 7.4.1.

Selfless-Anonymity

Lemma 7.4.7. The BS VLR group signature scheme in (G1, G2) has (t, qH , qS, n, ε) selfless

anonymity in the random oracle model assuming the (t, ε′) Decision Linear assumption

holds in the group G2 for ε′ = ε
2

(
1
n2 − qSqH

p

)
≈ ε/2n2.

Proof. Suppose algorithm A (t, qH , qS, n, ε)-breaks the selfless anonymity of the BS VLR

group signature scheme. We build an algorithm B that breaks the Decision Linear assump-

tion in G2. Algorithm B is given as input a 6-tuple (u0, u1, v, h0 = ua
0, h1 = ub

1, Z) ∈ G6
2

where u0, u1, v
R← G2, a, b

R← Z∗p and either Z = va+b ∈ G2 or Z is random in G2. Algorithm

B decides which Z it was given by interacting with A as follows:

Setup. Recall that g1, g2 are the fixed generators of G1, G2 respectively. Algorithm B does

the following:

1. Algorithm B picks a random γ
R← Zp and sets w = gγ

2 . It gives A the gpk =

(g1, g2, w).

2. B picks two random users i0, i1
R← {1, . . . , n} and keeps i0, i1 secret. For all users

j 6= i0, i1 it generates private keys gsk[j] = (Aj , xj) using γ and the standard

key generation algorithm.

3. B picks a random W
R← G2.
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To give some intuition for the rest of the simulation we define Ai0 = ZW/va and

Ai1 = Wvb. In what follows, B will behave as if user i0’s private key is (Ai0 , xi0) and

user i1’s private key is (Ai1 , xi1) for some xi0 , xi1 ∈ Zp. We emphasize that B does not

know either Ai0 or Ai1 since it doesn’t know a or b. Observe that if Z = va+b then

Ai0 = ZW/va = va+bW/va = Wvb = Ai1

Hence, if Z = va+b users i0 and i1 have the same private key. But if Z is random in

G2 then i0, i1 have independent private keys.

Hash queries. At any time, A can query the hash functions H and H0. Algorithm B
responds with random values while ensuring consistency.

Phase 1. AlgorithmA can issue signing queries, corruption queries, and revocation queries.

If a query is for user i 6= i0, i1 then B uses the private key gsk[i] to respond to the

query. For queries for users i0 or i1 algorithm B responds as follows:

• Signing queries: given a message M ∈ {0, 1}∗ and a user i ∈ {i0, i1} algorithm B
must generate a signature for M using user i’s private key.

– To generate a signature for user i = i0, B picks random s, t, l
R← Z∗p and

makes the following assignments:

T1 ← h0u
s
0 T2 ← ZWvsht

0u
st
0 û← ul

0 v̂ ← (vut
0)l .

Let α = (a+ s)/l ∈ Zp. Then T1 = ûα and T2 = Ai0 · v̂α.

– To generate a signature for user i = i1, B picks random s, t, l
R← Z∗p and

makes the following assignments:

T1 ← h1u
s
1 T2 ←Wht

1u
st
1 /v

s û← ul
1 v̂ ← (ut

1/v)l .

Let α = (b+ s)/l ∈ Zp. Then T1 = ûα and T2 = Ai1 · v̂α.

Either way, T1 = ûα and T2 = Aiv̂
α for some random α ∈ Zp and random

and independent û, v̂ ∈ G2. Algorithm B next picks random r, c, sα, sx, sδ
R←

Zp and computes the corresponding R1, R2, R3 using equations (7.5). In the

unlikely event that A has already issued a hash query either for H(gpk,M, r,
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ψ(T1), ψ(T2), R1, R2, R3) or for H0(gpk,M, r), B reports failure and terminates.

Since r is random in Zp this happens with probability at most qH/p. Otherwise,

B defines

H(gpk,M, r, ψ(T1), ψ(T2), R1, R2, R3) = c

H0(gpk,M, r) = (û, v̂) .

Algorithm B then computes the signature σ as σ ← (r, ψ(T1), ψ(T2), c, sα, sx, sδ),

and gives σ to A. Note that by Lemma 7.4.5, σ is a properly distributed signature

under user i’s private key.

• Corruption queries and revocation queries: if A ever issues a corruption of revo-

cation query for users i0 or i1 then B reports failure and aborts.

Challenge Algorithm A outputs a message M and two users i∗0 and i∗1 where it wishes to

be challenged. if {i∗0, i∗1} 6= {i0, i1} then B reports failure and aborts. Otherwise, we

assume i∗0 = i0 and i∗1 = i1. Algorithm B picks a random b
R← {0, 1} and generates

a signature σ∗ under user ib’s key for M using the same method used to respond to

signing queries in Phase 1. It gives σ∗ as the challenge to A.

Phase 2. Algorithm A issues restricted queries. B responds as in Phase 1.

Output. Eventually, A outputs its guess b′ ∈ {0, 1} for b. If b = b′ then B outputs 0

(indicating that Z is random in G2); otherwise B outputs 1 (indicating that Z = va+b).

Suppose B does not abort during the simulation. Then, when Z is random in G2

algorithm B emulates the selfless-anonymity game perfectly. Hence, Pr[b = b′] > 1
2 + ε.

When Z = va+b then the private keys for users i0 and i1 are identical and therefore the

challenge signature σ∗ is independent of b. It follows that Pr[b = b′] = 1/2. Therefore,

assuming B does not abort, it has advantage at least ε/2 in solving the given linear challenge

(u0, u1, v, h0, h1, Z) ∈ G6
2.

Algorithm B does not abort if it correctly guesses the values i∗0 and i∗1 during the setup

phase and none of the signature queries cause it to abort. The probability that a given

signature query causes B to abort is at most qH/p and therefore the probability that B
aborts as a result of A’s signature queries is at most qSqH/p. As long as B does not abort

during phase 1, algorithm A gets no information about the choice of i0, i1. Therefore, the
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probability that the query pattern during phase 1 and the choice of challenge do not cause

B to abort is at least 1/n2. It now follows that B solves the given linear challenge with

advantage at least ε
2

(
1
n2 − qSqH

p

)
, as required.

Traceability

Theorem 7.4.8. If SDH is (q, t′, ε′)-hard on (G1, G2), then the BS VLR group signature

scheme is (t, qH , qS, n, ε)-traceable, where n = q − 1, ε = 4n
√

2ε′qH + n/p, and t = Θ(1) · t′.

Proof. Our proof proceeds in three parts. First, we describe a framework for interacting

with an algorithm that wins a traceability game. Second, we show how to instantiate this

framework appropriately for different types of such breaker algorithms. Third, we show how

to apply the forking lemma [102] to the framework instances, obtaining SDH solutions.

Interaction Framework Suppose we are given an algorithm A that breaks the trace-

ability of the BS scheme. We describe a framework for interacting with A.

Setup. We are given groups (G1, G2) as above, with respective generators g1 and g2. We

are also given w = gγ
2 ∈ G2, and a list of pairs (Ai, xi) for i = 1, . . . , n. For each i,

either xi = ?, indicating that the xi corresponding to Ai is not known, or else (Ai, xi)

is an SDH pair, and e(Ai, wg
xi
2 ) = e(g1, g2). We then run A, giving it the group public

key (g1, g2, w) and the users’ revocation tokens {Ai}. We answer its oracle queries as

follows.

Hash Queries. At any time, A can query the hash functions to obtain generators (û, v̂)

or challenge c. We respond with random values while maintaining consistency. made

again.

Signature Queries. Algorithm A asks for a signature on message M by a key at index i. If

si 6= ?, we follow the group signing procedure with key (Ai, xi) to obtain a signature σ

on M , and return σ to A.

Otherwise si = ?. We pick a nonce r R← Zp, obtain generators (û, v̂)← H0(gpk,M, r),

and set u← ψ(û) and v ← ψ(v̂). We then pick α R← Zp, set T1 ← uα, and T2 ← Agα
1

and run the Protocol 2 simulator with values (û, v̂, T1, T2). The simulator returns

a transcript (û, v̂, T1, T2, R1, R2, R3, c, sα, sx, sδ), from which we derive a VLR group

signature σ = (r, T1, T2, c, sα, sx, sδ). In addition, we must patch the hash oracle at
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(M, r, T1, T2, R1, R2, R3) to equal c. If this causes a collision, i.e., if we previously set

the oracle at this point to some other c′, we declare failure and exit. Otherwise, we

return σ to A. A signature query can trigger a hash query, which we charge against

A’s hash query limit to simplify the accounting.

Private Key Queries. Algorithm A asks for the private key of the user at some index i.

If xi 6= ?, we return (Ai, xi) to A. Otherwise, we declare failure and exit.

Output. Finally, if algorithm A is successful, it outputs a forged VLR group signature σ =

(r, T1, T2, c, sα, sx, sδ) on a message M with nonce r, along with a revocation list rl∗.

We apply the implicit revocation algorithm, with revocation tokens {Ai} to determine

which A∗ is encoded in (T1, T2). This A∗ cannot be on rl∗; if it were, the signature

would have been rejected as invalid. Thus for the forgery to be nontrivial, A∗ must

also be outside the adversary’s coalition U . If A∗ does not equal Ai for any i, we

output σ. Otherwise, A∗ = Ai∗ for some i∗. If si∗ = ?, we output σ. If, however,

si∗ 6= ?, we declare failure and exit.

As implied by the output phase of the framework above, there are two types of forger

algorithm. Type I forgers output a forgery σ on a message M that encodes some iden-

tity A∗ /∈ {A1, . . . , An}. Type II forgers output a forgery that encodes an identity A∗ such

that A∗ = Ai∗ for some i∗, and the forger did not make a private-key oracle query at i∗.

We treat these two types of forger differently.

Given a q-SDH instance (g′1, g
′
2, (g

′
2)γ , (g′2)γ2

, . . . , (g′2)γq
), we apply the technique of

Boneh and Boyen’s Lemma 3.2 [23] that we recalled in Section 3.4.1, obtaining genera-

tors g1 ∈ G1, g2 ∈ G2, w = gγ
2 , along with q − 1 SDH pairs (Ai, xi) such that e(Ai, wg

xi
2 ) =

e(g1, g2) for each i. Any SDH pair (A, x) besides these q − 1 pairs can be transformed into

a solution to the original q-SDH instance, again using Boneh and Boyen’s Lemma 3.2.

Type I Forger Against a (t, qH , qS, n, ε)-Type I forger A, we turn an instance of (n+ 1)-

SDH into values (g1, g2, w), and n SDH pairs (Ai, xi). We then apply the framework to A
with these values. Algorithm A’s environment is perfectly simulated, and the framework

succeeds whenever A succeeds, so we obtain a Type I forgery with probability ε.

Type II Forger Against a (t, qH , qS, n, ε)-Type II forger A, we turn an instance of n-

SDH into values (g1, g2, w), and n−1 SDH pairs. These pairs we distribute amongst n pairs
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(Ai, xi). The unfilled entry at random index i∗ we fill as follows. Pick Ai∗
R← G1, and set

xi∗ ← ?, a placeholder value. Now we run A under the framework. The framework declares

success only if A never queries the private key oracle at i∗, but forges a group signature that

traces to Ai∗ . It is easy to see that the framework simulation is perfect unless A queries

the private key oracle at i∗. Because the protocol simulator invoked by the signing oracle

produces group signatures that are indistinguishable from those of a user whose SDH tuple

includes Ai∗ , the value of i∗ is independent of A’s view unless and until it queries the private

key oracle at i∗. (Since the hash oracle takes as input five elements of G1 or G2 besides

the message M , the probability of collision in simulated signing queries is bounded above

by (qHqS + q2S)/p9. Assuming qS � qH � p = |G1|, this probability is negligible, and we

ignore it in the analysis.) Finally, when A outputs its forgery σ, implicating some user i

whose private key A has not requested, the value of i∗ (amongst the users whose keys it

has not requested) remains independent of A’s view. It is easy to see, then, that A outputs

a forged group signature that traces to user i∗ with probability at least ε/n.

Application of Forger Now we show how to use the application of our framework to

a Type I or Type II adversary A to obtain another SDH pair, contradicting the SDH

assumption. The remainder of this proof follows closely the methodology and notation of

the forking lemma [102].

Let A be a forger (of either type) for which the framework succeeds with probabil-

ity ε′. From here on, we abbreviate signatures as (M,σ0, c, σ1), where σ0 = (r, û, v̂, T1, T2,

R1, R2, R3), the values given, along with M , to the random oracle H, and from which c is

derived, and where σ1 = (sα, sx, sδ). (Those values normally omitted from the signature

can be recovered as the verification algorithm in Section 7.4.2 does.)

We require that A always query H0 at (M, r) before querying H at (M, r, . . .). Any

adversary can be modified mechanically into satisfying this condition. This technical re-

quirement means that, even if in rewinding we change the value of H(M, r, . . .), the value

of H0(M, r), and therefore of the u and v used implicitly in the arguments of the H call,

remains unchanged.

For any fixed f0 vector of H0 responses, a run of the framework on A is completely

described by the randomness string ω used by the framework and A, by the vector f0

of responses made by the H0 hash oracle, and by the vector f of responses made by the

H hash oracle. Let S be the set of tuples (ω, f0, f) such that the framework, invoked
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on A, completes successfully with forgery (M,σ0, c, σ1), and A queried the hash oracle H

on (M,σ0). In this case, let Ind(ω, f0, f) be the index of f at which A queried (M,σ0). We

define ν = Pr[S] = ε′− 1/p, where the 1/p term accounts for the possibility that A guessed

the hash of (M,σ0) without the hash oracle’s help. For each j, 1 ≤ j ≤ qH , let Sj be the set

of tuples (ω, f0, f) as above and such that Ind(ω, f0, f) = j. Let J be the set of auspicious

indices j such that Pr[Sj | S] ≥ 1/(2qH). Then

Pr
[
Ind(ω, f) ∈ J | S

]
≥ 1/2 .

Let f |ba be the restriction of f to its elements at indices a, a+1, . . . , b. For each j ∈ J , we

consider the heavy-rows lemma [102, Lemma 1] with rows X = (ω, f0, f |j−1
1 ) and columns

Y = (f |qH
j ). Clearly Pr(x,y)[(x, y) ∈ Sj ] ≥ ν/(2qH). Let the heavy rows Ωj be those rows

such that, ∀(x, y) ∈ Ωj : Pry′ [(x, y′) ∈ Sj ] ≥ ν/(4qH). Then, by the heavy-rows lemma,

Pr[Ωj | Sj ] ≥ 1/2. A simple argument then shows that Pr[∃j ∈ J : Ωj ∩ Sj | S] ≥ 1/4.

Thus, with probability ν/4, the framework, invoked on A, succeeds and obtains a forgery

(M,σ0, c, σ1) that derives from a heavy row (x, y) ∈ Ωj for some j ∈ J , i.e., an execution

(ω, f0, f) such that

Pr
f ′

[
(ω, f0, f

′) ∈ Sj

∣∣ f ′∣∣j−1

1
= f |j−1

1

]
≥ ν/(4qH) .

If we now rewind the framework and A to the jth query and proceed with an oracle vec-

tor f ′ that differs from f from the jth entry on, we obtain, with probability at least ν/(4qH),

a successful framework completion and a second forgery (M,σ0, c
′, σ′1), with (M,σ0) still

queried at A’s jth hash query. Since the adversary queried H0 at (M, r) (where r is the

first element of σ0) before he made his jth H oracle query, the values of û and v̂ in these

two forgeries will be the same.

By using the extractor of Lemma 7.4.6, we obtain from the forgeries (σ0, c, σ1) and

(σ0, c
′, σ′1) an SDH tuple (A, x). The extracted A is the same as the A encoded in (T1, T2)

in σ0. The framework declares success only when the A encoded in (T1, T2) is not amongst

those whose x it knows. Therefore, the extracted SDH tuple (A, x) is not amongst those that

we ourselves created, and can be transformed, again following the technique of Boneh and

Boyen’s Lemma 3.2 [23], to an answer to the posed q-SDH problem.

Putting everything together, we have proved the following claims.
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Claim 20. Using a (t, qH , qS, n, ε) Type I forger, we solve an instance of (n+ 1)-SDH with

probability (ε− 1/p)2/(16qH) in time Θ(1) · t.

Claim 21. Using a (t, qH , qS, n, ε) Type II forger, we solve an instance of n-SDH with

probability (ε/n− 1/p)2/(16qH) in time Θ(1) · t.

We can guess which of the two forger types a particular forger is with probability 1/2;

then assuming the more pessimistic scenario of Claim 2 proves the theorem.

7.4.5 Efficient Revocation for BS Signatures

In the BS scheme (Section 7.4.2), signature verification time grows linearly in the number of

revoked users. It is desirable to have a Verifier-Local Revocation system where verification

time is constant. In this section we describe a simple modification to the signing and

verification algorithms that achieves this at the cost of slightly reduced anonymity.

Consider how our system is used for privacy-preserving attestation: Users connect to

various web sites and at each site they perform a private attestation using the group signa-

ture issued by the tamper-resistant chip in their machine. For an efficient revocation check,

when the chip issues a signature for attesting to a site S it uses the signing algorithm from

Section 7.4.2 with the small modification that the parameters u and v are generated as:

(u, v) R← H0(gpk, S, r)

where r is random in the range {1, . . . , k} and k is a security parameter (e.g., k = 128).

Note that, unlike Section 7.4.2, here (u, v) do not depend on the message being signed.

Hence, at a given site S there are only k possible values for the pair (u, v).

Now, suppose site S has been supplied with a revocation list rl = {A1, . . . , Ab}. To

verify that a signature σ = (r, T1, T2, c, sα, sx, sδ) was not issued by a revoked user the site

uses the same procedure as in Section 7.4.2:

1. Compute (u, v) R← H0(gpk, S, r), and

2. For i = 1, . . . , b check that e(T1, v)e(Ai, u) 6= e(T2, u).

Since at site S there are only k possible values for u, the value e(Ai, u) can be precomputed

for the entire rl for all possible u’s. Thus, site S stores a |rl| × k table of values, e(Ai, uj).

To check revocation, it simply does a table-lookup to see if the value e(T2, u)/e(T1, v) is
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in the r’th row of the table. If not, then the signature was not issued by a revoked user.

Hence, the revocation check takes time independent of the size of rl.

The downside is that the scheme is now only partially anonymous. If the user issues

two signatures at site S using the same random value r ∈ {1, . . . , k} then the site can test

that these two signatures came from the same user. However, signatures issued at different

sites are still completely unlinkable. Similarly, signatures issued at the same site using

different r’s are unlinkable (e.g., with k = 100 only 1% of signatures at S are linkable). For

some applications, this trade-off between partial linkability and efficient revocation might

be acceptable.

7.4.6 Backward Unlinkability

When a user is revoked in the BS scheme, all her signatures can be traced, including any

issued before her key was compromised. It might be preferable keep these older signatures

unlinkable, a property called backward unlinkability [7, 112]. This property is typically

achieved by dividing time into intervals. signatures are tied to the interval in which they

were issued, and revocation is effective only from the current interval onwards.

Nakanishi and Funabiki have proposed a variant of BS signatures with backward un-

linkability using time intervals [93]. They prove the security of their construction under

security definitions adapted from those in Section 7.4.1.

7.4.7 Strong Exculpability for BS

In the BS VLR scheme, as in the BBS scheme of Section 6.3, keys are issued by a trusted key

generator. This is in keeping with the security definitions given in Section 7.4.1, which them-

selves are modeled after the Bellare-Micciancio-Warinschi definitions for ordinary group

signatures [15].

It is possible to achieve strong exculpability — where even the entity that issues user

keys cannot forge signatures under users’ keys — for BS signatures as well. The necessary

modifications are essentially those suggested for BBS in Section 7.2.

An appropriate model for proving the modified BS signatures secure would closely resem-

ble the definitions for traceable signatures proposed by Kiayias and Yung [73]. (“Claiming”

a signature, in the Kiayias-Yung terminology, would simply require proving knowledge of a

value Ai such that (û, v̂, T1, T2/Ai) is a co-Diffie-Hellman tuple.)
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7.5 Conclusions and Open Problems

We have described extensions to the BBS group signature scheme to achieve strong exculpa-

bility and (traditional) revocation. In addition, we have described a short group signature

scheme where user revocation only requires sending revocation information to signature ver-

ifiers, a setup we call verifier-local revocation. Our signatures are short: only 141 bytes for a

standard security level. They are shorter than group signatures built from the Strong-RSA

assumption and are shorter even than BBS short group signatures.

There are still a number of open problems related to VLR signatures. Most importantly,

is there an efficient VLR group signature scheme where signature verification time is sub-

linear in the number of revoked users, without compromising user privacy?
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