NEW PARADIGMS IN SIGNATURE SCHEMES

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

Hovav Shacham
December 2005



(© Copyright by Hovav Shacham 2006
All Rights Reserved

ii



I certify that I have read this dissertation and that, in my opinion, it is fully
adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

Dan Boneh Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully
adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

John Mitchell

I certify that I have read this dissertation and that, in my opinion, it is fully
adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

Rajeev Motwani

Approved for the University Committee on Graduate Studies.

iii



Abstract

Digital signatures provide authenticity and nonrepudiation. They are a standard crypto-
graphic primitive with many applications in higher-level protocols. Groups featuring a com-
putable bilinear map are particularly well suited for signature-related primitives. For some
signature variants the only construction known uses bilinear maps. Where constructions
based on, e.g., RSA are known, bilinear-map—based constructions are simpler, more efficient,
and yield shorter signatures. We describe several constructions that support this claim.

First, we present the Boneh-Lynn-Shacham (BLS) short signature scheme. BLS signa-
tures with 1024-bit security are 160 bits long, the shortest of any scheme based on standard
assumptions.

Second, we present Boneh-Gentry-Lynn-Shacham (BGLS) aggregate signatures. In an
aggregate signature scheme it is possible to combine n signatures on n distinct messages
from n distinct users into a single aggregate that provides nonrepudiation for all of them.
BGLS aggregates are 160 bits long, regardless of how many signatures are aggregated. No
construction is known for aggregate signatures that does not employ bilinear maps. BGLS
aggregates give rise to verifiably encrypted signatures, a signature variant with applications
in contract signing.

Third, we present Boneh-Boyen-Shacham (BBS) group signatures. Group signatures
provide anonymity for signers. Any member of the group can sign messages, but the re-
sulting signature keeps the signer’s identity secret. Only the group manager can trace
the signature, undoing its anonymity, using a special trapdoor. BBS group signatures are
1443 bits long, shorter than any previous scheme by an order of magnitude. The signing
operation is also an order of magnitude more efficient than in previous schemes.

Finally, we consider variants and extensions of the BBS group signature scheme, in-
cluding a group signature with a novel revocation mechanism that we call verifier-local

revocation (VLR). In a VLR group signature, messages announcing the revocation of some

v



users need only be processed by the verifiers; the signers are stateless. We present the
Boneh-Shacham VLR group signature scheme, which has signatures even shorter than in
BBS.



Acknowledgments

This thesis is dedicated to Helen Vincent, Meraud Grant Ferguson, and the memory of
Michael Gearin-Tosh.

This thesis would have been impossible without the support and mentoring of my advisor,
Dan Boneh and the Applied Crypto Group at Stanford.

I have had helpful discussions and received comments and suggestions from many peo-
ple, a non-exhaustive list of whom includes: Paulo Barreto, Stefan Bechtold, Mihir Bel-
lare, Alexandra Boldyreva, Xavier Boyen, Ernie Brickell, Jan Camenisch, Liqun Chen,
Cynthia Dwork, Steven Galbraith, Stanistaw Jarecki, Craig Gentry, Eu-Jin Goh, Susan
Hohenberger, Yoshi Kohno, Caroline Kudla, Ben Lynn, Anna Lysyanskaya, Ilya Mironov,
Nagendra Modadugu, Moni Naor, Kenny Paterson, Samuel Pepys, Zulfikar Ramzan, Eric
Rescorla, Leonid Reyzin, Victor Shoup, Alice Silverberg, Nigel Smart, Martijn Stam, and
Brent Waters, as well as the anonymous referees who reviewed the papers that make up the
thesis.

I’d like to thank the Crom Contingent — Cullen Jennings, Nagendra Modadugu, Eric
Rescorla, Terence Spies, and Steve and everyone at Flex-It; and C.C. better halves Lisa
Dusseault and Wendy Spies.

I would, finally, like to thank my friends Susan Rea, Joy Su, Mike Sawka, Rosina Lozano,
and, especially, Nick Vossbrink — without whom this thesis would doubtless not have come

out when it did.

vi



Contents

Abstract iv

Acknowledgments vi

1 Introduction 1
1.1 Previous Publication . . . . . . ... ... . o

2 Mathematical Background 4

2.1 Mathematical Setting . . . . . . . . ... o 4

2.1.1  Groups . . . . .. e 4

2.1.2 The Bilinear Map . . . . . .. .. ... o 5

2.1.3 Running Times . . . . . . . . . ..o 5

2.1.4 Hashing . . . . .. . . . e 5

2.2 Complexity Assumptions . . . . . . . . . ... L 6

2.2.1 Computational and Decisional co-Diffie-Hellman . . . . . ... . .. 6

2.2.2 The Strong Diffie-Hellman Assumption . . .. ... ... . ... .. 7

2.2.3 The Decision Linear Diffie-Hellman Assumption . . . ... ... .. 8

2.2.4 Implications of DDH Hardnesson G; . . . . .. ... ... ..... 9

2.3 Elliptic Curves and Bilinear Maps . . . . . . . . ... ... ... ...... 10

2.3.1 Notation and Background . . . . . .. .. .. ..o 10

2.3.2 Intractability of co-CDH on (G1,G2) . . . . . . ... ... ... ... 11

2.3.3 Hashing onto ellipticcurves . . . . . . .. ... ... oL 12

2.3.4 Suitable Curves . . . . . . . ... 13

235 Thebadnews . . . . . .. . . . .. e 14

vii



3 Short Signatures

3.1 Imtroduction . . . . . . . . . e

3.2 Signature Security Definitions . . . . . . ... ... oL
3.3 Short Signatures based on CDH . . . . . . .. .. .. ... ...

3.3.1

Security . . . . . . ..

3.4 Short Signatures based on SDH . . . . . .. ... ... ... ... ... ...

3.4.1
3.4.2
3.4.3

Proof of Security . . . . . . . ...
A BB Variant Secure without Random Oracles . . . . . . ... ...

Performance . . . . . . . .. .

3.5 Conclusions . . . . . . . . e

4 Signature Variants and Extensions

4.1 Introduction . . . . . . . . . . . e
4.2 Threshold Signatures . . . . . . . . ...
4.3 Multisignatures and Batch Signature Verification . . . . . .. .. ... ...

4.4 Aggregate Signatures . . . . . ... ..o

4.4.1
4.4.2

Aggregate Signature Definitions . . . . . . . .. ... ... L.
Aggregate Signatures from Bilinear Maps . . . . . ... ... .. ..

4.5 Verifiably Encrypted Signatures . . . . . . . .. ..o oL

4.5.1
4.5.2
4.5.3
4.5.4
4.5.5
4.5.6

Verifiably Encrypted Signature Definitions . . . . . . .. ... .. ..
Aggregate Extraction . . . . .. ... o 0oL
Verifiably Encrypted Signatures via Aggregation . . . ... ... ..
Verifiably-Encrypted Signatures from Bilinear Maps . . . . . .. ..
Proofs of Security . . . . . ... ...

Observations on Verifiably Encrypted Signatures . . . . .. .. ...

4.6 Conclusions and Open Problems . . . . .. ... ... ... .........

5 Sequential Aggregate Signatures from Trapdoor Permutations

5.1 Imtroduction . . . . . . . . . .. e

5.2 Preliminaries . . . . . . . . e

5.2.1
5.2.2
5.2.3
5.2.4

Trapdoor One-Way Permutations . . . . . . . ... .. ... .....
Certified Trapdoor Permutations . . . . . .. .. ... ... .....
Claw-Free Permutations, Homomorphic Trapdoor Permutations . . .

Full-Domain Signatures . . . . . . . . .. .. .. ... .. ......

17
17
18
20
20
25
25
27
29
29

30
30
31
32
33
34
36
42
43
45
46
47
48
54
95

56
o6
57
o8
o8
99



5.3 Sequential Aggregate Signatures . . . . .. . ... ... ... ... 61

5.4 Sequential Aggregates from Trapdoor Permutations. . . . . . . ... .. .. 63
5.4.1 The Scheme . . . . . . . . . . .. e 63

5.4.2 Security . . . . .. 64

5.5 Aggregating with RSA . . . . . . . . . ... 74
5.5.1 Concrete Proposals for Sequential Aggregates with RSA . . . . . .. 77

5.5.2 Security . . . . ... e 78

6 Group Signatures 79
6.1 Introduction . . . . . . . . . .. L 79
6.2 A Zero-Knowledge Protocol for SDH . . . . . ... ... ... ........ 81
6.3 Short Group Signatures from SDH . . . . .. ... ... ... ....... 84
6.4 BBS Group Signature Security . . . . .. ... oL 87
6.5 Conclusions . . . . . . .. e 93

7 Group Signature Variants and Extensions 94
7.1 Introduction . . . . . . . . . .. 94
7.2 Strong Exculpability for BBS . . . . .. ... oo o 95
7.3 Revocation for BBS using Accumulators . . . . . . .. ... ... L. 96
7.4 Verifier-Local Revocation . . . . . ... ... ... ... ... ... 98
7.4.1 Definitions . . . . . . .. 99

7.4.2 Short VLR Group Signatures from SDH . . . . . .. ... ... ... 102

7.4.3 Intuition. . . . . . . . . .. 106

7.4.4 Proof of Security . . . . . .. ... 109

7.4.5 Efficient Revocation for BS Signatures . . . . . . ... ... ... .. 116

7.4.6 Backward Unlinkability . . . .. ... ... ... ... ... 117

7.4.7 Strong Exculpability for BS . . . . .. ... o000 117

7.5 Conclusions and Open Problems . . .. ... ... ... ... ........ 118
Bibliography 119

X



List of Tables

2.1 Suitable supersingular elliptic curves with k=6. . . . . . . ... ... ...
2.2 Suitable MNT curves . . . . . . . . . .. .

2.3 Suitable Barreto-Naehrig curves . . . . . . . ... o oL



Chapter 1

Introduction

In a digital signature scheme, Alice uses her private key to sign a message of her choice.
This procedure creates a signature, a short string that binds Alice to the message and the
message to her. Anyone who has Alice’s public key, the signature, and the message can
verify that the signature is wvalid, i.e., was produced by Alice on the message at hand. No
one but Alice can generate a signature on any message that verifies as valid under Alice’s
public key.

Digital signatures thus provide authenticity and integrity. That is, a signature by Alice
on a message demonstrates that it was Alice who signed (and, therefore, intended to send)
that message; and that the message is exactly the message sent by Alice, and was not
tampered with. In a legal setting, they are sometimes said to provide nonrepudiation;
however, this term is not well defined [77].

Signatures are a standard cryptographic primitive with many applications in higher-level

protocols.

My Thesis. Groups featuring a computable bilinear map are particularly well suited for
signature-related primitives.

For some signature variants the only construction known is based on bilinear maps.
Where constructions based on, e.g., RSA are known, bilinear-map—based constructions are

simpler, more efficient, and yield shorter signatures.

Evidence. In this thesis, we describe several constructions that support the claim above.

First, we consider Boneh-Lynn-Shacham (BLS) and Boneh-Boyen short signatures. BLS



CHAPTER 1. INTRODUCTION 2

signatures with security comparable to 1024-bit RSA are 160 bits long, the shortest of any
scheme based on standard assumptions. BB signatures can be as short as BLS or (in a
variant with longer signatures) can be proved secure without random oracle.

Next, we present several extension and variants of BLS signatures. Amongst these is
the Boneh-Gentry-Lynn-Shacham (BGLS) aggregate signature scheme. In an aggregate
signature scheme, it is possible, given n signatures on n distinct messages from n distinct
users, to aggregate all these signatures into a single short signature. This single aggregate
suffices to convince a verifier that the the users did indeed sign their respective messages.

BGLS aggregates are based on BLS signatures and are 160 bits long, regardless of how
many signatures are aggregated. No construction is known for aggregate signatures that
does not employ bilinear maps.

We also show that BGLS aggregates give rise to verifiably encrypted signatures, a sig-
nature variant with applications in contract signing.

In a digression, we show how one can construct sequential aggregate signatures based
only on the existence of trapdoor permutations. Sequential aggregate signatures is variant
of aggregate signatures in which signing-and-aggregation is a single operation, in which each
signer adds her signature to the aggregate signature of all the signers before her.

Next, we present the Boneh-Boyen-Shacham (BBS) group signature scheme. Group
signatures provide anonymity for signers. Any member of the group can sign messages, but
the resulting signature keeps the identity of the signer secret. In some systems there is a
third party that can trace the signature, or undo its anonymity, using a special trapdoor.
BBS group signatures with security comparable to 1024-bit RSA are 1443 bits long, shorter
than any previous scheme by an order of magnitude. The signing operation is also an order
of magnitude more efficient than in previous schemes.

Finally, we consider variants and extensions of the BBS group signature scheme, in-
cluding a group signature with a novel revocation mechanism that we call verifier-local
revocation (VLR). In a VLR group signature, messages announcing the revocation of some
users need only be processed by the verifiers; the signers are stateless. We present the
Boneh-Shacham VLR group signature scheme, which has signatures even shorter than in
BBS.



CHAPTER 1. INTRODUCTION 3

1.1 Previous Publication

The BLS short signature scheme of Section 3.3 and the notes on elliptic curve families in
Section 2.3 originally appeared in “Short Signatures from the Weil Pairing,” joint work
with Dan Boneh and Ben Lynn, of which an extended abstract was presented at Asiacrypt
2001 [27] and which appeared in the Journal of Cryptology [28].

The BGLS aggregate signature scheme of Section 4.4 and the BGLS2 verifiably en-
crypted signature scheme of Section 4.5 originally appeared in “Aggregate and Verifiably
Encrypted Signatures from Bilinear Maps,” joint work with Dan Boneh, Craig Gentry, and
Ben Lynn, which was presented at Eurocrypt 2003 [26].

The LMRS sequential aggregate signature scheme of Chapter 5 originally appeared
in “Sequential Aggregate Signatures from Trapdoor Permutations,” joint work with Anna
Lysyanskaya, Silvio Micali, and Leonid Reyzin, which was presented at Eurocrypt 2004 [79].

The BBS group signature scheme of Chapter 6, along with its extensions in Sections
7.2 and 7.3 originally appeared in “Short Group Signatures,” joint work with Xavier Boyen
and Dan Boneh, which was presented at Crypto 2004 [24].

The BS group signature with verifier-local revocation of Section 7.4 originally appeared
in “Group Signatures with Verifier-Local Revocation,” joint work with Dan Boneh, which
was presented at ACM CCS 2004 [29].



Chapter 2

Mathematical Background

2.1 Mathematical Setting

2.1.1 Groups

Throughout the thesis, we use the following notation:
e (51 is a multiplicative cyclic group of prime order p;
e (32 is a multiplicative group of exponent p, whose order is some power of p.
e ¢ is a homomorphism from G5 onto Gj.
e g9 is an order-p element of G2 and g; is a generator of G such that 1(g2) = g1.

The elements g; and g are selected at random as part of system setup. Having selected go,
we typically restrict Ga to its cyclic order-p subgroup (gs). The restriction of ¢ to this
subgroup gives an isomorphism onto Gy.!

One could set G; = G, but we allow for the more general case where G; # (G5 so that
we can take advantage of certain families of non-supersingular elliptic curves as described
in Sections 2.3.5 and 2.3.5.

Some schemes described in this thesis make explicit use of the map 1. For others (e.g.,
the BLS short signature scheme of Section 3.3), the map is used only in the proof of security.

Even so, the map isn’t merely a proof artifact. We give in Section 3.3.1 an example of a

"When G2 is not restricted in this way, it is possible to use the pairing to test whether two points
g2,h € G2 are such that h € (g2). Protocols in which messages include elements of G2 can thus leak
information. None of the protocols in this thesis transmits elements of Ga.



CHAPTER 2. MATHEMATICAL BACKGROUND )

bilinear group pair on which the BLS signature scheme is insecure precisely because 1 does

not exist.

2.1.2 The Bilinear Map

We also employ bilinear maps. For these, we use the following notation:
e (7 is a multiplicative cyclic group of order p.
e cisamap e: Gy X Gy — G with the following properties:

— Bilinear: for all u € Gy,v € Gy and a,b € Z, e(u®,v?) = e(u, v)®.
— Non-degenerate: e(1(g2), g2) # 1 for all but at most a (2/p)-fraction of go € G.
When provided a generator go by an untrusted party, one can use the pairing to verify that

e(¥(g2), g2) # 1 holds.

2.1.3 Running Times

Throughout this thesis, we use a concrete analysis in which time is measured according to
some fixed computational model —say, state transitions in a probabilistic (oracle) Turing

machine— and then normalized so that the following operations take unit time:
e computing the group operation on GG; and on Go;
e evaluating the homomorphism ;
e selecting an element of G1 or G uniformly at random; and

e evaluating the bilinear map e.

2.1.4 Hashing

Some schemes in this thesis make use of a hash function H : {0,1}* — Z,. Others require
that H map onto G7 or (in the case of BS group signatures, Section 7.4.2) onto Gs2. In

Section 2.3.3, we discuss how one might instantiate a hash function onto these groups.



CHAPTER 2. MATHEMATICAL BACKGROUND 6

2.2 Complexity Assumptions

2.2.1 Computational and Decisional co-Diffie-Hellman
With the setup above we obtain natural generalizations of the CDH and DDH problems:

Computational co-Diffie-Hellman (co-CDH) on (G1,G2): Given ¢2,¢99 € Gaand h €
(G1 as input, compute h® € G7.

Decision co-Diffie-Hellman (co-DDH) on (G1,G2): Given g2, g5 € G2 and h, ht e G4

as input, output yes if @ = b and no otherwise.

We call a tuple of the form (g2, 99, h, h*) a co-Diffie-Hellman tuple. When G; = G2 these
problems reduce to standard CDH and DDH.

We define the success probability of an algorithm A in solving the Computational co-
Diffie-Hellman problem on (G, G2) as

Advy " € Py [A(gz,g‘zl, hy=h": g & Goa & 7,0 & Gy

The probability is over the uniform random choice of g from Gs, a from Z,, h from G,
and over the coin tosses of A. We say that an algorithm A (¢, €)-breaks Computational
co-Diffie-Hellman on (G1, G2) if A runs in time at most ¢, and Advff'th is at least e.

We are interested in the case where a computable bilinear map exists, but Computational

co-Diffie-Hellman is hard, motivating the following definition:

Definition 2.2.1. We say that two groups (G, G2) as in Section 2.1 above are a (t, €)-bi-
linear group pair if no algorithm (¢, €)-breaks Computational co-Diffie-Hellman on (G1, G2).

If G; = G2, we say that (1 is a bilinear group.

Joux and Nguyen [70] showed that an efficiently-computable bilinear map e provides
an algorithm for solving the Decision co-Diffie-Hellman problem as follows: For a tuple

(92,95, h, hb) where h € G7 we have
a=bmodp <= e(h,gd) =e(hb g) .

This test succeeds except when e(¢(g2),g2) = 1 and therefore e(h, g2) = 1; but this only
happens with negligible probability. Consequently, Decision co-Diffie-Hellman can be solved

in 2 time units on a bilinear group pair (G, G2).



CHAPTER 2. MATHEMATICAL BACKGROUND 7

When we wish to highlight that a scheme requires only that it be easy to solve Decision
co-Diffie-Hellman on (G1, G3), we refer to (G1,G2) as a Gap co-Diffie-Hellman group pair.
Specifically, two groups (G1,G2) as in Section 2.1 above (omitting the bilinear map e) are
a (t,e)-Gap co-Diffie-Hellman group pair if there is a procedure for solving Decision co-
Diffie-Hellman on (G1,G2) in 2 time units, but no algorithm (¢, €)-break Computational
co-Diffie-Hellman on (G1,G2). If G1 = Go, we say that G is a Gap Diffie-Hellman group.

Currently, the only examples of such Gap co-Diffie-Hellman groups arise from bilinear

maps. It is possible that other constructions for useful Gap co-Diffie-Hellman groups exist.

2.2.2 The Strong Diffie-Hellman Assumption

We present the ¢-Strong Diffie-Hellman (SDH) problem. This problem, introduced by
Boneh and Boyen [23], has similar properties to the Strong-RSA problem [10], as we will

see.

g-Strong Diffie-Hellman Problem: Given a (¢ + 2)-tuple (gl,gg,g;,gg'YQ), e ,qu)) as

1 T
1/(74— ), z)

input, with g1 = ¢(g2), output a pair (g , where © € Zj.

We define the success probability of an algorithm A in solving the g¢-Strong Diffie-
Hellman problem on (G1,G3) as

1
4 x
Adv'(q) % py Alg1,92,63,-05")) = (977, @) -

R R
g2 — Ga,v — L5, g1 < Y (g2)

The probability is over the uniform random choice of g, from G, a from Z,, h from G, and
over the coin tosses of A. An algorithm A (¢, ¢, €)-breaks Strong Diffie-Hellman on (G1, G3)

if A runs in time at most ¢, and Advfflih(q) is at least e.

Definition 2.2.2. We say that the (g, t, €)-SDH assumption holds in (G, G2) if no t-time
algorithm (¢, g, €)-breaks Strong Diffie-Hellman on (G, Ga2).

Occasionally we drop the ¢t and € and refer to the ¢-SDH assumption rather than the
(g, t,€)-SDH assumption.

Mitsunari et al. [90] use a related assumption (where x is specified in advance rather
than chosen by the adversary) in a tracing-traitors system.

To gain confidence in the ¢-SDH assumption, Boneh and Boyen prove [23] that it holds

in generic groups in the sense of Shoup [108].



CHAPTER 2. MATHEMATICAL BACKGROUND 8

2.2.3 The Decision Linear Diffie-Hellman Assumption

With the setup as above, along with arbitrary generators u, v, and h of G, consider the

following problem:

Decision Linear Problem in G;: Given u,v, h,u® v*,h¢ € Gy as input, output yes if

a + b = ¢ and no otherwise.

One can easily show that an algorithm for solving Decision Linear in G gives an algo-
rithm for solving DDH in GG;. The converse is believed to be false. That is, it is believed
that Decision Linear is a hard problem even in bilinear groups where DDH is easy (e.g.,
when G; = G3). More precisely, we define the advantage of an algorithm A in deciding the

Decision Linear problem in GG as

Pr [.A(u, v, h,u®, v, k%) = yes : u, v, h & G1i,a,b & Zp}

Advlinear def
A —Pr [.A(u, v, h,u®,v*,n) = yes : u,v,h,n E Gi,a,b E Zp]

The probability is over the uniform random choice of the parameters to A, and over the
coin tosses of A. We say that an algorithm A (, €)-decides Decision Linear in G if A runs

in time at most ¢, and Advinear is at least e.

Definition 2.2.3. We say that the (t,€)-Decision Linear Assumption holds in G if no

t-time algorithm has advantage at least € in solving the Decision Linear problem in Gj.

Boneh, Boyen, and Shacham show [24] that the Decision Linear Assumption holds in

generic bilinear groups [108].

Linear Encryption

The Decision Linear problem gives rise to the Linear encryption scheme, a natural extension
of ElGamal encryption. Unlike ElGamal encryption, Linear encryption can be secure even in
groups where a DDH-deciding algorithm exists. In this scheme, a user’s public key is a triple
of generators u, v, h € G1; her private key is the exponents x,y € Z, such that u* = v¥ = h.
To encrypt a message M € G, choose random values a,b € Z,, and output the triple
(u®, vl m - hotb ). To recover the message from an encryption (71,75, T3), the user computes
T5/(T¢ - T3). By a natural extension of the proof of security of ElGamal, Linear encryption

is semantically secure against a chosen-plaintext attack, assuming Decision Linear holds.



CHAPTER 2. MATHEMATICAL BACKGROUND 9

2.2.4 Implications of DDH Hardness on G

When G and Go are distinct groups, the Boneh-Boyen-Shacham proof [24] shows that,
in the generic model, the standard Decision Diffie-Hellman (DDH) problem is hard in the
group G7 (even though DDH in G2 is easy). For DDH to be hard in a specific group
G1, the map ¢ : Go — G must be computationally one-way. This requirement may hold
when the bilinear groups are instantiated using the Weil or Tate pairing over MNT and
Barreto-Nachrig curves, which we discuss in Section 2.3.4 below. In this instantiation,
(31 is defined over the ground field of the curve where as Go is defined over a low-degree
extension. Supersingular curves do not have this property since DDH is known to be easy
on all cyclic subgroups [55].

Now suppose that for MNT curves the DDH assumption holds in G;. In this case we
can construct even shorter group signatures and group signatures that satisfy CCA2-full-

anonymity.

Shorter Group Signatures. If DDH holds in G; then ElGamal encryption is secure
in G1 and can be used as the encryption in the BBS group signature of Section 6.3: 71 = u®,
Ty = A-v®. (The preimages ¢~ '(u), "1 (v) € G2 of u,v € G1 must not be revealed.) The
group signature then comprises only two elements of G; and four of Z,. With parameters
chosen as in Section 6.3, we obtain a 1022-bit group signature whose security is comparable
to that of standard 1024-bit RSA signatures. This is about 30% shorter than the signatures

in Section 6.3.

Full-CCA-Anonymity. Likewise, if DDH holds in G; then the Cramer-Shoup encryption
scheme [44] is secure in Gi, and can be used in the BBS group signature scheme. Since
Cramer-Shoup encryption is semantically secure against an adaptive CCA2 attack, the
resulting group signature scheme is CCA2-fully-anonymous and thus secure in the full BMW
model. Cramer-Shoup encryption entails a four-tuple (71, 75, T3, Ty) of elements of G;. The
proof of security entails four elements of Z,. Instantiated with the same parameters as
above, the resulting group signature is 1364 bits long.

We emphasize that currently nothing is known about the complexity of the DDH problem
in the ground field of an MNT curve and relying on this assumption seems risky. This

question deserves further study.



CHAPTER 2. MATHEMATICAL BACKGROUND 10

2.3 Elliptic Curves and Bilinear Maps

We quickly summarize the results from elliptic curves on which we rely. For more details, see
Blake, Seroussi, and Smart [20], Galbraith [53], Menezes [83], Lang [76], and Silverman [110].

2.3.1 Notation and Background

Let ¢ be a prime power. We use E/F, to denote an elliptic curve with coefficients in F,.
For [ > 1, we use E(F,) to denote the group of points on E in F ;. We use #E(F, ) to
denote the number of points in E(F ).

Let 7 be a prime dividing #E(F,) such that r { ¢. The embedding degree of E/F, is
the smallest positive integer k such that 7 | ¢* — 1. Then F;k contains u,., the group of rth
roots of unity.

Let E(F)[r] be the group of r-torsion points in E(F ), i.e., {P € E(Fu) | rP = O}.
Then E(IF«)[r] is a group of exponent r, and is isomorphic to Z, X Z,. Similarly, let r E(F )
be the group {rP | P € E(F)}. Then E(F)/rE(F,) is also a group of exponent r, and
is isomorphic to Z, X Z,.

For the curves of interest, E(F)[r]fE(F;r) = (), and we can represent elements of
E(F ) /rE(F ) using E(F)[r].

The Weil and Tate pairings. The Weil pairing is a map e : E(F)[r] x E(F)[r] — p,
with the following properties:

(i) Identity: for all R € E(F)[r], e(R, R) = 1.

(i) Bilinear: for all R, Ry € E(F)[r] and a,b € Z we have e(aR1,bRs) = e(R1, Ry)™.

(iii) Non-degenerate: if for R € E(F)[r] we have e(R, R') = 1 for all R' € E(F)[r], then
R=0.

(iv) Computable: for all Ry, Ry € E[p], the pairing e(R;, R2) can be computed in polyno-

mial time [88].

The Tate pairing [52] (with final powering by (¢* —1)/r) is a map e : E(F)[r] x
E(F)/rE(F) — p,. This pairing is again bilinear, computable, and non-degenerate,

though the non-degeneracy condition is more complicated.



CHAPTER 2. MATHEMATICAL BACKGROUND 11

The Groups Gi, G2, and Gr. We define G; to be E(Fy)[r], the r-torsion points of E
over the base field F,. This group has r points. (Pairing evaluation is more efficient when
the first argument has coordinates in the base field.) We define G to be E(F)[r] for the
Weil pairing, or E(F)/rE(F ) for the Tate pairing. (Again, these are equivalent for our

purposes.) This is a group of exponent r, with 72 points.? Finally, G7 is the group u,..

The Trace Map. We present a computable homomorphism 1 : Gy — (G, using the trace
map, tr, which sends points in E(F ) to E(F,). Let o1,..., 04 be the Galois maps of Fx
over Fy. Also, for R = (z,y) € E(F, ) define 0;(R) = (0i(),04(y)). Then the trace map
tr: E(F) — E(F,) is defined by:

tr(R) = (1/K)[on(R) + - + ou(R)] .

In fact, for points in E(F)[r] = G2, the output of tr is in E(F,)[r] = G;. It is easy to
show that tr is a homomorphism from Gs to G. It is computable in time polynomial in k

and log g as required.

2.3.2 Intractability of co-CDH on (G, Gs)

The remaining question is the difficulty of the co-CDH problem on (G1,G2). We review
necessary conditions for CDH intractability. The best known algorithm for solving co-CDH
on (G1,G2) is to compute discrete-log in Gy. In fact, the discrete-log and CDH problems
in G; are known to be computationally equivalent given some extra information about
the group G7 [81]. Therefore, it suffices to consider necessary conditions for making the
discrete-log problem on E(F,) intractable.

Let (P) be a subgroup of E(F,) of order r with embedding degree k. We briefly discuss

two standard ways for computing discrete-log in (P).

1. MOV: Use an efficiently computable homomorphism, as in the Menezes-Okamoto-
Vanstone reduction [82], to map the discrete log problem in (P) to a discrete log
problem in some extension of Fg, say F,i. We then solve the discrete log problem in
7, using the Number Field Sieve algorithm [106]. The image of (P) under this homo-

morphism must be a subgroup of F;i of order r. Thus we have r | ¢ — 1, which by the

20f the 72 points, r will coincide with G4, and 7 will have trace O. This motivates the (2/p) constant in
Section 2.1.2 above.



CHAPTER 2. MATHEMATICAL BACKGROUND 12

definition of k implies that ¢ > k. Hence, the MOV method can, at best, reduce the
discrete log problem in (P) to a discrete log problem in a subgroup of F;k. Therefore,
to ensure that discrete log is hard in (P) we want curves where k is sufficiently large

to make discrete log in sz intractable.

2. Generic: Generic discrete log algorithms such as Baby-Step-Giant-Step and Pollard’s
Rho method [84] have a running time proportional to ,/plogp. Therefore, we must

ensure that p is sufficiently large.

In summary, we want curves E/IF, where both a generic discrete log algorithm in E(F,)
and the Number Field Sieve in sz are intractable. At the same time, since elements
of G have representation of length [log, ¢| and elements Gy have representation of length

[klogsy q|, we wish to keep ¢ as small as possible.

2.3.3 Hashing onto elliptic curves

Many schemes based in this thesis require a hash function H : {0,1}* — G;. In the elliptic
curve setting above, this requires a map onto E(Fy)[r]. Since it is difficult to build hash
functions that hash directly onto a subgroup of an elliptic curve we slightly relax the hashing
requirement.

Let F, be a field of characteristic greater than 2. Let E/F, be an elliptic curve defined
by y? = f(z) and let E(F,) have order m. Let P € E(F,) be a point of prime order r,
where p? does not divide m. We wish to hash onto the subgroup G; = (P). Suppose we are
given a hash function H' : {0,1}* — F, x {0, 1}. Such hash functions H' can be built from
standard cryptographic hash functions. The security analysis will view H' as a random
oracle. We use the following deterministic algorithm called MapToGroup to hash messages
in {0,1}" onto G;. Fix a small parameter I = [log,logy(1/8)], where ¢ is some desired
bound on the failure probability.

MapToGroupy,: The algorithm defines H : {0,1}* — G as follows:
1. Given M € {0,1}*, set i < 0;
2. Set (z,b) «— H'(i || M) € Fy x {0,1}, where i is represented as an I-bit string;

3. If f(z) is a quadratic residue in F; then do:



CHAPTER 2. MATHEMATICAL BACKGROUND 13

3a. Let yo,y1 € F, be the two square roots of f(x). We use b € {0,1} to choose
between these roots. Choose some full ordering of F, and ensure that y; is
greater than yo according to this ordering (swapping yo and y; if necessary). Set
Py € E(F,) to be the point Py = (2, ).

3b. Compute Py = (m/r)PM. Then Py is in Gi. If Py # O, declare that
MapToGroupy/ (M) = Py and stop; otherwise, continue with Step 4.

4. Otherwise, increment ¢, and go to Step 2; if ¢ reaches 27, report failure.

The failure probability can be made arbitrarily small by picking an appropriately large I.
For each 4, the probability that H'(i || M) leads to a point on G is approximately 1/2
(where the probability is over the choice of the random oracle H’). Hence, the expected
number of calls to H' is approximately 2, and the probability that a given message M will
be found unhashable is 1/22") < §.

It can be shown [28] that BLS signatures remain secure when the when the hash function
H is computed with MapToGroupy, and H' is a random oracle hash function H' : {0,1}* —

F, x {0,1}. Similar arguments apply to other schemes.

Hashing onto G3. A similar procedure can be used to construct a hash function with
domain in G5. In this case, it is important that by G we mean the full r2-element group

E(Fx)[r]. It is an open problem to construct a hash onto the r-element subgroup (Q) when

Q & E(Fy)[r] = G

2.3.4 Suitable Curves

We briefly describe three families of elliptic curves with useful embedding degrees. The first

two families have embedding degrees k = 6; the third has embedding degree k = 12.

Supersingular Curves

Boneh, Lynn, and Shacham note [28] that the supersingular curves BT : y? = 23 + 2z + 1
over Fy have embedding degree k = 6, the most of any supersingular curves (cf. citeWater-
house,Koblitz1). They also show that curves ET and E~ have a useful automorphism that
make the prime-order subgroups of ET(F5) and £~ (F5) into bilinear groups (as opposed

to bilinear group pairs).



CHAPTER 2. MATHEMATICAL BACKGROUND 14

curve | [ Sig Size | DLog Security | MOV Security
[log, 3'] [logy 7] [61og, 3']
E~ 79 126 126 752
E* 97 154 151 923
Et 121 192 155 1151
Et 149 237 220 1417
E*T | 163 259 256 1551
E~ ]163 259 259 1551

Table 2.1: Supersingular elliptic curves with k = 6. Here r is the largest prime divisor of
#E(F3) The MOV reduction maps the curve onto a field of characteristic 3 of size 3%.

Some useful instantiations of these curves are presented in Table 2.1. Note that we
restrict these instantiations to those where £ is prime, to avoid Weil-descent attacks [56, 59],
except for £ = 121. It has recently been shown that certain Weil-descent attacks are not

effective for this case [46].

Performance There is a substantial literature on speeding up pairing evaluation on su-
persingular curves over fields of low characteristic [54, 12, 11]. Accordingly, pairing-based
protocols implemented using the curves E* will be much faster than using the other curves

discussed in this section.

Shorter Representation for G;. To obtain larger embedding degree, Rubin and Sil-
verberg [105] propose certain Abelian varieties. They show that elements of G using the
supersingular curves proposed here can be shortened by 20%. The result is an n-bit signa-

ture where the pairing reduces the discrete log problem to a finite field of size approximately
27.5n‘

2.3.5 The bad news

MOV reduces the discrete log problem on E*(Fy) and £~ (F3) to a discrete log problem
in Fi,,. A discrete-log algorithm due to Coppersmith [38, 106] is specifically designed to
compute discrete log in small characteristic fields. Consequently, a discrete-log problem in
[F3n is much easier than a discrete-log problem in F; where p is a prime of approximately
the same size as 3. To get security equivalent to DSA using a 1024-bit prime, we would

have to use a curve E(F4) where 3% is much larger than 1024 bits. This leads to much



CHAPTER 2. MATHEMATICAL BACKGROUND

15

Discriminant | Signature Size | DLog Security | MOV Security
D [log, q] [logy 7] [61og, q]

13368643 149 149 894
254691883 150 147 900
8911723 157 157 942
62003 159 158 954
12574563 161 161 966
1807467 163 163 978
6785843 168 166 1008
28894627 177 177 1062
153855691 185 181 1110
658779 199 194 1194
1060147 203 203 1218
20902979 204 204 1224
9877443 206 206 1236

Table 2.2: Suitable MNT curves. Here F is a curve over the prime field F, and r is the
largest prime dividing its order. The MOV reduction maps the curve onto the field F. D
is the discriminant of the complex multiplication field of E/F,.

longer signatures, defeating the point of using these curves.

MNT Curves

Miyaji, Nakabayashi, and Takano [91] describe a family of ordinary (non-supersingular)
elliptic curves with k£ = 6.
These curves are constructed using complex multiplication [20, chapter VIII].

Table 2.2 gives some values of the discriminant D that lead to suitable curves.

Barreto-Naehrig Curves

Recently, Barreto and Naehrig [13] described a family of ordinary curves with k& = 12.

Table 2.3 describes some suitable curves produced by the Barreto-Naehrig method.



CHAPTER 2. MATHEMATICAL BACKGROUND 16

Signature Size | DLog Security | MOV Security
[logy ¢ [logy 7] [6logy q]
160 160 1920
192 192 2304
224 224 2688
256 256 3072

Table 2.3: Suitable Barreto-Naehrig curves. Here E is a curve over the prime field F, and
r is the largest prime dividing its order. The MOV reduction maps the curve onto the field
F,. D is the discriminant of the complex multiplication field of E/F,.



Chapter 3

Short Signatures

3.1 Introduction

Short digital signatures are needed in environments with strong bandwidth constraints. For
example, product registration systems often ask users to key in a signature provided on a
CD label. When a human is asked to type in a digital signature, the shortest possible
signature is needed. Similarly, due to space constraints, short signatures are needed when
one prints a bar-coded digital signature on a postage stamp [101, 92]. As a third example,
consider legacy protocols that allocate a fixed short field for non-repudiation [3, 69]. One
would like to use the most secure signature that fits in the allotted field length.

The two most frequently used signatures schemes, RSA and DSA, produce relatively
long signatures compared to the security they provide. For example, when one uses a
1024-bit modulus, RSA signatures are 1024 bits long. Similarly, when one uses a 1024-bit
modulus, standard DSA signatures are 320 bits long. Elliptic curve variants of DSA, such
as ECDSA, are also 320 bits long [4]. A 320-bit signature is too long to be keyed in by a
human.

In this Chapter, we describe two signature schemes in which signature length is ap-
proximately 160 bits and which provide a level of security similar to that of 320-bit DSA
signatures. The first, BLS, is secure against existential forgery under a chosen-message
attack (in the random oracle model), assuming the Computational Diffie-Hellman problem
(CDH) is hard on certain elliptic curves over a finite field. The second, BB, is secure as-
suming the Strong Diffie-Hellman problem is hard. A BB variant can also be proven secure

without random oracles, but signatures in this variant are twice as long.

17



CHAPTER 3. SHORT SIGNATURES 18

For both BLS and BB, generating a signature is a simple multiplication on the curve.
Verifying the signature is done using a bilinear pairing on the curve. Both schemes inherently
use properties of curves. Consequently they have no equivalent in Fy, the multiplicative
group of a finite field.

Constructing short signatures is an old problem. Several proposals show how to shorten
DSA while preserving the same level of security. Naccache and Stern [92] propose a variant
of DSA where the signature length is approximately 240 bits. Mironov [89] suggests a
DSA variant with a similar length and gives a concrete security analysis of the construction
in the random oracle model. Other work aims at reducing the length of signature in the
RSA setting. For example, Gentry shows how to compress Rabin signatures to two-thirds
of their original length. [63]. Another technique proposed for reducing signature length
is signatures with message recovery [94, 101]. In such systems one encodes a part of the
message into the signature thus shortening the total length of the message-signature pair.
For long messages, one can then achieve a DSA signature overhead of 160 bits. However,
for very short messages (e.g., 64 bits) the total length remains 320 bits. Using BLS or BB,
the signature length is always on the order of 160 bits, however short the message. We also
note that Patarin et al. [98, 43] construct short signatures whose security depends on the
Hidden Field Equation problem.

The BLS signature scheme resembles the undeniable signature scheme of Chaum and
Pedersen [35]. Because of its simple mathematical structure, the scheme has several useful
properties. These are described in the next chapter. The BB signature scheme is related to

the group signature schemes presented in Chapters 6 and 7.

3.2 Signature Security Definitions

Formally, a signature scheme is a triple of algorithms SZG = (Kg, Sig, Vf), which behave as

follows.

Sig.Kg. This randomized algorithm outputs a public verification key pk and a private
signing key sk.

Sig.Sig(sk, M). This algorithm takes as input a private key sk and a message M in some

message space (typically {0,1}") to be signed, and returns a signature o on M.



CHAPTER 3. SHORT SIGNATURES 19

Sig.Vf(pk, M, o). The verification algorithm takes as input a public key pk, and a purported

signature o on a message M. It returns either valid or invalid.

The signing algorithm Sig can also be a randomized algorithm, in which case we say
that the signature scheme is randomized. In a randomized signature scheme, the signing
algorithm will typically issue different signatures if reinvoked with different randomness.
Even if the signing algorithm is not randomized, there might still be more than one valid
signature on a given message under a given public key.! A signature scheme where this
never occurs — where for every valid public key and message there is only a single signature
that Vf accepts as valid —is said to be unique.

We now recall the standard definition for signature scheme security. Existential unforge-
ability under a chosen message attack [66] for a signature scheme SZG is defined using the

following game between a challenger and an adversary A:

Setup. The challenger runs algorithm Kg to obtain a public key pk and private key sk.
The adversary A is given pk.

Queries. Proceeding adaptively, A requests signatures with pk on at most ¢g mes-
sages of his choice My, ..., M, € {0,1}*. The challenger responds to each query
with a signature o; = Sig(sk, M;). In the random oracle model, the adversary

can also make g, queries to a hash oracle H.

Output. Eventually, A outputs a pair (M, o) and wins the game if (1) M is not any
of My,..., M, and (2) Vf(pk, M,o) = valid.

We define Advssi%'g,fjma to be the probability that A wins in the above game, taken over
the coin tosses of Kg, of A, and of Sig if it randomized.

For non-unique signature schemes, it is possible that the adversary can obtain a sig-
nature o on a message M from its signing oracle and transform it into a different valid
signature ¢’. Under the definition above, this is not considered a forgery. (Under a re-
lated security definition, strong existential unforgeability, this would be a forgery [2]. The
signature schemes in this thesis are all unique, however, so we do not consider strong un-

forgeability further.)

Definition 3.2.1. A forger A (¢, qs, qu, €)-breaks a signature scheme SZG if A runs in time

at most t, A makes at most ¢4 signature queries and at most g5 queries to the hash function,

! An example is the BLS variant with tight security reduction given by Katz and Wang [71], where every
message has two valid signatures, only one of which is ever output by the signing algorithm.



CHAPTER 3. SHORT SIGNATURES 20

and Advi«i%gefjma is at least €. A signature scheme is (¢, qs, qu, €)-existentially unforgeable

under an adaptive chosen-message attack if no forger (t, qs, qu, €)-breaks it.

3.3 Short Signatures based on CDH

We present a signature scheme that works on any Gap co-Diffie-Hellman group pair (G, G2).
We prove security of the scheme and, in the next section, show how it leads to short
signatures. The scheme resembles the undeniable signature scheme proposed by Chaum
and Pedersen [35]. Okamoto and Pointcheval [97] briefly note that gap problems can give
rise to signature schemes. However, most gap problems will not lead to short signatures.
Let (G1,G2) be (t,e)-Gap co-Diffie-Hellman group pair where |G1| = |G2| = p. A
signature o is an element of (G1. The signature scheme comprises three algorithms, Kg, Sig,
and Vf. It makes use of a full-domain hash function H : {0,1}* — G;. In Section 2.3.3
we weaken the requirement on the hash function H. The security analysis views H as a

random oracle [16, 17].

BLS.Kg. Pick random z & Zy and compute v « g3. The public key pk is v € G2. The

private key sk is x.

BLS.Sig(sk, M). Parse the user’s private key sk as « € Z,. Compute h — H(M) € G and

o < h*. The signature is o € G.

BLS.Vf(pk, M, o). Parse the user’s public key pk as v € G3. Compute h — H(M) € Gy
and verify that (go,v,h, o) is a valid co-Diffie-Hellman tuple. If so, output valid; if

not, output invalid.

A signature is a single element of G1. To construct short signatures, therefore, we
need co-GDH group pairs where elements in G; have a short representation. We briefly
describe how to construct such groups in Section 2.3. Using the Barreto Naehrig curves of

Section 2.3.5, we can obtain 160-bit signatures with 1024-bit security.

3.3.1 Security

We prove the security of the BLS signature scheme against existential forgery under adaptive

chosen-message attacks in the random oracle model. Security follows from the hardness of



CHAPTER 3. SHORT SIGNATURES 21

co-CDH on (G1,G2). When G7 = G security is based on the standard Computational

Diffie-Hellman assumption in G.

Theorem 3.3.1. Let (G1,G3) be a (t',€')-co-GDH group pair of order p. Then BLS on
(G1,G2) is (t,qs, qu, €)-secure against existential forgery under an adaptive chosen-message

attack (in the random oracle model), for all t and € satisfying
e>elqgs+1)-¢ and t <t'—cq (g +2qs) -

Here cg, is a constant that depends on G1, and e is the base of the natural logarithm.

Proof. Suppose A is a forger algorithm that (¢, ¢s, gu, €)-breaks the signature scheme. We
show how to construct a ¢'-time algorithm B that solves co-CDH on (G, G3) with probability
at least €. This will contradict the fact that (G1,G2) is a (¢, €')-co-GDH group pair.

Let g2 be a generator of Gy. Algorithm B is given g2, u € G2 and h € Gy, where u = ¢§.
Its goal is to output A* € Gy. Algorithm B simulates the challenger and interacts with

forger A as follows.

Setup. Algorithm B starts by giving A the generator go and the public key u - g5 € Go,

where r is random in Z,.

H-queries. At any time algorithm A can query the random oracle H. To respond to these
queries algorithm B maintains a list of tuples (M, w;,b;, cj) as explained below. We
refer to this list as the H-list. The list is initially empty. When A queries the oracle
H at a point M; € {0,1}*, algorithm B responds as follows:

1. If the query M; already appears on the H-list in a tuple (M;,w;,b;,c;) then
algorithm B responds with H(M;) = w; € Gj.

2. Otherwise, B generates a random coin ¢; € {0, 1} so that Pr[¢; = 0] =1/(gs +1).

3. Algorithm B picks a random b; € Z,, and computes w; « h'=% - 1(g2)% € Gj.

4. Algorithm B adds the tuple (M;,w;,b;, ¢;) to the H-list and responds to A by
setting H(M;) = w;.

Note that either way w; is uniform in GG; and is independent of A’s current view as

required.



CHAPTER 3. SHORT SIGNATURES 22

Signature queries. Let M; be a signature query issued by A. Algorithm B responds to

this query as follows:

1. Algorithm B runs the above algorithm for responding to H-queries to obtain a
w; € G1 such that H(M;) = w;. Let (M;, w;, b;,c;) be the corresponding tuple
on the H-list. If ¢; = 0 then B reports failure and terminates.

2. Otherwise, we know ¢; = 1 and hence w; = 1(g2)% € Gy. Define o; = (u) -
Y(g2)™ € G1. Observe that o; = wi™" and therefore o; is a valid signature on

M; under the public key u - g5 = g§7". Algorithm B gives o; to algorithm A.

Output. Eventually algorithm A produces a message-signature pair (M, of) such that
no signature query was issued for My. If there is no tuple on the H-list containing
My then B issues a query itself for H(My) to ensure that such a tuple exists. We
assume o is a valid signature on My under the given public key; if it is not, B
reports failure and terminates. Next, algorithm B finds the tuple (M, w, b, c) on the
H-list. If ¢ =1 then B reports failure and terminates. Otherwise, ¢ = 0 and therefore
H(M;) =w = h-1(go)’. Hence, ¢ = h®*" - 4)(g9)?@*"). Then B outputs the required
B as h e o /(7 - () - (g2)").

This completes the description of algorithm B. It remains to show that B solves the given
instance of the co-CDH problem on (G1,G2) with probability at least €. To do so, we

analyze the three events needed for B to succeed:

&1: B does not abort as a result of any of A’s signature queries.

&yt A generates a valid message-signature forgery (My, o).

&3: Event & occurs and ¢ = 0 for the tuple containing M; on the H-list.

B succeeds if all of these events happen. The probability Pr[&; A 3] is:
Pl“[gl VAN 53] = Pr[El] . Pl“[gg | 51] . Pl“[gg | E1 N 52] . (3.1)

The following claims give a lower bound for each of these terms.

Claim 1. The probability that algorithm B does not abort as a result of A’s signature queries
is at least 1/e. Hence, Pr[&1] > 1/e.



CHAPTER 3. SHORT SIGNATURES 23

Proof. Without loss of generality we assume that 4 does not ask for the signature of the
same message twice. We prove by induction that after A makes i signature queries the
probability that B does not abort is at least (1—1/(qs +1))*. The claim is trivially true for
i = 0. Let M; be A’s i’th signature query and let (M;, w;, b;, ¢;) be the corresponding tuple
on the H-list. Then prior to issuing the query, the bit ¢; is independent of A’s view — the
only value that could be given to A that depends on ¢; is H(M;), but the distribution on
H(M;) is the same whether ¢; = 0 or ¢; = 1. Therefore, the probability that this query
causes B to abort is at most 1/(¢s+1). Using the inductive hypothesis and the independence
of ¢;, the probability that B does not abort after this query is at least (1—1/(gs+1))%. This
proves the inductive claim. Since A makes at most ¢g signature queries the probability that

B does not abort as a result of all the signature queries is at least (1—1/(gs+1))% > 1/e. O

Claim 2. If algorithm B does not abort as a result of A’s signature queries then algo-

rithm A’s view is identical to its view in the real attack. Hence, Pr[&2 | £1] > €.

Proof. The public key given to A is from the same distribution as a public key produced
by algorithm Kg. Responses to H-queries are as in the real attack since each response is
uniformly and independently distributed in G;. All responses to signature queries are valid.
Therefore, A will produce a valid message-signature pair with probability at least e. Hence,
Pr[& | & > e O

Claim 3. The probability that algorithm B does not abort after A outputs a valid forgery
is at least 1/(qs + 1). Hence, Pr[€ | &1 N & =1/(gs + 1).

Proof. Given that events & and & happened, algorithm B will abort only if A generates
a forgery (My,oy) for which the tuple (M, w,b,c) on the H-list has ¢ = 1. At the time
A generates its output it knows the value of ¢; for those M; for which it issued a signature
query. All the remaining ¢;’s are independent of A’s view. Indeed, if A did not issue a
signature query for M; then the only value given to A that depends on ¢; is H(M;), but the
distribution on H (M;) is the same whether ¢; = 0 or ¢; = 1. Since A could not have issued
a signature query for My we know that c is independent of A’s current view and therefore
Prlc=0|& N &] =1/(gs + 1) as required. O

Using the bounds from the claims above in equation (3.1) shows that B produces the
correct answer with probability at least €/(e(gs + 1)) > € as required. Algorithm B’s

running time is the same as A’s running time plus the time it takes to respond to (qy + gs)



CHAPTER 3. SHORT SIGNATURES 24

hash queries and ¢s signature queries. Each query requires an exponentiation in G; which
we assume takes time cq,. Hence, the total running time is at most ¢ + ¢, (gu + 2gs) < ¢/

as required. This completes the proof of Theorem 3.3.1. ]

The analysis used in the proof of Theorem 3.3.1 resembles Coron’s analysis of the Full
Domain Hash (FDH) signature scheme [39]. We note that the security analysis can be made
tight using Probabilistic Full Domain Hash (PFDH) [40], at the cost of increasing signature
length. The security reduction in Theorem 3.3.1 can also be made tight without increasing
signature length via the technique of Katz and Wang [71].

The BLS signature scheme requires an algorithm for deciding DDH. In groups where a
DDH-deciding algorithm is not available, Goh and Jarecki [65] show that it is still possible to
construct a signature scheme based on CDH, at the cost of substantially greater signature
length. (Previous signature schemes based on CDH had only loose security reductions,
through the forking lemma [102].) The scheme analyzed by Goh and Jarecki has since been
improved by Katz and Wang [71] and by Chevallier-Mames [37], but signatures in these

variants are still longer than BLS signatures.

The Necessity of the Map v : Go — G1. Recall that the proof of security relied on the
existence of an efficiently computable isomorphism ¢ : G — G1. To show the necessity of
1 we give an example of a bilinear map e : G; X G2 — Gr for which the co-CDH problem
is believed to be hard on (G1,G2) and yet the resulting signature scheme is insecure.

Let ¢ be a prime and let G2 be a subgroup of Z; of prime order p with generator g. Let
G be the group G1 = Z,, with addition. Define the map e : G1 x G2 — G2 as e(x,y) = y*.
The map is clearly bilinear since e(az,y”) = e(x,y)®. The co-CDH problem on (G1, G2)
is as follows: Given g,¢* € G2 and x € G compute ax € G;. The problem is believed
to be hard since an algorithm for computing co-CDH on (G1,G2) gives an algorithm for
computing discrete log in G. Hence, (G, G2) satisfies all the conditions of Theorem 3.3.1
except that there is no known computable isomorphism ¢ : Go — G1. It is is easy to see
that the resulting signature scheme from this bilinear map is insecure. Given one message-
signature pair, it is easy to recover the private key.

We comment that one can avoid using v at the cost of making a stronger complexity
assumption [111]. Without ¢ the necessary assumption for proving security is that no
polynomial time algorithm can compute h* € G given go2,¢99 € G2 and g1,9%,h € Gj.

Since 1 naturally exists in all the group pairs (G1,G2) we are considering, there is no



CHAPTER 3. SHORT SIGNATURES 25

reason to rely on this stronger complexity assumption.

3.4 Short Signatures based on SDH

Boneh and Boyen give a simple signature scheme based on the Strong Diffie-Hellman as-
sumption [23]. In their paper, they present several variants. We will describe two of them:
one that gives a signature as short as BLS, secure in the random oracle model; and another
that gives signatures secure without random oracles. The first of these was independently

discovered by Zhang et al. [118]. It proceeds as follows.

BB.Kg. Select ¢ & Zy, and set w «— ga. key pk is w € G3. The private key sk is 7.

BB.Sig(sk, M). Parse the user’s private key sk as v € Z,. Compute z «— H(M) € Z, and
o — g%/ (vta), (If it happens that v + z equals 0, the message cannot be signed.) The

signature is o € G.

BB.Vf(pk, M, o). Parse the user’s public key pk as w € Ga. Compute z < H(M) € Z, and
verify that e(o, wg3) = e(g1, g2) holds. If so, output valid; if not, output invalid.

It is easy to see that the scheme is valid: for a correctly formed signature, we have

e(o, wgg) = e(9’ """, g3 - g5) = e(g1, 92), as required.

3.4.1 Proof of Security

We begin by describing a technique, used in Lemma 3.2 [23], of which we will make use
again in proving the security of the BBS group signature scheme (Section 6.4) and the
BS VLR group signature scheme (Section 7.4.4). A similar construction occurs also in the
traitor-tracing scheme of Mitsunari, Sakai, and Kasahara [90].

Using this technique, we prove the security of the BB scheme in the random oracle

model.

The Fundamental SDH Technique. We are given a ¢-SDH instance (g}, g5, (¢5)7,
(g§)72, ooy (gh)7"), where g} = psi(gh). We compute generators g1 € Gi, g2 € G2, w = gg,
and ¢ — 1 SDH pairs (A;, x;) such that e(A;, wgy*) = e(g1, g2) for each i.



CHAPTER 3. SHORT SIGNATURES 26

We do this as follows. Consider ¢ — 1 values z1,...,24—1 (chosen arbitrarily). Define
formal products f(X) and g(X) as

q—1 q—1
FXO=][(X+2z) and gX)=X J[(X+x)
=1 =1

and, for each i, 1 <i < ¢ — 1, define the products f;(X) as

X = ] &K+ .
1<j<q¢—-1
i#]

Each of these is a polynomial of degree at most ¢; for each, we can compute the coefficients
of the X-powers in O(gq) time.

Suppose g(X) expands as Y ¢ ,a;X". Using the coefficients a; and the SDH problem
parameters, we can evaluate (95)9(7) as [, [(gé)vl]al The same holds true for the other
formal products. Each such evaluation takes O(q) time.

Now, we make the assignment

) ™)

92 — (93) w — (gs)? g1 — ¥(g2)
Ai = ¥((gh)"), 1<i<q-1

It is casy to see that w = gJ holds and, for each i that A" = g; holds; thus we have
q — 1 SDH pairs for the SDH problem instance (g1,¢g2,w). Note that if ¢} is a random
generator of G2, so is go.

Now suppose we find another SDH pair (A, x), where z ¢ {z1,...,24—1}. We transform
this pair into an SDH pair for the original problem instance. Let ¢(X) be the rational
function f(X)/(X + x). Using long division, we can write ¢(X) as t(X) = %5 + 7(X),
where 7(X) is a (¢ — 2)-degree polynomial. Because = ¢ {z1,...,24—1}, o cannot be 0. By

the the procedure used above, we can evaluate g; ™, By the SDH equation and the setup
above, we have A7 = g1 = 1((g5)7 ) and A = ¢ ((g)!") = w((gé)ﬁJﬁ(V)). Now set

A
(93"

A —

1/a /=27 (7) 1/a
Y ((gh)7+ )] R VY
= =((gg)7+e = (g)/7"
[ ¥(g5") (e2)7) 1

then (A’,z) is an SDH solution for the original SDH parameters, as required. As before,



CHAPTER 3. SHORT SIGNATURES 27

this step takes O(q) time.

We are now ready to prove that the BB scheme is secure.

Theorem 3.4.1. Suppose (¢',t',€)-SDH holds on (G1,G2). Then BB on (G1,G2) is
(t,qs,qu, €)-secure against existential forgery under an adaptive chosen-message attack (in

the random oracle model), for all t and € satisfying
e>elqgs+1) ¢ and t<t' —0(g) ,

and for q > qyz + 1. Here e is the base of the natural logarithm.

Proof. We assume that A is well-behaved in the sense that it always requests the hash of
a message M before it requests a signature on M and at M* before it forges at M*. It is
trivial to modify any forger algorithm A to have this property.

Given a ¢-SDH instance (g7, g5, (g5)7, (g§)72, ooy (g5)7), we apply the fundamental SDH
technique above, obtaining generators g; € G1, g2 € G2, w = g7, and ¢—1 SDH pairs (A;, z;)
such that z; is uniformly chosen from Z, and e(A4;, wg;") = e(g1,g2) for each i. We will
obtain from the adversary .4 another SDH pair (A, z), which will be transformed into a
solution to the original ¢-SDH instance, again using the fundamental technique.

The proof now proceeds much as the proof of Theorem 3.3.1 did. We run A with
parameters (g1, g2, w). To respond to the ith hash query, on message M;, we generate a
random coin ¢; € {0, 1} so that Pre; = 0] = 1/(gs +1). If ¢; is 1, we set h; < z;; otherwise,
we set h; pid Zyp. In either case, we respond with H(M;) = h;. To signature query on M; we
respond with A; if ¢; is 1, or report failure and exit if ¢; is 0. Finally, A outputs a forgery
(M* 0*), where M* = M;~ for some i*. If ¢;+ is 1, we report failure and exit. Otherwise,
we have an SDH pair (0*, h;+), and h« ¢ {z1,...,24-1} with overwhelming probability.

The same independence analysis as in the Claims of Theorem 3.3.1 shows that we succeed
with probability €/ (e(qs + 1)) > €, as required. The running time overhead is essentially
just that of the fundamental technique, which is O(g?). O

3.4.2 A BB Variant Secure without Random Oracles

Boneh and Boyen also show that a simple modification of the BB scheme above can be
proved secure in the standard model, i.e., without random oracles. We obtain this modified

BB2 scheme as follows. We add to the private key a value 7/ & Z, and to the public



CHAPTER 3. SHORT SIGNATURES 28

key the value w' « gg,. To sign a message M € Zj,, choose a random r € Z,, compute
o — gi/(7+m/+M), and output the pair (o,r). (If it happens that v + 9 + M equals 0, try
again with a different r.) To verify, check that e(o, w - (w')" - g37) = e(g1, g2) holds.

The BB2 proof of security also uses the fundamental SDH technique. We use the free
choice of r in the signing oracle to force v + v + M to hit one of the v + z; values which
we precomputed; this allows us to do away with the hash oracle. We must deal with two

types of forger, as follows.

Type-1I Forger. This adversary either makes a hash query M; = —~, or issues a forgery
(0%, 7*) at M* such that r*y'+M* ¢ riv + M, ..., rqy + M,. Against this adversary
we pick 7/ & Z,, and set w — g;,. We answer a signing query on message M; by
setting r; « (x; — M;)/~' so that x; = r;7' + M; and we can use the SDH pair (A4;, x;).
(We also check whether M; equals —v; if so, we can compute any SDH pair we wish.)
Finally, the forgery (o*r*) on M* gives us an SDH pair (o*,7*y + M*) which is
different from each pair (A;, z;) by hypothesis.

Type-11 Forger. This adversary never makes a hash query M; = —~, and issues a forgery
(o* r*) at M* such that r*y' + M* = ry~+' + M;« for some i*. For this adversary,
we choose ~ hia Z, ourselves, set w < g5, and use the values from the fundamental
SDH technique for 4/ and w’; that is, we have pairs (A;, z; such that e(A4;, (w')gy") =
e(g1,92). Now we answer a signature query on M; by choosing r; < (v -+ M;)/x;) and
0 — Al-l/”. Then

. ) 1/7; . ; ;
e(Ui, w - (w/)ﬁ géwz) — e(Ai/T ’ (w/)h g;‘f'M) _ 6(141'; w/ . gg ) — 6(91,92) ,

as required. Finally, the adversary returns the forgery (o* 7*) on M*, such that r*~'+
M* = x;+ for some i*. (We can find i* by testing e((w’)" - g37") L e((w') gé\/fl) for
each i.) But this means that we have r*v'+ M* = rgv/+ My« for (r*, M*) 2 (14, M;+)
since otherwise the forgery would be trivial, and we recover o as (M*—M;=) /(r* =),

from which we can compute any SDH pair we wish.

The omitted details of the reduction are quite straightforward. Note that BB2 is secure if
g¢-SDH holds where ¢ = g5 + 1, not g5 + 1 as for BB.
BB2 signatures are about twice as long as BLS signatures. However, they are much

shorter than those in previous schemes with proofs in the standard model: in particular,



CHAPTER 3. SHORT SIGNATURES 29

the Cramer-Shoup scheme [45], which is based on the Strong RSA assumption. We note
that the Waters identity-based encryption scheme [117] gives a signature secure in the
standard model under CDH. This follows from Naor’s observation (recorded by Boneh and

Franklin [25]) that every IBE gives rise to a signature scheme.

3.4.3 Performance

Though BLS.Sig and BB.Sig appear to be equally fast, BB (and BB2) signing is in fact
substantially faster. First, a hash function mapping into Z, can be computed without
the iterated trials suggested in Section 2.3.3 for hashing onto GGi. Second, the inversion
in Z,, required for computing 1/(y + ), is faster than taking roots in Z,, again required
for hashing onto g;. Third, for BB the exponentiation is with respect to the fixed base gi,
and is amenable to speedup using lookup tables.? For BLS, the best we can do is to find
an addition chain for the fixed exponent z. Taken together, these differences make BB
signing about 5 times as fast as BLS signing. BB verification is also somewhat faster, since

it requires computing a single pairing rather than the product of two pairings.

3.5 Conclusions

We presented two short signature schemes, BLS and BB, based on bilinear maps on elliptic
curves. In both schemes, a signature is only one element in a finite field, much shorter
than all current variants of DSA for the same security. BLS is existentially unforgeable
under a chosen message attack (in the random oracle model), assuming the Computational
Diffie-Hellman problem is hard on certain elliptic-curve groups; BB is secure assuming the
Strong Diffie-Hellman problem is hard.

Both schemes are simple and elegant, and therefore amenable to extension. In Chapter 4,
we consider several variants of BLS. In Chapters 6 and 7 we build group signature schemes
related to BB.

2”71]

2b  ob.g
al:u >, U

b b b b b b
2Specifically, precomputing [u, u?, . u o u 71)]; [u22 ,u22 2. 7u22 2 71)} H.

allows one to evaluate v® in [(lgp)/b] multiplications, at the cost of 2° - [(Igp)/b] elements of storage. This
technique was communicated to me by Xavier Boyen.



Chapter 4

Signature Variants and Extensions

4.1 Introduction

The BLS signature scheme presented in Chapter 3 is very flexible. In this chapter, we show
how to add a number of features to it.

We begin by surveying, in Sections 4.2 and 4.3, how BLS has been extended to construct
some of the standard signature variants in the literature, including threshold signatures,
batch signature verification, and multisignatures. For further extensions, such as blind
signatures, refer to Verheul [116], Boldyreva [22], Steinfeld et al. [113], and the survey of
pairing-based cryptosystems by Paterson [99].

We then introduce, in Section 4.4, a generalization of multisignatures called an aggre-
gate signatures: a single short object that stands for n signatures by n different signers
on n different messages. Aggregate signatures have several important applications. For
example, they can be used to reduce the size of certificate chains and reduce communica-
tion bandwidth in protocols such as SBGP. We construct an efficient aggregate signature
scheme based on bilinear maps. Key generation, aggregation, and verification require no
interaction. We prove security in a model that gives the adversary his choice of public keys
and messages to forge.

Finally, as a further application for aggregate signatures we show in Section 4.5 that cer-
tain aggregate signature schemes give rise to simple verifiably encrypted signatures. These
signatures enable user Alice to give Bob a signature on a message M encrypted using a third
party’s public key and enable Bob to verify that the encrypted signature is valid. Unlike

previous schemes, our verifiably encrypted are short and can be validated efficiently; and

30



CHAPTER 4. SIGNATURE VARIANTS AND EXTENSIONS 31

verifiably encrypted signing requires no interaction with the third party.

4.2 Threshold Signatures

Boldyreva shows [22] that BLS signatures give rise to a robust t-out-of-n threshold signature
scheme through standard secret sharing techniques [84, 62, 60]. In a threshold signature
scheme, there are n parties where each possesses a share of a private key. Each party can
use its share of the private key to produce a share of a signature on some message M. A
complete signature on M can only be constructed if at least ¢ shares of the signature are
available.

A robust t-out-of-n threshold signature scheme derives from BLS as follows. A central
authority generates a public/private key pair. Let « € Z, be the private key and v = g5 € G2
be the public key. The central authority picks a random polynomial w € Z,[X] of degree
at most ¢ — 1 such that w(0) = x. For i = 1,...,n, the authority gives user i the value
x; = w(i), its share of the private key. The authority publishes the public key v and n
values u; = gy € Gb.

When a signature on a message M € {0,1}" is needed each party that wishes to par-
ticipate in signature generation publishes its share of the signature as o; = H(M)" € G.
Without loss of generality, assume users 1,...,t¢ participate and generate shares o, ..., oy.
Anyone can verify that share o; is valid by checking that (g2, u;, H(M),0;) is a co-Diffie-
Hellman tuple. When all ¢ shares are valid, the complete signature is recovered as

t t .
(0=
o — | | 02.)"' where \; = Hl_l’j#( J)

t . .
i=1 [iziji =)

(mod p) .

If fewer than ¢ users are able to generate a signature on some message M then these
users can be used to solve co-CDH on (G1,G2) [22]. This threshold scheme is robust: A
participant who contributes a bad partial signature o; will be detected immediately since
(92, u;, H(M), 0;) will not be a co-Diffie-Hellman tuple.

The same result can also be achieved without recourse to a trusted third party for
generating private key shares. The n users can generate these shares without the help of
a trusted party using the protocol due to Gennaro et al. [61], which is a modification of a
protocol due to Pedersen [100]. This protocol does not rely on the difficulty of DDH for

security and can thus be employed on gap Diffie-Hellman groups.



CHAPTER 4. SIGNATURE VARIANTS AND EXTENSIONS 32

4.3 Multisignatures and Batch Signature Verification

Suppose n users all sign the same message M € {0,1}". We obtain n signatures o1, ..., 0.
We show that these n signatures can be verified as a batch much faster than verifying them
one by one. A similar property holds for other signature schemes [14].

Let (G1,G2) be a co-GDH group pair of prime order p. Suppose user i’s private key is
x; € Z, and his public key is v; = g5' € Go. Signature o; is 0; = H(M)" € G;. To verify

the n signatures as a batch we use a technique due to Bellare et al. [14]:

1. Pick random integers cy, . . ., ¢, from the range [0, B] for some value B. This B controls

the error probability as discussed below.

2. Compute V «— [[}*, vi" € Gy and U « [[1, 07" € G1.

=1 "1

3. Test that (go,V, H(M),U) is a co-Diffie-Hellman tuple. Accept all n signatures if so;

reject otherwise.

Theorem 3.3 of [14] shows that we incorrectly accept the n signatures with probability
at most 1/B. Hence, verifying the n signatures as a batch is faster than verifying them one
by one. Note that if all signers are required to prove knowledge of their private keys, then
taking ¢; = - -+ = ¢, = 1 is sufficient, yielding even faster batch verification [22].

In fact, if we take ¢; = --- = ¢, = 1, we can transmit U = [ [, o; instead of the individual
signatures. Since U is the same size as any single signature, we get a substantial bandwidth
savings. This is a multisignature: a single short object that stands for n signatures by
n signers on the same message.

There is a large literature on multisignatures [96, 95]. Micali, Ohta, and Reyzin [86]
were the first to define a security model for multisignatures. Boldyreva [22] introduced the
BLS-based multisignature scheme given above and showed, using a variant of the Micali-
Ohta-Reyzin definitions, that it secure in gap Diffie-Hellman groups. The proof requires, as
above, that all signers prove knowledge of their private keys. This is to address an attack
that we consider further in Section 4.4.2, in the context of BGLS aggregate signatures.

A similar batch verification procedure can be used to verify quickly, and a similar mul-
tisignature can be used to compress, n signatures on n messages issued by the same public

key.



CHAPTER 4. SIGNATURE VARIANTS AND EXTENSIONS 33

4.4 Aggregate Signatures

Many real-world applications involve signatures on many different messages generated by
many different users. For example, in a Public Key Infrastructure (PKI) of depth n, each
user is given a chain of n certificates. The chain contains n signatures by n Certificate Au-
thorities (CAs) on n distinct certificates. Similarly, in the Secure BGP protocol (SBGP) [72]
each router receives a list of k signatures attesting to a certain path of length k in the net-
work. A router signs its own segment in the path and forwards the resulting list of k + 1
signatures to the next router. As a result, the number of signatures in routing messages is
linear in the length of the path. Both applications would benefit from a method for com-
pressing the list of signatures on distinct messages issued by distinct parties. Specifically,
X.509 certificate chains could be shortened by compressing the n signatures in the chain
into a single signature.

An aggregate signature scheme enables us to achieve precisely this type of compression.
Suppose each of n users has a public-private key pair (pk;, sk;). User u; signs message M; to
obtain a signature ;. Then there is a public aggregation algorithm that takes as input all
of 01,...,0, and outputs a short compressed signature o. Anyone can undertake the aggre-
gation. Moreover, the aggregation can be incremental: Signatures 01,02 can be aggregated
into 012 which can then be further aggregated with o3 to obtain oi193. In the generation of
a certificate chain, each CA can incrementally aggregate its own signature into the chain.
There is also an aggregate verification algorithm that takes pky, ..., pk,, Mi,..., My, and o
and decides whether the aggregate signature is valid. Intuitively, the security requirement
is that the aggregate signature o is declared valid only if the aggregator who created o
was given all of o1,...,0,. Precise security definitions are given in Sect. 4.4.1. Thus, an
aggregate signature provides non-repudiation at once on many different messages by many
users.

We construct an aggregate signature scheme based on BLS short signatures. Surpris-
ingly, though BLS signatures can be instantiated on any gap group, general gap groups
are insufficient for constructing efficient aggregate signatures. Our construction relies on
properties of bilinear maps beyond their use—noted by Joux and Nguyen [70] — for solving
DDH.

Related Work. Aggregate signatures are related to multisignatures, which we described

in Section 4.3. Multisignatures are insufficient for the applications we have in mind, such as



CHAPTER 4. SIGNATURE VARIANTS AND EXTENSIONS 34

certificate chains and SBGP. For these applications we must be able to aggregate signatures
on distinct messages.

Also relevant are threshold signatures, in particular the BLS-based threshold signa-
ture considered in Section 4.2 and the non-interactive threshold signature scheme due to
Shoup [109], where we have a set of n signers, and a threshold ¢, such that signature shares
from any t < k < n signers can be combined into one signature. These differ from aggre-
gate signatures in several important respects: threshold signatures require an expensive (or
trusted) setup procedure; each piece of a threshold signature is not a stand-alone signa-
ture; pieces of a threshold signature can be combined into a signature only once there are
enough of them; and a threshold signature looks the same no matter which of the signers
contributed pieces to it.

Our application of aggregate signatures to compressing certificate chains is related to an
open problem posed by Micali and Rivest [87]: Given a certificate chain and some special
additional signatures, can intermediate links in the chain be cut out? Aggregate signatures
allow the compression of certificate chains without any additional signatures, but a verifier
must still be aware of all intermediate links in the chain. We note that batch RSA [50] also

provides some signature compression, but only for signatures produced by a single signer.

4.4.1 Aggregate Signature Definitions

Consider a set U of users. Every user u € U has a signing keypair (pk,, sk, ). We wish to
aggregate the signatures of some subset U C U. Each user v € U produces a signature o, on
a message M, of her choice. These signatures are then combined into a single aggregate o by
an aggregating party. This aggregating party, which can be different from and untrusted by
the users in U, has access to the users’ public keys, to the messages, and to the signatures on
them, but not to any private keys. The result of this aggregation is an aggregate signature o
whose length is the same as that of any of the individual signatures. This aggregate has the
property that a verifier given ¢ along with the identities of the parties involved and their
respective messages is convinced that each user signed her respective message.

Formally, an aggregate signature scheme AS is a signature scheme (as in Section 3.2)
with two additional algorithms, Agg and AVf, which provide the aggregation capability.

These algorithms behave as follows.

AS.Kg, AS.Sig, AS.Vf. As in standard signature schemes.



CHAPTER 4. SIGNATURE VARIANTS AND EXTENSIONS 35

AS.Agg({pk;, M;,0;}¥_|). For each user in the aggregate the algorithm takes, as input: a
public key pk;, a message M; in some message space; and a signature o; on M;. The

algorithm combines the signatures into an aggregate signature o, and outputs o.

AS.AVf({pk;, Mi}le, o). For each user in the aggregate, the algorithm takes a public key
and a message. The algorithm also takes a purported aggregate signature o. It returns

either valid or invalid.

The notion of aggregate signature security we consider is a generalization of existential
unforgeability of ordinary signatures, which we recalled in Section 3.2. Specifically, the
adversary attempts to forge an aggregate signature, on messages of his choice, by some
set of users; clearly, at least one of the users in the set must not be under the adversary’s
control.

We formalize the intuition above as the aggregate chosen-key security model. In this
model, the adversary A is given a single public key. His goal is the existential forgery of
an aggregate signature that includes the challenge key; aside from that challenge key the
adversary may choose all public keys in the forgery. The adversary is also given access
to a signing oracle on the challenge key. His advantage, Advzggizrge, is defined to be his

probability of success in the following game.

Setup. The challenger runs algorithm Kg to obtain a public key pk; and private
key sk;. The aggregate forger A is given pk;.

Queries. Proceeding adaptively, A requests signatures with pk; on at most ¢ mes-
sages of his choice M (1)), o M) e {0,1}*. The challenger responds to each
query with a signature (¥ = Sig(sk, M)). In the random oracle model, A can

also make gy queries to a hash oracle H.

Response. Finally, A outputs k — 1 additional public keys pk,,...,pk,. Here k
is at most n, a game parameter. These keys, along with the initial key pky,
will be included in A’s forged aggregate. A also outputs messages My, ..., My;
and, finally, an aggregate signature o by the k users, each on his corresponding

message.

The forger wins if the aggregate signature ¢ is a valid aggregate under public keys
pky, ..., pk, on respective messages Mji,..., M} and o is nontrivial, i.e., A did not
request a signature on M; under pk;. The probability is over the coin tosses of the

key-generation algorithm and of A.



CHAPTER 4. SIGNATURE VARIANTS AND EXTENSIONS 36

Definition 4.4.1. An aggregate forger A (¢, qu, qs,n, €)-breaks an n-user aggregate signa-
ture scheme in the aggregate chosen-key model if: A runs in time at most ¢; A makes at most
qu queries to the hash function and at most ¢g queries to the signing oracle; Adviﬁgjffge is
at least €; and the forged aggregate signature is by at most n users. An aggregate signature
scheme is (¢, gy, qs, n, €)-secure against existential forgery in the aggregate chosen-key model

if no forger (¢, qu, qs,n, €)-breaks it.

4.4.2 Aggregate Signatures from Bilinear Maps

We describe the BGLS aggregate signature scheme. This scheme is based on the BLS scheme
presented in Sect. 3.3 above. Individual signatures in the aggregate signature scheme are
created and verified precisely as in BLS. Aggregate verification makes use of a bilinear map
on G and Gs.

The BGLS scheme allows the creation of signatures on arbitrary distinct messages M; €
{0,1}". An individual signature o; is an element of G1. The base groups G; and G, their
respective generators g; and go, the computable isomorphism 1 from G2 to G1, and the
bilinear map e : G1 X Go — G, with target group G, are system parameters. The scheme
employs a full-domain hash function H : {0,1}* — Gy, viewed as a random oracle.

We describe the algorithms making up BGLS below. The first three are the same as in

BLS, and we recall them here for convenience.

BGLS.Kg. For a particular user, pick random =z & Zyp, and compute v + g3. The user’s

public key pk is v € G2. The user’s private key sk is x € Z,,.

BGLS.Sig(sk, M). Parse the user’s private key sk as « € Z,. The message M to be signed
is an arbitrary string. Compute h < H(M) € G and o <« h*. The signature is
o e G.

BGLS.Vf(pk, M, o). Parse the user’s public key pk as v € G2. Compute h «— H(M); accept
if e(o, g2) = e(h,v) holds.

BGLS.Agg({pk;, M;,0;}¥_|). For each user in the aggregate the algorithm takes, as input:
a public key pk;, which we parse as v; € G; a message M; € {0,1}"; and a signature
o; € G1 on M;. The messages must all be distinct. Compute o «— Hle ;. The

aggregate signature is o € G;.



CHAPTER 4. SIGNATURE VARIANTS AND EXTENSIONS 37

BGLS.AVf({pk;, M;}%_|, o). For each user in the aggregate, the algorithm takes a public
key and a message, which we parse as above; further, the algorithm takes a purported

aggregate signature o € (. To verify the aggregate signature o,

1. ensure that the messages M; are all distinct, and reject otherwise; and

2. compute h; «— H(M;) for 1 <i < k = |U|, and accept if e(c, g2) = Hle e(hi,v;)
holds.

A BGLS aggregate signature, like a BLS signature, is a single element of G;. Note that
incremental aggregation is possible.

The intuition behind BGLS aggregation is as follows. Each user u; has a private key z; €
Z, and a public key v; = g57. User w;’s signature, if correctly formed, is o; = h;*, where h;
is the hash of the user’s chosen message, M;. The aggregate signature o is thus o = [[, 0; =
[L; ~;*. Using the properties of the bilinear map, the left-hand side of the verification

equation expands:

e(o,92) = G(Hi hit,g2) = Hz e(hi, g2)" = Hl e(hi,g5") = Hie(hi,vi) ;

which is the right-hand side, as required.

A Potential Attack. The adversary’s ability in the chosen-key model to generate keys
suggests the following attack, previously considered in the context of multisignatures [86].
Alice publishes her public key v4. Bob generates a private key 25 and a public key v}z = gg IB,
but publishes as his public key vp = vlz/v4a, a value whose discrete log he does not know.
Then H(M)®5 verifies as an aggregate signature on M by both Alice and Bob. Note that
in this forgery Alice and Bob both sign the same message M.

One countermeasure is to require the adversary to prove knowledge of the discrete
logarithms (to base go) of his published public keys. For example, Boldyreva, in her mul-
tisignature scheme [22], requires, in effect, that the adversary disclose the corresponding
private keys o, ..., xp. Micali et al. [86] discuss a series of more sophisticated approaches
based on zero-knowledge proofs, again with the effect that the adversary is constrained in
his key selection. These defenses apply equally well to our aggregate signature scheme. For

aggregate signatures, though, there is a simpler defense.



CHAPTER 4. SIGNATURE VARIANTS AND EXTENSIONS 38

A Simple Defense. In the context of aggregate signatures we can defend against the
attack above by simply requiring that an aggregate signature is valid only if it is an aggre-
gation of signatures on distinct messages. This restriction, codified in Step 1 of BGLS.AVA,
suffices to prove the security of the bilinear aggregate signature scheme in the chosen-key
model. There is no need for zero-knowledge proofs or the disclosure of private keys.

The requirement that all messages in an aggregate be distinct is naturally satisfied for
the applications to certificate chains and SBGP we have in mind. Even in more general
environments it is easy to ensure that all messages are distinct: The signer simply prepends
her public key to every message she signs prior to the application of the hash function H.
The implicit prefix need not be transmitted with the signature, so signature and message
length is unaffected.

The next theorem shows that this simple constraint is in fact sufficient for proving

security in the chosen-key model.

Theorem 4.4.2. Let (G1,G2) be a (t',€)-bilinear group pair for co-Diffie-Hellman, with
each group of order p, with respective generators g1 and gs, with an isomorphism 1 com-
putable from Go to G1, and with a bilinear map e : G1 X Go9 — Gp. Then the BGLS
aggregate signature scheme on (G1,G2) is (t,qu,qs,n, €)-secure against existential forgery

in the aggregate chosen-key model for all t and € satisfying
e>e(gs+mn)-€ and  t<t' —cq,(qu+2¢s+n+4)—(n+1),

where e is the base of natural logarithms, and exponentiation and inversion on Gi take

time cg, -

Proof. Suppose A is a forger algorithm that (¢, ¢s, qu,n, €)-breaks BGLS. We show how to
construct a t'-time algorithm C that solves co-CDH in (G, G2) with probability at least €.
This will contradict the fact that (G1,G2) are a (¢, €')-co-GDH group pair.

Let g2 be a generator of G'o. Algorithm C is given g2, u € G2 and h € Gy, where u = ¢§.
Its goal is to output h® € G;. Algorithm C simulates the challenger and interacts with

forger A as follows.

Setup. Algorithm C starts by giving A the generator g, and the public key vi = u-g5 € Go,

where r is random in Z,.

Hash Queries. At any time algorithm A can query the random oracle H. To respond to



CHAPTER 4. SIGNATURE VARIANTS AND EXTENSIONS 39

these queries, C maintains a list of tuples (M @) @y c(i)> as explained below. We
refer to this list as the H-list. The list is initially empty. When A queries the oracle
H at a point M € {0,1}", algorithm C responds as follows:

1. If the query M already appears on the H-list in some tuple (M, w,b,c) then
algorithm C responds with H(M) = w € G.

2. Otherwise, C generates a random coin ¢ € {0,1} so that Pr[c = 0] = 1/(¢s + n).

3. Algorithm C picks a random b € Z,. If ¢ = 0 holds, C computes w < h- P(ga)? €
G1. If ¢ = 1 holds, C computes w «— 1(g2) € G.

4. Algorithm C adds the tuple (M,w,b,c) to the H-list and responds to A as
H(M) = w.

Note that, either way, w is uniform in G and is independent of A’s current view as

required.

Signature queries. Algorithm A requests a signature on some message M under the

challenge key vy. Algorithm C responds to this query as follows:

1. Algorithm C runs the above algorithm for responding to H-queries on M, ob-
taining the corresponding tuple (M, w, b, c) on the H-list. If ¢ = 0 holds then C

reports failure and terminates.

2. We know that ¢ = 1 holds and hence w = 1(g2)” € G1. Let o = 1(u)®-9(g2)"" €
G1. Observe that ¢ = w*™ and therefore o is a valid signature on M under the

public key v; = u - g5 = g51". Algorithm C gives o to algorithm A.
Output. Finally, A halts. It either concedes failure, in which case so does C, or it returns
a value k (where k < n), k—1 public keys va, ..., v € Go, k messages M, ... My, and
a forged aggregate signature ¢ € GG;. The messages M; must all be distinct, and A
must not have requested a signature on M;. Algorithm C runs its hash algorithm at

each M;, 1 <i < k, obtaining the k corresponding tuples (M;, w;, b;, ¢;) on the H-list.

Algorithm C now proceeds only if ¢; = 0 and, for 2 < i < k, ¢; = 1; otherwise C
declares failure and halts. Since ¢; = 0, it follows that wy = h - 1(ga)". For i > 1,

since ¢; = 1, it follows that w; = 1)(go)%. The aggregate signature o must satisfy



CHAPTER 4. SIGNATURE VARIANTS AND EXTENSIONS 40

the aggregate verification equation, e(o, g2) = Hle e(w;,v;). For each i > 1, C sets
o; « (v;)¥. Then, for i > 1,

e(0i, 92) = e(p(v:)", g2) = e((v:), g2) = e((g2), vi)" = e(¥(g2)",vi) = e(wy, vi) ,

So o; is a valid signature on M; (whose hash is w;) by the key whose public component

. -1
is v;. Now C constructs a value o1: o1 < o - (l_ﬂf“‘:2 0;) . Then

k k k

e(o1,92) = e(0,92) - [ [ e0i, 92) ™ = [ [ elwi,vi) - [ ] ews, 0) ™" = ewr, 01)
i=2 i=1 =2
Thus o; is a valid BLS signature by key vi = v - g5, = ggJ”" on a message whose

hash is w1 = h - ¥(g2)?. Then C calculates and outputs the required h® as h® «
o1 (W)’ B 1(g2)™)

This completes the description of algorithm C. It remains to show that C solves the given
instance of the co-CDH problem in (G1,G2) with probability at least ¢’. To do so, we

analyze the three events needed for C to succeed:
&1: C does not abort as a result of any of A’s signature queries.
Ey: A generates a valid, nontrivial aggregate signature forgery (k, v, ..., vg, M1, ..., My, o).

&3: Event & occurs, and, in addition, ¢; = 0, and, for 2 <14 < k, ¢; = 1, where for each ¢

¢; is the c-component of the tuple containing M; on the H-list.

C succeeds if all of these events happen. The probability Pr[€; A &3] decomposes as
Pr[é’l VAN (93] = Pr[El] . PI‘[SQ | 51] . Pr[gg ‘ 51 VAN 52] (41)

The following claims give a lower bound for each of these terms.

Claim 4. The probability that algorithm C does not abort as a result of A’s aggregate
signature queries is at least (1 —1/(gs +n))9S. Hence, Pr[&1] > (1 —1/(qs +n))%s.

Proof. Without loss of generality we assume that A does not ask for the signature of the
same message twice. We prove by induction that after A makes [ signature queries the

probability that C does not abort is at least (1 —1/(gs +n))!. The claim is trivially true for



CHAPTER 4. SIGNATURE VARIANTS AND EXTENSIONS 41

1 =0. Let M® be A’s I'th signature query and let (M(l),w(l), b, c(l)> be the corresponding
tuple on the H-list. Then, prior to A’s issuing the query, the bit ¢} is independent of A’s
view — the only value that could be given to A that depends on ¢) is H(M®), but the
distribution of H(M®) is the same whether ¢) = 0 or ¢) = 1. Therefore, the probability
that this query causes C to abort is at most 1/(gs +n). Using the inductive hypothesis and
the independence of ¢, the probability that C does not abort after this query is at least
(1 —1/(gs +n))'. This proves the inductive claim. Since A makes at most ¢s signature
queries the probability that C does not abort as a result of all signature queries is at least
(1 —1/(gs +n))?. O

Claim 5. If algorithm C does not abort as a result of A’s queries then algorithm A’s view

is identical to its view in the real attack. Hence, Pr[& | £1] > €.

Proof. The public key given to A is from the same distribution as public keys produced
by algorithm Kg. Responses to hash queries are as in the real attack since each response
is uniformly and independently distributed in G1. Since C did not abort as a result of A’s
signature queries, all its responses to those queries are valid. Therefore A will produce a
valid and nontrivial aggregate signature forgery with probability at least e. Hence Pr[&s |
&) > e O

Claim 6. The probability that algorithm C does not abort after A outputs a valid and
nontrivial forgery is at least (1 —1/(qs +n))" 1 -1/(qs +n).
Hence, Pr[€3 | E1 N E] > (1 —1/(qgs +n))" 1 -1/(gs +n).

Proof. Events & and & have occurred, and A has generated some valid and nontrivial
forgery (k,vo,...,vg, My,..., My, o). For each i, 1 <i <k, let (M;, w;,b;,c;) be the tuple
corresponding to M; on the H-list. Algorithm C will abort unless A generates a forgery
such that ¢ =0 and, for ¢ > 1, ¢; = 1.

Since all the messages My, Mo, ..., My, are distinct, the values ¢, co, ..., ¢ are all inde-
pendent of each other; as before, H(M;) = w; is independent of ¢; for each i.

Since its forgery is nontrivial, A cannot have asked for a signature on M; under key v;.
It can thus have no information about the value of c¢1; in the forged aggregate, ¢; = 0
occurs with probability 1/(gs + n). For each i > 1, A either asked for a signature under
key v; on M;, in which case ¢; = 1 with probability 1, or it didn’t, and ¢; = 1 with



CHAPTER 4. SIGNATURE VARIANTS AND EXTENSIONS 42

probability 1 — 1/(¢s + n). Regardless, the probability that ¢; = 1 for all ¢, 2 <i <k, is at
least (1 —1/(gs+n))*"1 > (1 —1/(gs +n))" L.
Therefore Pr[€3 | 1 A ] > (1 —1/(qs +n))" 1 -1/(gs + n), as required. O

To complete the proof of the theorem, we use the bounds from the claims above in

equation (4.1). Algorithm C produces the correct answer with probability at least

gs+n—1
(1 — 1 ) 1 € > 6/6 > ¢

qs +n .QS‘f'n. T gst+n

)

as required.

Algorithm C’s running time is the same as A’s running time plus the time is takes to
respond to (qy + gs) hash queries and ¢ signature queries, and the time to transform
A’s final forgery into the co-CDH solution. Each query requires an exponentiation in G.
The output phase requires at most n additional hash computations, two inversions, two
exponentiations, and n 4+ 1 multiplications. We assume that exponentiation and inversion
in G take time ¢, . Hence, the total running time is at most t+cq, (¢u+2¢s+n+4)+n+1 <
t' as required. This completes the proof of the theorem. ]

Notes on the proof. If hash queries include the intended public key as well as the
message — the countermeasure suggested above —then the challenger can set ¢ «+— 1 for any
hash query H(M,v) where v isn’t v1, the challenge key. Then all keys except the challenge
key become irrelevant, and the reduction is precisely like that for BLS in Theorem 3.3.1; in
particular, the multiplicative loss of security no longer depends on n.

One can also allow a single key to be responsible for several messages in an aggregate
signature, and thus appear with multiplicity greater than 1 in the list vq,..., v, provided
that no two keys sign the same message (more specifically, that the challenge key and some

other key do not each sign a message with the same hash).

4.5 Verifiably Encrypted Signatures

We now show an application of aggregate signatures to verifiably encrypted signatures.
These signatures are used in applications such as online contract signing [5, 9]. Suppose
Alice wants to show Bob that she has signed a message, but does not want Bob to possess

her signature of that message. (Alice will give her signature to Bob only when a certain



CHAPTER 4. SIGNATURE VARIANTS AND EXTENSIONS 43

event has occurred, e.g., Bob has given Alice his signature on the same message.) Alice
can achieve this by encrypting her signature using the public key of a trusted third party,
and sending this to Bob along with a proof that she has given him a valid encryption of
her signature. Bob can verify that Alice has signed the message, but cannot deduce any
information about her signature. Later in the protocol, if Alice is unable or unwilling to
reveal her signature, Bob can ask the third party to reveal Alice’s signature. We note that
the resulting contract signing protocol is not abuse-free in the sense of Garay et al. [57].
We show that a variant of the bilinear aggregate signature scheme allows the creation
of very efficient verifiably encrypted signatures. Previous constructions [5, 103] require zero
knowledge proofs to verify an encrypted signature. The verifiably encrypted signatures in

Section 4.5 are short and can be verified directly.

4.5.1 Verifiably Encrypted Signature Definitions

A verifiably encrypted signature scheme VES comprises seven algorithms. Three, Kg, Sig,
and Vf, are analogous to those in ordinary signature schemes. The others, AKg, ESig, EVf,
and Adj, provide the verifiably encrypted signature capability. The algorithms are described
below. We refer to the trusted third party as the adjudicator.

VES.Kg, VES.Sig, VES.Vf. As in standard signature schemes.
VES.AKg. Generate a public-private key pair (apk, ask) for the adjudicator.

VES.ESig(sk, apk, M) Given a private key sk, an adjudicator’s public key apk, and a mes-
sage M, compute (probabilistically) a verifiably encrypted signature n on M.

VES.EVf(pk, apk, M,n). Given a public key pk, an adjudicator’s public key apk, a mes-
sage M, and a verifiably encrypted signature 7, verify that n is a valid verifiably
encrypted signature on M under key pk.

VES.Adj(ask, pk, M,n). Given an adjudicator’s private key ask, a certified public key pk,
and a verifiably encrypted signature 1 on some message M, extract and output o, an

ordinary signature on M under key pk.

Besides the ordinary notions of signature security in the signature component, we require
three security properties of verifiably encrypted signatures: validity, unforgeability, and

opacity. We describe these properties below, in the single-user setting.



CHAPTER 4. SIGNATURE VARIANTS AND EXTENSIONS 44

Validity requires that verifiably encrypted signatures verify, and that adjudicated ver-
ifiably encrypted signatures verify as ordinary signatures, i.e., that EVf(M, ESig(M)) and
VF(M, Adj(M, ESig(M))) accept for all M and for all properly-generated keypairs and ad-
judicator keypairs. (The keys provided to the algorithms are here elided for brevity.)

Unforgeability requires that it be difficult to forge a valid verifiably encrypted signature.

The advantage in existentially forging a verifiably encrypted signature of an algorithm F is

[ EVf(pk, apk, M,n) = valid :
(pk, sk) & Kg,
(apk, ask) & AKg,
(M) & FS4(pk, apk)

ves-forge def
Advyes F =

The probability is taken over the coin tosses of the key-generation algorithms, of the oracles,
and of the forger. The forger is given access to a verifiably-encrypted—signature creation
oracle S = ESig(sk, apk,-) and an adjudication oracle A = Adj(ask, pk,-,-), along with a
hash oracle. The forger F is additionally constrained in that its forgery on M must be
nontrivial: F must not previously have queried either oracle at M. Note that an ordinary

signing oracle is not provided; it can be simulated by a call to S followed by a call to A.

Definition 4.5.1. A verifiably encrypted signature forger F (¢, qu,qs, qa, €)-forges a ver-
ifiably encrypted signature if: Algorithm F runs in time at most t; F makes at most ¢y
queries to the hash function, at most gs queries to the verifiably-encrypted—signature cre-
ation oracle S, at most ¢, queries to the adjudication oracle A; and Adv‘{f;:gf?fe is at least e.
A verifiably encrypted signature scheme is (t, qx, s, ¢4, €)-secure against existential forgery

if no forger (¢, qu,qs, qa, €)-breaks it.

Opacity requires that it be difficult, given a verifiably encrypted signature, to extract an
ordinary signature on the same message. The advantage in extracting a verifiably encrypted
signature of an algorithm &, again given access to a verifiably-encrypted—signature creation

oracle S and an adjudication oracle A, along with a hash oracle, is

Vf(pk, M,0) = valid :
(pk, sk) & Kg,
(apk, ask) & AKg,
(M, o) & E94(pk, apk)

ves-extr def
Adv,, SE = Pr




CHAPTER 4. SIGNATURE VARIANTS AND EXTENSIONS 45

The probability is taken over the coin tosses of the key-generation algorithms, of the oracles,
and of the forger. The extraction must be nontrivial: the adversary must not have queried
the adjudication oracle A at M. (It is allowed, however, to query S at M.) Verifiably
encrypted signature extraction is clearly no more difficult than forgery in the underlying

signature scheme.

Definition 4.5.2. An algorithm & (¢, qu, s, qa, €)-extracts a verifiably encrypted signature

if £ runs in time at most ¢, makes at most ¢y queries to the hash function, at most ¢s

queries to the verifiably-encrypted—signature creation oracle S, at most ¢, queries to the
ves-extr

adjudication oracle, and Adv,cs ¢ is at least e. A verifiably encrypted signature scheme

is (t,qu, qs, qa, €)-secure against extraction if no algorithm (¢, gy, s, ¢4, €)-extracts it.

4.5.2 Aggregate Extraction

Our verifiably encrypted signature scheme depends on the assumption that given an aggre-
gate signature of k signatures it is difficult to extract the individual signatures.

Consider the bilinear aggregate signature scheme on a group pair (G1,G2). We posit
that it is difficult to recover the individual signatures o; given their aggregate o, the public
keys, and the message hashes. In fact, we posit that it is difficult to recover an aggregate o’
of any proper subset of the signatures. This we term the k-element aggregate extraction
problem.

We formalize this assumption as follows. Let (Gp,G2) be a bilinear group pair for
co-Diffie-Hellman, each of order p, with respective generators g; and gs, a computable
isomorphism ¢ : G — Gj such that g1 = 9(g2), and a computable bilinear map e :
G1 x Gg — Gr.

Consider a k-user aggregate in this setting. Each user has a private key z; € Z, and
a public key v; = g5' € G2. Each user selects a distinct message M; € {0,1}" whose hash
is h; € G1 and creates a signature o; = h;' € G;. Finally, the signatures are aggregated,
yielding o =[], 0; € G1.

Let I be the set {1,...,k}. Each public key v; can be expressed as g5, each hash h;
TilYi

as gi', each signature o; as g;'"", and the aggregate signature o as gf, where z = Yicr Tili-

The advantage of an algorithm £ in extracting a sub-aggregate from a k-element aggregate



CHAPTER 4. SIGNATURE VARIANTS AND EXTENSIONS 46

is

DA CI)A(0 = g§2¢61/ fﬂz‘yi)) :
Advgggr—extr(k') déf Pr T1yee ey ThyYly oo Yk 3 Zp, o — gizié] iYi)

R
(0—/71/) — 5(9317 7g§kag%17"'7g’£1;k70—)

bl

The probability is taken over the choices of all z; and y;, and the coin tosses of £.

Definition 4.5.3. An algorithm & (¢, k,€)-extracts a sub-aggregate from an k-element
BGLS aggregate signature if £ runs in time at most ¢ and Advgggr'exu(k) is at least e.
An instantiation of the BGLS aggregate signature scheme is (t, k, €)-secure against aggre-

gate extraction if no algorithm (¢, k, €)-extracts it.

Coron and Naccache have shown that the k-element aggregate extraction assumption is

equivalent to co-CDH [42].

4.5.3 Verifiably Encrypted Signatures via Aggregation

We motivate our construction for verifiably encrypted signatures by considering aggregate
signatures as a launching point. An aggregate signature scheme can give rise to a verifiably
encrypted signature scheme if it is difficult to extract individual signatures from an aggre-

gate, but easy to forge existentially under the adjudicator’s key. Consider the following:

1. Alice wishes to create a verifiably encrypted signature, which Bob will verify; Carol
is the adjudicator. Alice and Carol’s keys are both generated under the underlying

signature scheme’s key-generation algorithm.

2. Alice creates a signature o on M under her public key. She forges a signature o’ on
some random message M’ under Carol’s public key. She then combines o and o,

obtaining an aggregate 1. The verifiably encrypted signature is the pair (n, M’).

3. Bob validates Alice’s verifiably encrypted signature (n, M) on M by checking that
n is a valid aggregate signature by Alice on M and by Carol on M’.

4. Carol adjudicates, given a verifiably encrypted signature (n, M') on M by Alice, by
computing a signature ¢’ on M’ under her key, and removing ¢’ from the aggregate;

what remains is Alice’s ordinary signature o.



CHAPTER 4. SIGNATURE VARIANTS AND EXTENSIONS 47

In the BGLS aggregate signature scheme, it is difficult to extract individual signatures,
under the aggregate extraction assumption. Moreover, existential forgery is easy when the
random oracle hash function is set aside: Given a public key v € G5 and r € Zjp, ¥(v)" is a
valid signature on a message whose hash is 1(g2)" = ¢{. Below, we describe formally and

give a security proof for the verifiably encrypted signature scheme obtained in this way.

4.5.4 Verifiably-Encrypted Signatures from Bilinear Maps

The BGLS?2 verifiably encrypted signature scheme is built on the BGLS aggregate signature
scheme described in Section 4.4.2. It shares the key-generation algorithm with the underly-
ing aggregate scheme. Moreover, the adjudicator’s public and private information is simply
an aggregate-signature keypair. The scheme comprises the seven algorithms described be-

low:

BGLS2.Kg, BGLS2.AKg. Kg and AKg are both the same as BLS.Kg, the key generation
algorithm of the BLS signature scheme (and thus also the same as BGLS.Kg).

BGLS2.Sig, BGLS2.Vf. Sig and Vf are the same as BLS.Sig and BLS.Vf, respectively.

BGLS2.ESig(sk, apk, M) Parse the user’s private key sk as € Z, and the adjudicator’s
public key apk as v' € G5. To sign the message M € {0,1}", compute h « H(M) € Gy
and o «— h*. Select r at random from Z, and set p «— 9(g2)" and o' — ¥ (v')".
Aggregate o and ¢’ as w < oo’ € G1. The verifiably encrypted signature 7 is the pair

(w, p). (It can also be viewed as an ElGamal encryption of o under the adjudicator’s
key.)

BGLS2.EVf(pk, apk, M,n). Parse the user’s public key pk as v € G2, the adjudicator’s
public key apk as v’ € Gg, and the verifiably encrypted signature 7 as (w,u) € G2.
Set h < H(M); accept if e(w, g2) = e(h,v) - e(u,v") holds.

BGLS2.Adj(ask, pk, M,n). Parse the adjudicator’s private key ask as =’ € Z,. Parse the
user’s public key pk as v € Go, and check that it has been certified. Verify (using
EVf) that the verifiably encrypted signature 7 is valid, and parse it as (w, ) € G3.
Finally, output o = w/p* € G.



CHAPTER 4. SIGNATURE VARIANTS AND EXTENSIONS 48

Potential Attacks. If the adjudicator does not first validate a purported verifiably en-
crypted signature, a malicious user can trick him into signing arbitrary messages under his
adjudication key.

Similarly, the adjudicator should only adjudicate for certified public keys pk; we assume
that the CA, in issuing a certificate on pk, verifies that the user knows the corresponding
private key. Certification is necessary to prevent an attack devised by Hess [68] that arises
if the adjudicator is willing to open signatures encrypted under keys generated by the
attacker. In this attack, the adversary obtains from the signing oracle a verifiably encrypted
signature (w, 1) under the challenge key v. He computes from it (w”, u") for some r, which
is a verifiably encrypted signature on the same message under the related key v". He then
queries the adjudication oracle and obtains the underlying signature ¢”, from which he can
compute o. Note that the adversary does not know the private key corresponding to v",
and that the adjudication oracle must be willing to answer queries for keys other than the
challenge key v.

Another countermeasure, suggested by Hess, is for users to tie the verifiably encrypted

signatures to their identity by computing the hash h as H(M,v) rather than H(M).

4.5.5 Proofs of Security

It is easy to see that the BGLS2 scheme is valid. A verifiably encrypted signature cor-
rectly validates under EVf, which is simply the aggregate signature verification algorithm.
Moreover, for any valid verifiably encrypted signature, e(w/p® , g2) = e(w, g2) - e(p, g2) ™ =
e(h,v)-e(p,v') - e(u,v") "1 = e(h,v), so the output of Adj is a valid signature on message M
under the key v.

The next two theorems prove the unforgeability and opacity of the scheme.

Theorem 4.5.4. Let G1 and G2 be cyclic groups of prime order p, with respective gen-
erators g1 and go, with a computable bilinear map e : G1 X Go — Grp. Suppose that the
BLS signature scheme is (t',q);, @5, €' )-secure against existential forgery on (G1,G2). Then
BGLS2 is (t,qu,qs,qa, €)-secure against existential forgery on (G1,G2), for all ¢y < ¢,
qs < g, € > €, and all t satisfying t <t —2cq,(qgs + g4 + 1) , where exponentiation and

inversion on G1 take time cg, .

Proof. Given a BGLS2 forger algorithm V, we construct a forger algorithm F for the un-
derlying BLS signature scheme.



CHAPTER 4. SIGNATURE VARIANTS AND EXTENSIONS 49

We assume that V is well-behaved in the sense that it always requests the hash of a mes-
sage M before it requests a verifiably encrypted signature or an adjudication involving M,
and that it never requests adjudication on a message M on which it had not previously
asked for a verifiably encrypted signature. It is trivial to modify any forger algorithm V to
have the first property. The second property is reasonable since the input to the adjudica-
tion oracle in this case would be a nontrivial verifiably encrypted signature forgery; ¥V can
be modified simply to output it and halt.

The BLS forger F is given a public key v, and has access to a signing oracle for v and

a hash oracle. It simulates the challenger and runs interacts with V' as follows.

Setup. Algorithm F generates a key, (z/,v") & Kg, which serves as the adjudicator’s key.
Now F runs V, providing as input the public keys v and v’.

Hash Queries. Algorithm V requests a hash on some string M. Algorithm F makes a
query on M to its own hash oracle, receiving some value h € Gy, with which it

responds to V’s query.

VerSig Creation Queries. Algorithm V requests a signature on some string M. (It will
have already queried the hash oracle at M.) F queries its signing oracle (for v)

at M, obtaining o € G1. It then selects r at random from Z,, and returns to V the

pair (o - 9 (v')",4(g2)").-

Adjudication Queries. Algorithm V requests adjudication for (w,p), a verifiably en-
crypted signature on a message M under key v and adjudicator key v’. Algorithm F

checks that the verifiably encrypted signature is valid, then returns w/ /ﬂ/.

Output. Finally, V halts, either declaring failure, in which case F, too, declares failure
and halts, or providing a valid and nontrivial verifiably encrypted signature (w*, u*)

on a message M*. F sets 0 «— w*/(u*)*. We thus have

e(0%,g2) = e(w*/ ()", g2) = e(w", g2) / e(u’ g5 )
e(H(M*),v) - e(u’ ") [ e(u'v') = e(H(M*),v) ,

so 0* is a valid BLS signature on M* under key v. (In the second line, we use the
fact that (w* pu*) is a valid verifiably encrypted signature, so the verification equation

e(w* g2) = e(H(M™*),v) - e(u*,v") holds.) Since the forgery is nontrivial, ¥V must not



CHAPTER 4. SIGNATURE VARIANTS AND EXTENSIONS 50

have queried the verifiably encrypted signature oracle at M*, from which it follows
that F did not query its signing oracle at M*. Thus (M* ¢*) is a nontrivial BLS
forgery; algorithm F outputs it and halts.

It remains only to analyze the success probability and running time of F. Algorithm F
succeeds whenever V does, that is, with probability at least e.

Algorithm F’s running time is the same as V’s running time plus the time it takes to
respond to ¢y hash queries, ¢g verifiably-encrypted signature queries, and g, adjudication
queries, and the time to transform V’s final verifiably-encrypted signature forgery into a BLS
signature forgery. Hash queries impose no overhead. Each verifiably-encrypted signature
query requires F to perform two exponentiations in G;. Each adjudication query requires
F to perform an exponentiation and an inversion in G;. The output phase also requires an
exponentiation and an inversion. We assume that exponentiation and inversion in G take
time cs,. Hence, the total running time is at most t + 2cq, (gs + g4 + 1).

F queries its hash oracle whenever V queries its hash oracle, and its signing oracle
whenever V queries its verifiably encrypted signature oracle.

Combining all this, we see that if V (¢, qu, qs, qa, €)-forges a bilinear verifiably encrypted
signature on (G1,G2), then F (¢ 4 2cq,(¢s + g4 + 1), qu, gs, €)-breaks the BLS signature
scheme on (G, G2). Conversely, if the BLS signature scheme is (¢, ¢}, ¢%, € )-secure, then

BGLS2 is (' — 2¢q, (gs + g4 + 1), ¢}y, @5, qa, €' )-secure against existential forgery. O

Note that the proof above treats the underlying signature scheme as a black box, except
for two properties: (1) that it is possible to encrypt a signature to obtain a verifiably
encrypted signature, and (2) that the adjudication procedure transforms all valid verifiably
encrypted signatures into valid (unencrypted) signatures—not just those that ESig would

output, as required by the validity property.

Theorem 4.5.5. Let G1 and G2 be cyclic groups of prime order p, with respective gener-
ators g1 and ga, with a computable isomorphism ¢ : Go — G1 such that ¥(g2) = g1 and
a computable bilinear map e : Gy X G2 — Gr. Suppose that the bilinear aggregate signa-
ture scheme on (G1,G2) is (t',2,€)-secure against aggregate extraction. Then BGLS2 is

(t,qu, qs, qa, €)-secure against extraction on (G1,Ge) for all t and € satisfying

eze(qA—{—l)'e/ and tgt/—cgl(qH+4qS+2qA+3) ,



CHAPTER 4. SIGNATURE VARIANTS AND EXTENSIONS o1

where e is the base of natural logarithms, and exponentiation and inversion on Gy take

time cg, .

Proof. Given a verifiably-encrypted—signature extractor algorithm V', we construct an ag-
gregate extractor algorithm 4. The extractor A is given values ¢g§ and gg in Go, g7, g‘f,

0%

and g; VA gy G1. It runs V, answering its oracle calls, and uses V’s verifiably encrypted
signature extraction to calculate g7, the answer to its own extraction challenge.

Let g1 be a generator of G, and gy of Go, such that 1(g2) = g1. Algorithm A is given
g5, gg € G and ¢/, g‘f,gf‘wm € G. Its goal is to output g7 € Gy. Algorithm A simulates

the challenger and interacts with verifiably-encrypted—signature extractor V as follows.

Setup. Algorithm A sets v « g9, the signer’s public key, and v' « 92’8, the adjudicator’s
public key. It gives v and v’ to V.

Hash Queries. At any time algorithm V can query the random oracle H. To respond to
these queries, A maintains a list of tuples (M ORNIONAON c(i)> as explained below. We
refer to this list as the H-list. The list is initially empty. When V queries the oracle
H at a point M € {0,1}", algorithm A responds as follows:

1. If the query M already appears on the H-list in some tuple (M, w,b,c) then
algorithm A responds with H(M) = w € G.

2. Otherwise, A generates a random coin ¢ € {0, 1} so that Prjc = 0] = 1/(qa + 1).

3. Algorithm A picks a random b € Z,,. If ¢ = 0 holds, .A computes w «+ g{-¢% € G1.
If ¢ = 1 holds, A computes w « g% € G.

4. Algorithm A adds the tuple (M, w,b,c) to the H-list and responds to V as
H(M) =w.

VerSig Creation Queries. V requests a verifiably-encrypted signature on some string M
under challenge key v and adjudicator key v'. Algorithm A responds to this query as

follows:

1. Algorithm A runs the above algorithm for responding to H-queries on M, ob-
taining the corresponding tuple (M, w, b, c) on the H-list.

2. A selects z at random from Z,. If c equals 0, A computes and returns (w, ) =

(¢(g9)" - gfl’Hﬁa : T,Z)(gg)w, g% - g¥). If ¢ equals 1, A computes and returns (w, u1) =



CHAPTER 4. SIGNATURE VARIANTS AND EXTENSIONS 52

(¥(g5)° - 1/1(92’6)‘”,95). It is easy to verify that (e,u) is in either case a correct

verifiably encrypted signature on the message with hash w.

Adjudication Queries. Algorithm V requests adjudication for (w,p), a verifiably en-
crypted signature on a message M under key v and adjudicator key v’. Algorithm A

responds to this query as follows:

1. Algorithm A runs the above algorithm for responding to H-queries on M, ob-
taining the corresponding tuple (M, w, b, c) on the H-list.

2. Algorithm A checks that the verifiably encrypted signature is valid. If it is not,

A returns x, a placeholder value.

3. If ¢ equals 0, A declares failure and halts. Otherwise, it computes and returns
o« P(g9)°. Tt is easy to verify that o is the correct BLS signature under key v

on the message with hash w.

Output. Finally, V halts. It either concedes failure, in which case so does A, or returns
a nontrivial extracted signature ¢* on some message M*. For the extraction to be
nontrivial, ¥ must not have asked for adjudication on a verifiably encrypted signature
of M*. Algorithm A runs its hash algorithm at M*, obtaining the k corresponding
tuples (M* w* b* ¢*) on the H-list.

A now proceeds only if ¢* = 0; otherwise it declares failure and halts. Since ¢* = 0, it
follows that w* = g - glf*. The extracted signature ¢* must satisfy the BLS verification

equation, e(c¥ go) = e(h* v). A sets o « */¢(v)"". Then

e(0,92) = e(0%,g2) - e(¥(v), 92) ™" = e(w",v) - e(¥(g2), )"

= e(g7,v) - e(g1,v)"" - e(g1,v) ™" = e(g7, 95).

Where in the last equality we substitute v = ¢§. Thus (g2,65,9;,0) is a valid co-
Diffie-Hellman tuple, so o equals g5 ', the answer to the aggregate extraction problem;

algorithm A outputs it and halts.

This completes the description of algorithm 4. It remains to show that A solves the given
instance of the aggregate extraction problem on (G1,G2) with probability at least ¢’. To

do so, we analyze the three events needed for A to succeed:



CHAPTER 4. SIGNATURE VARIANTS AND EXTENSIONS 53

&1: A does not abort as a result of any of V’s adjudication queries.
Ey: V generates a valid and nontrivial verifiably-encrypted signature extraction (M* c*).

&3: Event & occurs, and ¢* = 0 holds, where ¢* is the c-component of the tuple containing
M* on the H-list.

A succeeds if all of these events happen. The probability Pr[&; A 3] decomposes as
Pl‘[gl VAN (93] = Pr[é'l] . Pl‘[gg | 51] . Pr[gg ‘ 51 VAN 52] (42)

The following claims give a lower bound for each of these terms.

Claim 7. The probability that algorithm A does not abort as a result of V’s adjudication
queries is at least 1/e. Hence, Pr[&1] > 1/e.

Proof. Without loss of generality we assume that V does not ask for adjudication of the same
message twice. We prove by induction that after V makes [ signature queries the probability
that A does not abort is at least (1 —1/(q4 + 1))!. The claim is trivially true for [ = 0. Let
V’s I’th adjudication query be for verifiably encrypted signature (w(l) , u(l)), on message M
under the challenge key v, and let (M O ® p® c(l)> be the corresponding tuple on the
H-list. Then prior to issuing the query, the bit ¢) is independent of V’s view — the only
values that could be given to V that depend on ¢) are H (M (l)) and verifiably-encrypted
signatures on M® | but the distributions on these values are the same whether ¢) = 0 or
¢) = 1. Therefore, the probability that this query causes A to abort is at most 1/(q, + 1).
Using the inductive hypothesis and the independence of ¢® . the probability that A does
not abort after this query is at least (1 — 1/(ga + 1))!. This proves the inductive claim.
Since V makes at most ¢, adjudication queries the probability that A does not abort as a

result of all signature queries is at least (1 —1/(gs + 1)) > 1/e. O

Claim 8. If algorithm A does not abort as a result of V’s adjudication queries then V’s

view is identical to its view in the real attack. Hence, Pr[Ey | £1] > €.

Proof. The challenge public key v given to V is from the same distribution as public keys
produced by Kg; the adjudicator’s public key v’ given to V is from the same distribution
as the adjudicator keys produces by AKg. Responses to hash queries are as in the real

attack since each response is uniformly and independently distributed in G;. Responses to



CHAPTER 4. SIGNATURE VARIANTS AND EXTENSIONS o4

verifiably-encrypted signature queries are also as in the real attack: They are valid, and
their p components are uniformly and independently distributed in G;. Since A did not
abort as a result of V’s adjudication queries, all its responses to those queries are valid.
Therefore V will produce a valid and nontrivial verifiably-encrypted signature extraction
with probability at least e. Hence Pr[€; | £1] > €. O

Claim 9. The probability that algorithm A does not abort after V outputs a valid and
nontrivial verifiably-encrypted signature extraction is at least 1/(qs + 1) Hence, Pr[€3 |
&1 /\52] > 1/(qA + 1).

Proof. Given that events £ and & happened, algorithm A will abort only if V generates
a forgery (M™* o*) for which the tuple (M* w* b* ¢*) on the H-list has ¢ = 1. Since its
extraction is nontrivial, V could not have requested adjudication on any verifiably encrypted
signature on M*, and ¢* must be independent of V’s current view. Therefore Pr[c* = 0 |

E1NE > 1/(qa + 1) as required. O

Using the bounds from the claims above in equation (4.2) shows that 4 produces the
correct answer with probability at least €/e(qs + 1) > € as required.

Algorithm A’s running time is the same as V’s running time plus the time is takes to
respond to A’s oracle queries and to transform V’s verifiably-encrypted signature extraction
into an aggregate extraction. Each verifiably-encrypted signature query, each adjudication
query, and the output phase requires A to run its H-algorithm. It must therefore run this
algorithm (qy +¢qs+¢qa+1) times. Each run requires an exponentiation in G7. Algorithm .4
must run its verifiably-encrypted signing algorithm ¢4 times, and each run requires at most
three exponentiation in 1. Finally, A’s output phase requires at most one exponentiation
and one inversion in GG1. We assume that exponentiation and inversion in G take time cg, .

Hence, the total running time is at most t + c¢, (qi + 4¢s + 2¢4 + 3) < t’ as required. [

4.5.6 Observations on Verifiably Encrypted Signatures

We note some extensions of the BGLS2 verifiably encrypted signature scheme discussed

above.

e Anyone can convert an ordinary unencrypted signature to a verifiably encrypted sig-

nature. The same applies to unencrypted aggregate signatures.



CHAPTER 4. SIGNATURE VARIANTS AND EXTENSIONS 95

e An adjudicator’s private key can be shared amongst n parties using k-of-n threshold
cryptography [62, 60], so that k parties are needed to adjudicate a verifiably encrypted

signature.

e A message-signature pair in the BLS signature scheme is of the same form as an
identity—private-key pair in Boneh-Franklin Identity-Based Encryption (IBE) [25].
Thus the verifiably encrypted signature scheme can potentially be modified to yield a
verifiable encryption scheme for IBE private keys. Verifiably encrypted private keys

have many applications [103].

4.6 Conclusions and Open Problems

In this chapter, we have some variants and extensions of which the BLS signature scheme
is capable.

We first showed how BLS has been extended to construct many of the standard signature
variants in the literature, including threshold signatures and multisignatures.

We then introduced the concept of aggregate signatures and constructed an efficient
aggregate signature scheme, BGLS, based on bilinear maps. Key generation, aggregation,
and verification require no interaction. We proved security of the system in a model that
gives the adversary his choice of public keys and messages to forge.

Finally, we introduced verifiably encrypted signatures, and showed that our BGLS ag-
gregate signature scheme gives rise to a simple verifiably encrypted signature scheme.

Unlike most previous signature constructions using bilinear maps [78, 48, 22|, which
only required a gap Diffie-Hellman group (i.e., DDH easy, CDH hard), the aggregate and
verifiably encrypted signature constructions described in Sections 4.4.2 and 4.5.4 require the
extra structure provided by the bilinear map. These constructions are an example where a
bilinear map provides more power than a generic gap Diffie-Hellman group.

It is an open problem to construct aggregate signatures that work in any gap Diffie-

Hellman group.



Chapter 5

Sequential Aggregate Signatures

from Trapdoor Permutations

5.1 Introduction

Aggregate signatures, as introduced in Section 4.4, allow a single short aggregate to replace
n signatures by n users on n messages. The BGLS aggregate signature scheme, like the
other schemes in this thesis, requires a computable bilinear map. In this section we propose
a variant — sequential aggregate signatures — with the advantage that it can be constructed
based on a more general assumption: the existence trapdoor permutations.

There is a trade-off. Sequential aggregate signatures do not have the property that
an untrusted aggregating party can combine, after the fact, signatures that were generated
independently. Instead, signing and aggregation are a single operation, and each signer folds
her signature into the aggregate-so-far, which she obtains from the previous signer. More
precisely, User ¢ is given an aggregate on messages My, ..., M;_; under keys pk,,..., pk;,_;
and outputs an aggregate on messages My, ..., M;_1, M; under keys pky, ..., pk;_q, pk;.

For some applications of aggregate signatures—in particular, certificate chains— the
ability to combine preexisting individual signatures into an aggregate is unnecessary. Each
CA, when producing a signature, has already obtained the signatures of CAs above it in
the chain. Thus aggregation for certificate chains can be performed incrementally and
sequentially.

In this chapter, we show how to realize sequential aggregate signatures using any family

56



CHAPTER 5. SEQUENTIAL AGGREGATE SIGNATURES 57

of certified! trapdoor permutations over a single domain, provided that the domain is a
group under some operation. We prove security (with an exact security analysis) of our
construction in the random oracle model; we give a tighter security guarantee for the special
cases of homomorphic and claw-free trapdoor permutations.

Again, compared to the BGLS aggregate signature scheme considered in Section 4.4, the
scheme presented here places more restrictions on the signers (because of the sequentiality
requirement), but relies on a more general assumption.

We also show how to instantiate our construction with the RSA trapdoor permutation.
This instantiation turns out to be more difficult than may be expected, because of the
possibility of maliciously generated RSA keys: We need to provide security for User i
regardless of whether other users are honest. There are essentially four problems. The first
is that our scheme assumes multiple trapdoor permutations over the same domain, which
RSA does not provide. The second is that RSA is not a certified trapdoor permutation: for a
maliciously generated public-key, it can indeed be very far from a permutation. The third is
that the domain of RSA is not the convenient Zy, but rather Zj\,, which can be much smaller
for maliciously generated N. Finally, the natural group operation on Zj, (multiplication)
is not a group operation on Zy. We overcome these problems with techniques that may be
of independent interest. In particular, we turn RSA into a certified trapdoor permutation

over all of Zy.

Other Related Work. Aggregate signatures are related to multisignatures, which we
considered in Section 4.3. In particular, our LMRS aggregate signature scheme has simi-
larities with the multisignature scheme of Okamoto [96] (though the latter has no security
proof and, indeed, is missing important details that would make the security proof possible,
as shown by Micali et al. [85]).

5.2 Preliminaries

We recall the definitions of trapdoor permutations and the full-domain hash signatures based
upon them. We also define certified trapdoor permutations, which are needed for building
sequential aggregate signatures. Finally, we define claw-free permutations and homomorphic

trapdoor permutations, whose properties we will use to achieve a better security reduction.

'A trapdoor permutation is certified [19] if one can verify from its public description that it is actually
a permutation.



CHAPTER 5. SEQUENTIAL AGGREGATE SIGNATURES o8

5.2.1 Trapdoor One-Way Permutations

Let D be a group over some operation ®. For simplicity, we assume that choosing an
element of D at random, computing ®, and inverting ® each take unit time.

A trapdoor permutation family 7DP over D is defined as a triple of algorithms, Gen,
Ev, and Inv. The randomized generation algorithm Gen outputs the description s of a
permutation along with the corresponding trapdoor ¢. The evaluation algorithm Ev, given
the permutation description s and a value x € D, outputs a € D, the image of x under
the permutation. The inversion algorithm Inv, given the permutation description s, the
trapdoor ¢, and a value a € D, outputs the preimage of a under the permutation.

We require that Ev(s,-) be a permutation of D for all (s,t) & Gen, and that x =
Inv(s,t,Ev(s,x)) hold for all (s,t) & Gen and for all z € D. The algorithms Gen, Ev, and

Inv are also assumed to take unit time for simplicity.

Definition 5.2.1. The advantage of an algorithm A in inverting a trapdoor permutation
family 7DP is

Advtlel;i)m:4 def . |:ZL‘ = A(s,Ev(s,z)) : (s,t) & Gen, z & D}

The probability is taken over the coin tosses of Gen and of A. An algorithm A (, €)-inverts
a trapdoor permutation family if A runs in time at most ¢t and Advt;-i,lg';;m:4 is at least e.
A trapdoor permutation family is (t, €)-one-way if no algorithm (¢, €)-inverts the trapdoor

permutation family.

Note that this definition of a trapdoor permutation family requires that all permutations
in the trapdoor permutation family operate on the same domain D.

When it engenders no ambiguity, we consider the output of the generation algorithm Gen
as a probability distribution IT on permutations, and write (m, 7 !) & II; here m is the

permutation Ev(s,-), and 7! is the inverse permutation Inv(s,t,-).

5.2.2 Certified Trapdoor Permutations

The trapdoor permutation families used in sequential aggregation must be certified trapdoor
permutation families [19]. A certified trapdoor permutation family is one such that, for any

string s, it is easy to determine whether s can have been output by Gen, and thereby ensure



CHAPTER 5. SEQUENTIAL AGGREGATE SIGNATURES 99

that Ev(s,-) is a permutation. This is important when permutation descriptions s can be
generated by malicious parties.

Applying the definitions above to the RSA permutation family requires some care. RSA
gives permutations over domains Zjv, where each user has a distinct modulus N. Moreover,
given just a public key (N, e), certifying that the key actually describes a permutation is

nontrivial. We consider this further in Section 5.5.

5.2.3 Claw-Free Permutations, Homomorphic Trapdoor Permutations

We now describe two variants of trapdoor permutations: claw-free permutations and homo-
morphic trapdoor permutations. The features these variants provide are not needed in the
description of the sequential aggregate signature scheme, but allow a more efficient security
reduction in Theorem 5.4.3.

A claw-free permutation family CFP [66] is a trapdoor permutation family where each
key (s,t) describes not only a permutation 7 : D — D as before but also an additional
permutation g : D — D, evaluated using the algorithm EvG(s,-). (More generally, g can
map any domain F onto D as long as the uniform distribution on E induces the uniform
distribution on g(E).) We assume that algorithm EvG runs in unit time and that choosing

an element of E at random also takes unit time, just as above.

Definition 5.2.2. The advantage of an algorithm A in finding a claw in a claw-free per-

mutation family is

Ev(s,z) = EvG(s,y) :
law def ) 5
Adverp 4 = Pr R R
(s,t) < Gen, (z,y) «— A(s)

The probability is taken over the coin tosses of Gen and of A. An algorithm A (¢, €)-breaks
a claw-free permutation family if A runs in time at most ¢ and Advg}_v;;’ 4 1s at least e. A
permutation family is (¢, €)-claw-free if no algorithm (¢, €)-breaks the claw-free permutation

family.

Again, when it engenders no ambiguity, we abbreviate EvG(s,-) as ¢g(-), and write
(mr,771,9) E 11 In this compact notation, a claw is a pair (x,y) such that 7(x) = g(y).

One can obtain from every claw-free permutation family a trapdoor permutation family,
simply by ignoring EvG [66]. The proof is straightforward. Suppose there exists an algo-
rithm A that inverts = with nonnegligible probability. One selects y & D, and provides A



CHAPTER 5. SEQUENTIAL AGGREGATE SIGNATURES 60

with z = g(y), which is uniformly distributed in D. If A outputs = such that z = 7 1(2),
then it has uncovered a claw 7 (z) = g(y).

A trapdoor permutation family is homomorphic if D is a group with some operation
and if, for all (s,t) generated by Gen, the permutation 7 : D — D induced by Ev(s,-) is
an automorphism on D with . That is, if a = 7(z) and b = 7(y), then a x b = 7(z x y).
The group action * is assumed to be computable in unit time. The operation * can be
different from the operation ® given above; nor do we require any particular relationship
(e.g., distributivity) between ® and .

One can obtain from every homomorphic trapdoor permutation family a claw-free per-
mutation family [49]. Pick some z # 1 € D, and define g(z) = z*m(z). In this case, E = D.
Then a claw 7(z) = g(y) = 2 * n(y) reveals 7~ 1(2) = x * (1/y) (where the inverse is with

respect to *).

5.2.4 Full-Domain Signatures

We review the full-domain hash signature scheme; this scheme underlies our sequential
aggregate signature scheme, just as the BLS signature scheme of Section 3.3 underlies the
BGLS aggregate signature scheme of Sect 4.4.2.

The full-domain hash signature scheme, introduced by Bellare and Rogaway [16], can
be instantiated using any trapdoor one-way permutation family. The more efficient secu-
rity reduction given by Coron [39] additionally requires that the permutation family be
homomorphic. Dodis and Reyzin show that Coron’s analysis can be applied for any claw-
free permutation family [49]. The scheme makes use of a hash function H : {0,1}* — D,
which is modeled as a random oracle. The signature scheme is a three-tuple of algorithms
FDHS = (Kg, Sig, Vf). These behave as follows.

FDHS.Kg. For a particular user, pick random (s, ) & TDP.Gen. The user’s public key pk

is s. The user’s private key sk is (s, t).

FDHS.Sig(sk, M ). Parse the user’s private key sk as (s,t). Compute h «— H (M), where
h € D, and o « TDP.Inv(s,t, h). The signature is o € D.

FDHS.Vf(pk, M, o). Parse the user’s public key pk as s. Compute h <« H(M); accept if
h = TDP.Ev(s, o) holds.



CHAPTER 5. SEQUENTIAL AGGREGATE SIGNATURES 61

The following theorem, due to Coron, shows the security of full-domain signatures under
the adaptive chosen message attack in the random oracle model. The terms given in the
exact analysis of € and t have been adapted to agree with the accounting employed elsewhere
in this thesis. A theorem with similar bounds can be given assuming claw-free permutations.
(The comparable theorem for general trapdoor permutations has a security loss proportional

to gy rather than g¢s.)

Theorem 5.2.3. Let II be a (t',€')-one-way homomorphic trapdoor permutation family.
Then the full-domain hash signature scheme on 11 is (t,qu, qs, €)-secure against existential
forgery under an adaptive chosen-message attack (in the random oracle model) for all t and
€ satisfying

e>e(qgs+1) € and  t <t —2(qy +2qs) -

Here e is the base of the natural logarithm.

5.3 Sequential Aggregate Signatures

In an aggregate signature scheme, as presented in Section 4.4, signatures are first individ-
ually generated and then combined into an aggregate. Sequential aggregate signatures are
different. Each would-be signer transforms a sequential aggregate into another that includes
a signature on a message of his choice. Signing and aggregation are a single operation; se-
quential aggregates are built in layers, like an onion; the first signature in the aggregate is
the inmost. As with non-sequential aggregate signatures, the resulting sequential aggregate
is the same length as an ordinary signature. This behavior closely mirrors the sequential
nature of certificate chains in a PKI.

Let us restate the intuition given above more formally. A sequential aggregate signature

scheme is a three-tuple of algorithms SAS = (Kg, ASig, AVf), which behave as follows.

SAS.Kg. As usual, a randomized algorithm that outputs a public-private keypair (pk, sk).

SAS.ASig(sk, M, o', {pk;, Mi}f;f). Aggregation and signing is a combined operation. The
sequential aggregate signing algorithm takes as input a private key sk, a message
M in some message space to be signed, and a sequential aggregate o’ on messages
My, ..., M1 under respective public keys pky,..., pk;_;, where M; is the inmost
message. If k is 1, the aggregate o is taken to be empty. The algorithm adds an out-

most signature on M under sk to the aggregate. outputting a sequential aggregate o



CHAPTER 5. SEQUENTIAL AGGREGATE SIGNATURES 62

on all k messages under all k keys.

SAS.AVf(a, {pk;, M;}*_,). The input is a sequential aggregate o on messages M, ..., M,
under public keys pk;,...,pk;. The algorithm verifies that o is a valid sequential

aggregate (with Mj inmost) on the given messages under the given keys.

The notion of sequential aggregate signature security we consider is a generalization
of existential unforgeability of ordinary signatures, which we recalled in Section 3.2, and
a variant of the aggregate chosen-key model of Section 4.4.1. Specifically, the adversary
attempts to forge a sequential aggregate signature, on messages of his choice, by some set of
users; clearly, at least one of the users in the set must not be under the adversary’s control.

We formalize this intuition as the sequential aggregate chosen-key security model. In
this model, the adversary A is given a single public key. His goal is the existential forgery
of a sequential aggregate signature. We give the adversary power to choose all public
keys except the challenge public key. The adversary is also given access to a sequential
aggregate signing oracle on the challenge key. His advantage, Adv?j?a, is defined to be

his probability of success in the following game.

Setup. The challenger runs algorithm Kg to obtain a public key pk and private key sk.
The aggregate forger A is given pk.

Queries. Proceeding adaptively, A requests sequential aggregate signatures with pk
on messages of his choice. For each query, he supplies a sequential aggregate
signature o on some messages M, ..., M;_1 under distinct keys pky, ..., pk;_1,
and an additional message M; to be signed by the oracle under key pk (where
i is at most n, a game parameter). The challenger responds to these queries by
running ASig using private key sk. In the random oracle model, A can also make

qn queries to a hash oracle H.

Response. Finally, A outputs ¢ distinct public keys pky, ..., pk;. Here i is at most n,
and need not equal the lengths (also denoted 7) of A’s requests in the query phase
above. One of these keys must equal pk, the challenge key. Algorithm A also
outputs messages Mi,...,M;, and a sequential aggregate signature o by the

¢ users, each on his corresponding message, with pk; inmost.

The forger wins if the sequential aggregate signature o is a valid sequential aggregate

signature on messages Mji, ..., M; under keys pk,,...,pk;, and o is nontrivial, i.e.,



CHAPTER 5. SEQUENTIAL AGGREGATE SIGNATURES 63

A did not request a sequential aggregate signature on messages M1, ..., M; under
keys pky, ..., pk;-, where i* is the index of the challenge key pk in the forgery. Note
that ¢* need not equal i: the forgery can be made in the middle of ¢. The probability

is over the coin tosses of the key-generation algorithm and of A.

Definition 5.3.1. A sequential aggregate forger A (t, gy, qs,n, €)-breaks an n-user aggre-
gate signature scheme in the sequential aggregate chosen-key model if: A runs in time
at most t; A makes at most g, queries to the hash function and at most ¢gs queries to
the aggregate signing oracle; Adv?j?a is at least ¢; and the forged sequential aggregate
signature is by at most n users. A sequential aggregate signature scheme is (¢, gy, g5, n, €)-
secure against existential forgery in the sequential aggregate chosen-key model if no forger

(t,qu, qs,n, €)-breaks it.

5.4 Sequential Aggregates from Trapdoor Permutations

We describe a sequential aggregate signature scheme arising from any family of trapdoor
permutations, and prove the security of the scheme.

We must first introduce some notation for vectors. We write a vector as x, its length
as |x|, and its elements as x1,Xa, ... ;X|x|- We denote concatenating vectors as x|ly and
appending an element to a vector as x||z. For a vector x, X|Z is the sub-vector containing

elements x4, Xq41,---,Xp. (Obviously we have 1 <a <b < |x]).

5.4.1 The Scheme

We now describe the three algorithms Kg, ASig, and AVf for our sequential aggregate signa-
ture scheme based on certified trapdoor permutations. The scheme employs a full-domain
hash function H : {0,1}" — D, viewed as a random oracle, and resembles full-domain hash
described in Section 5.2.4. The trick to aggregation is to incorporate the sequential aggre-
gate signature of previous users by multiplying it (via the group operation ®) together with
the hash of the message. As it happens, the hash now needs to include not only the signer’s

message, but also her public key and the prior messages and keys.?

2This is done not merely because we do not know how to prove the scheme secure otherwise. Micali
et al. [86] pointed out that if the signature does not include the public key, then an adversary may attack
the scheme by deciding on the public key after the signature is issued.



CHAPTER 5. SEQUENTIAL AGGREGATE SIGNATURES 64

LMRS.Kg. For a particular user, pick random (s, t) & TDP.Gen. The user’s public key pk

is s. The user’s private key sk is (s, t).

LMRS.ASig(sk, M, ¢/, M, pk). The input is a private key sk, to be parsed as (s,t); a mes-
sage M € {0,1}" to be signed, and a sequential aggregate o/ € D on messages M
under public keys pk, to be parsed as a vector s. Verify that ¢’ is a valid signature
on M under s using the verification algorithm below; if not, output x, indicating error.
Otherwise, compute h «— H(s|s, M||M), where h € D, and o < TDP.Inv(s,t,h ® o’).

The sequential aggregate signature is o € D.

LMRS.AVf(o, M, pk). The input is a sequential aggregate o € D on messages M under
public keys pk, to be parsed as a vector s. If any key appears twice in s, if any

element of s does not describe a valid permutation, or if |M| and |s| differ, reject.

Otherwise, let i equal M| = |s|. Set o; < o. Then, for j = i,...,1, set gj_1 «
TDP.Ev(s;,05) ® H(sl], MJ{)~!. Accept if oo equals 1, the unit of D with respect
to ©.

Written using m-notation, a sequential aggregate signature is of the form
—1/7 -1 ) -1 -1 -1
T (hi © w2 (hicy © (- my (e © 7 (Ra))-++)))

where h; = H (s|?, MJ}). Verification evaluates the permutations in the forward direction,

peeling layers away until the center is reached.

5.4.2 Security

The following theorem demonstrates that our scheme is secure when instantiated on any

certified trapdoor permutation family.

Theorem 5.4.1. Let IT be a certified (t',€')-trapdoor permutation family. Then our se-
quential aggregate signature scheme on 11 is (t, qu, qs,n, €)-secure against existential forgery
under an adaptive sequential aggregate chosen-message attack (in the random oracle model)

for all t and € satisfying

e>(qu+aqs+1)-€ and t<t — (dngy +4ngs+Tn—1) .



CHAPTER 5. SEQUENTIAL AGGREGATE SIGNATURES 65

Following Coron’s work [39], a better security reduction is obtained if the trapdoor per-
mutations are, additionally, homomorphic under some operation *. (The operation * need
not be the same as the operation @ used in the description of the signature scheme in
Section 5.4.)

Theorem 5.4.2. Let II be a certified homomorphic (t',€)-trapdoor permutation family.
Then our sequential aggregate signature scheme on 11 is (t,qu, qs, n, €)-secure against exis-
tential forgery under an adaptive sequential aggregate chosen-message attack (in the random

oracle model) for all t and € satisfying
e>e(qgs+1)-¢ and t<t' —((4n+1)quy + (4n+1)gs + Tn +3) .

Here e is the base of the natural logarithm.

Finally, following the work of Dodis and Reyzin [49], the homomorphic property is not really

necessary, and can be replaced with the more general claw-free property:

Theorem 5.4.3. Let IT be a certified (t',€")-claw-free permutation family. Then the se-
quential aggregate signature scheme on 11 is (t, qu, qs,n, €)-secure against existential forgery
under an adaptive sequential aggregate chosen-message attack (in the random oracle model)

for all t and € satisfying
e>e(gs+1)-€ and  t <t — (4ngy +4ngs +Tn) .

Here e is the base of the natural logarithm.

The proofs of these theorems are very similar. In fact, Theorem 5.4.2 is just a corollary
of Theorem 5.4.3, because, as we already saw, homomorphic trapdoor permutations are

claw-free. We will prove all three at once.

Proofs. Suppose there exists a forger A that breaks the security of our sequential aggregate
signature scheme. We describe three algorithms that use A to break one of the three
possible security assumptions (trapdoor one-wayness, homomorphic one-wayness, and claw-
freeness). In fact, the algorithms are quite similar regardless of the assumption. Therefore,
we present only one of them: B that uses A to find a claw in a (supposedly) claw-free
permutation family II. We will point out later the changes needed to make the reduction

to ordinary and homomorphic trapdoor permutations.



CHAPTER 5. SEQUENTIAL AGGREGATE SIGNATURES 66

Suppose A is a forger algorithm that (¢, qu,qs,n,€)-breaks the sequential aggregate
signature scheme. We construct an algorithm B that finds a claw in II.

Crucial in our construction is the following fact about our signature scheme: once the
function H is fixed on 4 input values (s|]1 , MH), 1 < j < i, there exists only one valid
aggregate signature on M using keys s. Thus, by answering hash queries properly, B can
prepare for answering signature queries and for taking advantage of the eventual forgery.

Algorithm B is given the description s of an element of II, and must find values x € D and
y € E such that Ev(s,z) = EvG(s,y). Algorithm B supplies A with the public key s. It

then runs A and answers its oracle queries as follows.

Hash Queries. Algorithm B maintains a list of tuples (sU), M) ) (), c(j)>, to which
we refer as the H-list. The list is initially empty. When A queries the oracle H at a
point (s, M), algorithm B responds as follows.

First we consider the easy cases.

e If some tuple (s, M, w,r,c) on the H-list already contains the query (s, M), then
algorithm B answers the query as H(s,M) = w € D.

e If M| and |s| differ, if |s| exceeds n, if some key is repeated in s, or if any key
in s does not describe a valid permutation, then (s, M) can never be part of a
sequential aggregate signature. Algorithm B picks w E D, and sets r < % and
¢ « %, both placeholder values. It adds (s, M, w,r,c) to the H-list and responds
to the query as H(s,M) =w € D.

Now for the more complicated cases. Set i = |s| = [M]|. If ¢ is greater than 1, B runs
the hashing algorithm on input (s]’fl , Mﬁ_l)7 obtaining the corresponding entry on
the H-list, (s\lfl , M|Zf1 yw ' Y. T i equals 1, B sets 7/« 1. Algorithm B must
now choose elements r,w, and ¢ to include, along with s and M, in a new entry on

the H-list. There are three cases to consider.

e If the challenge key s does not appear at any index of s, B chooses r & D at

random, sets ¢ «— x, a placeholder value, and computes

w — Ev(s;,r) o (r) !



CHAPTER 5. SEQUENTIAL AGGREGATE SIGNATURES 67

e If the challenge key s appears in s at index i* = i, Algorithm B generates a
random coin ¢ € {0,1} such that Prjc = 0] = 1/(gs + 1). If ¢ = 1, B chooses

r & D at random and sets

w «— Ev(s,7) ® (1"')71

(In this case, w is uniform in D and independent of all other queries because r
has been chosen uniformly and independently at random from D, and Ev and
combining with (/)" are both permutations.) If ¢ = 0, B chooses EFat

random and sets

w «— EvG(s,7) ® .

(In this case, w is uniform in D and independent of all other queries because
r has been chosen uniformly and independently at random from E, EvG maps

-1

uniformly onto D, and combining with (/)" is a permutation.)

e If the challenge key s appears in s at index ¢* < ¢, algorithm B picks w & Dat

random, and sets r < x and ¢ « *, both placeholder values.

Finally, B adds (s, M, w, r, ¢) to the H-list, and responds to the query as H (s, M) = w.

In all cases, B’s response, w, is uniform in D and independent of A’s current view, as

required.

Aggregate Signature Queries. Algorithm A requests a sequential aggregate signature,

under key s, on messages M under keys s.

If |s| and |M| differ, if |s| exceeds n, if any key appears more than once in s, or if any
key in s does not describe a valid permutation, (s, M) is not a valid aggregate, and B
responds to A with %, indicating error. Let i = |s| = |[M|. If s; differs from s, (s, M) is

not a valid query to the aggregate signing oracle, and B again responds with .

Algorithm A also supplies a purported sequential aggregate signature o’ on mes-
sages M|Zf1 under keys s|i171. If i equals 1, B verifies that ¢’ equals 1. Other-
wise, B uses AVf to ensure that ¢’ is the correct sequential aggregate signature on

(s|i™h, M|\h). If o is incorrect, B again responds with .

Otherwise, B runs the hash algorithm on (s, M), obtaining the corresponding entry
on the H-list, (s, M,w,r,c). Since s; equals s, ¢ must be 0 or 1. If ¢ = 0 holds, B



CHAPTER 5. SEQUENTIAL AGGREGATE SIGNATURES 68

reports failure and terminates. Otherwise, B responds to the query with o « r.

Output. Eventually algorithm A halts, outputting a message vector M, a public-key vec-
tor s, and a corresponding sequential aggregate signature forgery o. The forgery must
be valid: No key may occur more than once in s, each key in s must describe a
valid permutation, the two vectors s and M must have the same length ¢, which is at
most n. The forgery must also be nontrivial: The challenge key s must occur in s, at
some location i*, and A must not have asked for a sequential aggregate signature on
messages M|’1 under keys s\lf. If A fails to output a valid and nontrivial forgery, B

reports failure and terminates.

Algorithm B begins by checking the hashes included in o. For each j, 1 < 5 <4, B runs
its hash algorithm on (s Jl ) MH), obtaining a series of tuples <SH , M|J1 ,w) () 0y,
Note that B always returns w as the answer to a hash query so for each j we have
H(s[{, MJ}) = w0

Algorithm B then examines ¢{'"). Since (") equals s, ¢(©) must be 0 or 1. If () =1
holds, B reports failure and terminates. Then B applies the aggregate signature

verification algorithm to o. It sets o® — g. For j = i,...,1, it sets cU~1) —
Ev(s¥), o)) @ (w?))~1.

If 0@ does not equal 0, ¢ is not a valid aggregate signature, and B reports failure
and terminates. Otherwise, o is valid and, moreover, each @) computed by B is the

(unique) valid aggregate signature on messages MH under keys SH

Finally, B sets 2 < o) and y «— ().

This completes the description of algorithm B.

It is easy to modify this algorithm for homomorphic trapdoor permutations. Now the
algorithm’s goal is not to find a claw, but to invert the permutation given by s on a given
input z. Simply replace, when answering hash queries for ¢ = 0, invocation of EvG(s, r) with
z*Ev(s,r). The a claw (z,y) allows B to recover the inverse of z under the permutation by
computing z = x % (1/y), where 1/y is the inverse of y under .

Finally, it is also easy to modify this algorithm for ordinary trapdoor permutations:

e In answering hash queries where the challenge key s is outmost in s, instead of letting
¢ = 0 with probability 1/(gs + 1), set ¢ = 0 for exactly one query, chosen at random.

There can be at most q;; + g5 + 1 such queries.



CHAPTER 5. SEQUENTIAL AGGREGATE SIGNATURES 69

e For the ¢ = 0 query, set w «+— 2 ©® (7“’)71. Then w is random given A’s view.
e If Algorithm A’s forgery is such that ¢('") = 0, B” outputs z «— o).

To complete the proof, we now show that B correctly simulates A’s environment, and
analyze its running time and success probability.

Recall that we suppose that A is a forger algorithm that (¢, gx, gs, n, €)-breaks the se-
quential aggregate signature scheme. Our goal is to show that algorithm B, described above,
correctly simulates A’s environment, runs in time #’, and finds a claw in II with probability
at least €, which will contradict the (¢, ¢')-claw-freeness of II (almost identical arguments
work for the modifications of B for ordinary and homomorphic trapdoor permutations).

We introduce some notation, which we will use to demonstrate that B correctly answers
A’s oracle queries. Consider public keys s and respective messages M, where i = |s| = |M]|,
and the entries in s are all distinct. For each j, 1 < j < ¢, B’s hash algorithm associates
with (s|]1 , M|]1) a tuple (s|]l , MH ,w 1) )y The last three elements of these tuples
we view as i-element vectors w, r, and c. Algorithm B always returns w as the answer
to a hash query, so, for each 7, H(s\]1 , MH) = w;. Using the compact notation suggested
above, we also abbreviate the permutation evaluation Ev(s;, -) as 7;(-). For each j there is a
unique correct sequential aggregate signature o; on messages MH under keys SH Finally,
for the challenge key s, we abbreviate the second function of the claw-free permutation pair,
EvG(s, ), as g(-).

Note that, for the keys s and messages M output by A as its forgery, B, in its output
phase, computes and makes use of the vectors w, r, and ¢ as defined here, along with
the correct sequential aggregate signatures ;. In our analysis, we will also consider these
vectors for keys and messages other than those forged on by A.

The proof proceeds in a series of claims. In particular, Claim 13 below shows that B
answers A’s signature queries with the correct sequential aggregate signature, and Claim 14

below shows that B outputs a claw 7(x) = g(y).

Claim 10. If the challenge key s does not equal any of the elements of s, then o; = r; for
each j, 1 <j <.

Proof. We proceed by induction. Since s; # s, wi = mi(r;) ® 1, or, equivalently, ry =
mH(wy) = wfl(H(sH , MH)) = 1. Thus the claim holds for j = 1. If the claim holds for
j — 1, then, since s; # s, w; = 7j(r;) ©® rj_1~}, or, equivalently, r; = 7rj_1(wj Orj_1) =
i Y(H(s|}, M[]) ® 0j_1) = 7, and the claim holds for j. O



CHAPTER 5. SEQUENTIAL AGGREGATE SIGNATURES 70

Claim 11. If the challenge key s appears at index i* of s, and c;~ = 1, then o; = r; for
each j, 1 < j <i*.

Proof. If ¢c;« equals 1, then B computes w;= precisely as it would have had s;» not been s.

Thus the proof of Claim 10 applies still. O

Claim 12. If the challenge key s appears at index v* of s, and c;+ = 0, then, for j < i¥,

oj =r1j, and, for j =i*, o; = 7. (g(r;+)).
Proof. For j < i*, the result follows from Claim 10. We consider the case j = ¢*. If
1" equals 1, B calculates the hash w;+ as

wi=g(r1) 17 =g(r1) .
Thus the correct aggregate signature o is
or=mp ' (w1) =71 (g(r1) -
If +* is greater than 1, B calculates the hash w;« as
Wi = g(rp) @ (rpe1)
and thus

Ojx = 7%'_*1(“72‘* ©op_1) = Wizl(wi* Orp_1) = ”El(g(ri*)) ’

where the first substitution follows from the first half of this claim. Thus the claim also
holds for j =4* > 1. O

Using the claims above, we can demonstrate that B correctly answers A’s aggregate
signing queries, and that, except when it declares failure, B correctly computes a claw

m(z) = g(y), the solution to the challenge posed it.

Claim 13. If A makes a valid sequential aggregate query, supplying messages M, keys s,
and sequential aggregate signature o' on all but the last message, then B either declares

failure and halts or outputs the correct sequential aggregate signature o on the messages.

Proof. If the request is valid then no key appears twice in s, |[s| = [M| =i < n, and s; = s.

Algorithm B examines c¢;. If ¢; equals 0, B declares failure and exits; if it equals 1, B outputs



CHAPTER 5. SEQUENTIAL AGGREGATE SIGNATURES 71

r; as the answer to the signature query. In this case, the antecedent of Claim 11 is satisfied,

and o = o; equals r;, as required. O

Claim 14. If A outputs a valid and nontrivial aggregate signature forgery o on messages M
under keys s then B either declares failure and halts, or outputs the correct solution x to

the given challenge.

Proof. If the forgery is valid and nontrivial, then no key appears twice in s, [s| = |[M| =
1 < n, and s;x = s for some i*. Algorithm B examines c;«. If ¢;+ equals 1, B declares failure

and exits. If ¢;» equals 0, the antecedent of Claim 12 is satisfied, and

o =7 (g(r+))
That is,
m(oi) = g(re)

where we note that m;«(-) = 7(-), the challenge permutation. Algorithm B outputs (in our

notation) x = g+ and y = r;+; it therefore outputs a claw on 7(-) and g(-), as required. [

It remains to show that B outputs the claw with probability at least ¢/. To do so, we

analyze the three events needed for B to succeed:
&1: B does not abort as a result of any of A’s sequential aggregate signature queries.

&t A generates a valid and nontrivial sequential aggregate forgery ¢ on messages M under

keys s.

&s: Event & holds, and ¢ = 0 for the tuple containing (s]’f , M]’l*) on the H-list, where i*

is the index of s in s.

B succeeds if all of these events happen. The probability Pr[€; A £3] decomposes as
Pr[é’l A 53] = Pr[é'l] . Pr[é’g ’ 51] . Pr[€3 | E1 N 52] . (5.1)

The following claims give a lower bound for each of these terms.

Claim 15. The probability that algorithm B does not abort as a result of A’s aggregate

signature queries is at least 1/e. Hence, Pr[€1] > 1/e.



CHAPTER 5. SEQUENTIAL AGGREGATE SIGNATURES 72

Proof. Without loss of generality we assume that 4 does not ask for the signature of the
same message twice. We prove by induction that after A makes k signature queries the
probability that B does not abort is at least (1 — 1/(gs + 1))*. The claim is trivially true
for Kk = 0. Let (s(’“),l\/[(k)) be A’s k’th signature query and let <s(k),M(k),w(k),r(k),c(k)>
be the corresponding tuple on the H-list. Then, prior to A’s issuing the query, the bit
¢ is independent of A’s view — the only value that could be given to A that depends on
c®) is H(s®), M®), but the distribution of H(s®*), M®)) is the same whether ¢*) = 0 or
c¥) = 1. Therefore, the probability that this query causes B to abort is at most 1/(gs + 1),
the probability that c®) equals 0. Using the inductive hypothesis and the independence of
c(F) | the probability that B does not abort after this query is at least (1—1/(gs+1))*. This
proves the inductive claim. Since A makes at most ¢s signature queries, the probability
that B does not abort as a result of all signature queries is at least (1—1/(gs+1))% > 1/e.
Hence Pr[&] > 1/e. O

Claim 16. If algorithm B does not abort as a result of A’s queries then algorithm A’s view

is identical to its view in the real attack. Hence, Pr[& | £1] > €.

Proof. The public key given to A is from the same distribution as public keys produced
by algorithm Kg. Responses to hash queries are as in the real attack since each response
is uniformly and independently distributed in D. All responses to sequential aggregate
signature queries are valid. Therefore A will produce a valid and nontrivial aggregate

signature forgery with probability at least e. Hence Pr[&; | £1] > e. O

Claim 17. The probability that algorithm B does not abort after A, outputs a valid and
nontrivial forgery is at least 1/(qs +1). Hence, Pr[€3 | £1 N &) > 1/(qs + 1).

Proof. Given that events £ and & occurred, B will abort only if A generates a forgery
(s,M, o) for which the tuple <s]§* , M|Zl* ,w@) @) )y on the H-list has ¢(") = 1, where
1* is the index of s in s. At the time A generates its output, it knows the value of ¢ for
those vector pairs (s, M) on which it issued a sequential aggregate signature query (and
in which s is necessarily the last key). All the remaining c¢’s are independent of A’s view.
Indeed, if A did not issue a signature query for (s]’l* , M]’f), then the only value given to A
that depends on (") is H(s|l1 , M|11*), but the distribution on H(s|l1 , M|Zl) is the same

whether ¢") = 0 or ¢") = 1. Since the forgery is nontrivial, A could not have issued a



CHAPTER 5. SEQUENTIAL AGGREGATE SIGNATURES 73

signature query at (s\il* , M\Z;), so c(”) is independent of A’s current view and therefore
Prlc=0|& A& > 1/(gs + 1) as required. O

Using the bounds from the claims above in equation (5.1) shows that B produces the
correct answer with probability at least 1/e-€-1/(gs + 1), as required.

Algorithm B’s running time is the same as A’s running time plus the time is takes to
respond to up to g5 hash queries and g5 aggregate signature queries. Each hash query may
require as many as n levels of recursion, and each level requires (at most) choosing a random
value from D or E, a call to Ev or EvG, an inversion in D, and a evaluation of the group
operation ® in D. Any of these operations is computable in unit time, so each hash query
requires at most 4n time units to answer. Each signature query involves a corresponding
hash computation, and so requires at most 4n time units to answer (¢’ can be verified at
no cost by comparing it to r;_1). Transforming a forgery into a claw (z,y) requires a hash
query and a signature verification. As before, the hash query takes at most 4n time units
to process. The signature verification requires at most n steps, each of which requires a call
to Ev, an inversion in D, and a evaluation of the group operation ® in D, and thus takes
at most n time units to process. The output step thus takes at most 7n time units in total.

Hence B’s total running time is at most ¢ + (4ngy + 4ngs + Tn) < t' as required.

In the case when case B is modified for homomorphic trapdoor permutations, the
running-time accounting requires some care, since it needs now two time units to com-
pute EvG, not one. Answering a hash oracle query (s,M) may involve up to n nested
computations, but only one entry in s can contain the challenge key s and require a call to
EvG. The same is true of the hashing required to answer signature oracle queries and in the
output phase of B. In addition, B’ takes 2 time units to compute 7~ *(z). Hence the total

running time of B’ is at most ¢ + ((4n + 1)qu + (4n + 1)gs + Tn + 3) < t’ as required.

Finally, when B is modified for plain trapdoor permutations, we analyze the running
time and the success probability as follows. The challenge z is embedded in only one hash
response (s,M). If A asks for a signature on (s,M), it cannot later forge on it— the
forgery would be trivial—and so B can then never succeed in inverting z, and its not
being able to answer A’s query is of no consequence. Algorithm B” succeeds if A succeeds
in creating a forgery, which happens with probability e, and if that forgery includes the
challenge (s,M), which happens with probability at least 1/(¢gy + g5 + 1). These two

probabilities are independent since the placement of the challenge is independent of A’s



CHAPTER 5. SEQUENTIAL AGGREGATE SIGNATURES 74

view. The running time of B does not change. (The only difference is that, for the single

hash query for which ¢ = 0, B need not compute EvG, saving one time unit overall). O

5.5 Aggregating with RSA

Here we consider the details of instantiating the sequential aggregate signature scheme
presented in Section 5.4 using the RSA permutation family.

The RSA function was introduced by Rivest, Shamir, and Adleman [104]. If N =
pq is the product of two large primes and ed = 1 mod ¢(N), then w(z) = 2° mod N is a
permutation on Zy, and 7 1(z) = 2% mod N is its inverse. Setting s = (N, e) and t = (d)
gives a one-way trapdoor permutation that is multiplicatively homomorphic.

A few difficulties arise when we try to instantiate the above scheme with RSA. We tackle
them individually.

The first problem is that RSA is not a certified trapdoor permutation. Raising to
the power e may not be a permutation over Zy if e is not relatively prime with ¢(N).
Moreover, even if it is a permutation of Z}k\,, it may not be a permutation of all of Zy if N
is maliciously generated (in particular, if IV is not square-free). Note that, for maliciously
generated N, the difference between Z}k\, and Zpy may be considerable. The traditional
argument used to dismiss this issue (that if one finds = outside Z;, one factors N) has no
relevance here: N may be generated by the adversary, and our ability to factor it has no
positive impact on the security of the scheme for the honest signer who is using a different
modulus. Our security proof substantially relied on the fact that even the adversarial
public keys define permutations for uniqueness of signatures and proper distribution of
hash query answers. Indeed, this is not just a “proof problem,” but a demonstrable security
concern: If the adversary is able to precede the honest user’s key (N;,e;) with multiple
keys (Ny,e1),...,(Ni—1,e;—1), each of which defines a collision-prone function rather than
a permutation, then it is quite possible that no matter value one takes for o;, it will be
likely to verify correctly: for example, there will be two valid o values, four valid o9 values,
eight valid o3 values, ..., and 2! valid o; values.

One way to resolve this problem is to make sure that every key participating in an
aggregate signature has been verified to be of correct form. This could be accomplished
by having a trusted certification authority check that N is a product of two large primes

and e is relatively prime to ¢(IV) before issuing a certificate. This check, however, requires



CHAPTER 5. SEQUENTIAL AGGREGATE SIGNATURES 75

one to place more trust in the authority than usual: the authority must be trusted not
just to verify the identity of a key’s purported owner, but also to perform verification of
some complicated properties of the key. Moreover, the security of an honest signer can
be compromised without the signer’s knowledge or participation by dishonest signers whose
keys are of incorrect form, when the dishonest signers form an aggregate signature that
verifies with the honest signer’s public key. The only way to prevent this is to trust that
the verifier of the aggregate signature only accepts certificates from certification authorities
who verify the correctness of the key.

In the case when it is best to avoid assuming such complex trust relationships, we
propose to tackle this problem in the same way as Micali et al. [85], though at the expense
of longer verification time. First, we require e to be a prime larger than N (this idea also
appeared in a paper by Cachin et al. [31]). Then e is guaranteed to be relatively prime with
¢(N), and thus to provide a permutation over Z}k\,. To extend to a permutation over Zy,
we define Ev((N,e), z) as follows: if ged(z, N) = 1, output 2 mod N; else output z.

The second problem is that the natural choice for the group operation ®, multiplication,
is not actually a group operation over Zpy. Thus, signature verification, which requires
computation of an inverse under ®, may be unable to proceed. Further, our security proof
will no longer hold, since it relies on the fact that ® is a group operation for uniqueness
of signatures and proper distribution of hash query answers. This difficulty is simple to
overcome: Use addition modulo N as the group operation ®. Recall that no properties
were required of ® beyond being a group operation on the domain.

The third problem is that two users cannot share the same modulus N. Thus the
domains of the one-way permutations belonging to the aggregating users differ, making it
difficult to treat RSA as a family of trapdoor permutations. Below, we give three approaches
that allow us to create sequential aggregates from RSA nonetheless.

Our first approach is to require the users’ moduli to be arranged in increasing order:
N1 < Ny--- < N,. At verification, it is important to check that the i-th signature o; is
actually less than NV;, to ensure that correct signatures are unique if H is fixed. As long as
log N1 — log N,, is constant, and the range of H is a subset of Zy, whose size is a constant
fraction of N7, the scheme will be secure. The same security proof still goes through, with
the following minor modification for answering hash queries. Whenever a hash query answer
w is computed by first choosing a random 7 in Zy;,, there is a chance that w will be outside

of the range of H. In this case, simply repeat with a fresh random 7 until w falls in the



CHAPTER 5. SEQUENTIAL AGGREGATE SIGNATURES 76

right range (the expected number of repetitions is constant). Note that because we insisted
on Ev being a permutation and ® being a group operation, the resulting distribution of w is
uniform on the range of H. Therefore, the distribution of answers to hash queries is uniform.
Since signatures are uniquely determined by answers to hash queries, the adversary’s whole
view is correct, and the proof works without other modifications. (This technique is related
to Coron’s partial-domain hash analysis [41], though Coron deals with the more complicated
case when the partial domain is exponentially smaller than the full domain.)

Our second approach allows for more general moduli: We do not require them to be
in increasing order. However, we do require them to be of the same length [ (constant
differences in the lengths will also work, but we do not address them here for simplicity of
exposition). The signature will expand by n bits b; .. .b,, where n is the total number of
users. Namely, during signing, if o; > N;41, let b; = 1; else, let b; = 0. During verification,
if b = 1, add N;y1 to o; before proceeding with the verification of ¢;. Always check that
o; is in the correct range 0 < o; < N; (to ensure, again, uniqueness of signatures). The
security proof requires no major modifications.?

A third approach is to construct from RSA a family of trapdoor permutations with a
common domain. Hayashi et al. [67] describe one such construction. If all the moduli N;
are such that 2/=1 < N; < 2! then, under the transformation proposed by Hayashi et al.,
each modulus describes an “RSACD” trapdoor permutation on the range [0, ol — 1]. Using
these RSACD permutations, we obtain a sequential aggregate signature scheme — based on
the security of the RSA problem —in which moduli need not be placed in increasing order
and in which the aggregates do not expand as more signatures are added. The downside is
that each RSACD evaluation requires two evaluations of the underlying RSA permutation,
so signing and verification take twice as long as in the other approaches. Note that, in the
underlying RSA evaluations, one must still apply the rule laid out above in the case that
ged(x, N) is not 1.

3We need to argue that correct signatures are unique given the hash answers. At first glance it may
seem that the adversary may have choice on whether to use b; = 0 or b; = 1. However, this will result in
two values o;,_1 that are guaranteed to be different: one will be less than N; and the other at least N;.
Hence uniqueness of o;_; implies uniqueness of b; and, therefore, o;. Thus, by induction, signatures are still
unique. In particular, there is no need to include b; in the hash function input.



CHAPTER 5. SEQUENTIAL AGGREGATE SIGNATURES 77

5.5.1 Concrete Proposals for Sequential Aggregates with RSA

We now present the RSA-based aggregate signature schemes that are obtained using the
suggestions above. In each case, we consider n users, all with moduli of length [ bits. Let
H :{0,1}* — {0,1}"! be a hash function.

When the moduli are ordered by size, the scheme works as follows.

Key Generation. Each user i generates an RSA public key (N, e;) and secret key (N;, d;),
ensuring that 2!=1(1 + (i — 1)/n) < N; < 2'=1(1 +i/n) and that e; > N; is a prime.

Signing. User 7 is given an aggregate signature o/, the messages Mj,..., M;_ 1, and the
corresponding keys (Ny,eq),...,(Nij—1,e,—1). User i first verifies ¢/, using the ver-
ification procedure below. If this succeeds, user ¢ computes h; = H ((Ml, o M),

((Ny,e1),..., (Ni,ei))), y = h; + ¢’ and outputs o = y% mod N;. The user may first
check that ged(y, N) = 1 and, if not, output y; however, the chances that the check

will fail are negligible, because the user is honest.

Verifying. The verifier is given as input an aggregate signature o, the messages M, ..., M;,
and the corresponding keys (Ny,e1), ..., (N;,e;), and proceeds as follows. Check that
no key appears twice, that e; > Nj; is a prime and that N; is of length [ bits (this
needs to be checked only once per key, and need not be done with every signature
verification) and that 0 < ¢ < N;. If ged(o, N;) = 1, let y « 0% mod N;. Else let
y < o (this check is crucial, because we do not know if user ¢ is honest). Compute
hi — H((My,...,M;),((N1,e1),...,(Ni,€&))) and ¢ « y — h; mod N;. Verify o’
recursively. The base case for recursion is ¢ = 0, in which case simply check that

o=0.

In the second scheme, the moduli are unordered, but the aggregates are allowed to
grow with additional signatures. The scheme functions like the previous one, but with the
following modifications. First, the moduli N; should now satisfy 2!~ < N; < 2!, Second,
when signing, when verifying the aggregate-so-far o', check if o’/ > N;. If so, replace ¢’ with
o' — N; and set b; = 1; else, set b; = 0. Finally, to verify, replace o’ with o’ + b;N; before
proceeding with the recursive step.

Finally, in the scheme based on RSACD, the moduli N; must again satisfy 2/-1 <
N; < 2l Aggregate signatures are integers in the range [0,2' — 1]. One must still check

that each key describes a permutation and that the aggregate-so-far ¢’ is a valid aggregate



CHAPTER 5. SEQUENTIAL AGGREGATE SIGNATURES 78

signature. The RSACD trapdoor permutation can then be applied to h® ¢’ without further

preprocessing. Here ®can be taken to be exclusive-or on [-bit strings.

5.5.2 Security

Because RSA over Z}kv is homomorphic with respect to multiplication, it is claw-free (not
just over Z";V, but over entire Zy, because finding a claw outside of Z*N implies factoring N
and hence being able to invert RSA). Therefore, the conclusions of Theorem 5.4.3 apply to

the RSA-specific aggregate signature schemes described above.



Chapter 6

Group Signatures

6.1 Introduction

Group signatures, introduced by Chaum and van Heyst [36], provide anonymity for signers.
Any member of the group can sign messages, but the resulting signature keeps the identity
of the signer secret. Often there is a third party that can undo the signature anonymity
(trace) using a special trapdoor [36, 6]. Some systems support revocation [32, 8, 115, 47],
where group membership can be disabled without affecting the signing ability of unrevoked
members. Currently, the most efficient constructions are based on the Strong-RSA assump-
tion introduced by Baric and Pfitzman [10]. These signatures are usually much longer than
RSA signatures of comparable security.

A number of recent projects require properties provided by group signatures. One such
project is the Trusted Computing effort [114] that, among other things, enables a desktop
PC to prove to a remote party what software it is running via a process called attestation.
Group signatures are needed for privacy-preserving attestation [30] [58, Section 2.2]. To
enable attestation, each computer ships with an embedded TCG tamper-resistant chip
that signs certain system components using a secret key embedded in the chip. During
attestation to a remote party (e.g., a bank) these signatures are sent to the remote party.
To maintain user privacy it is desirable that the signatures not reveal the identity of the
chip that issued them. To do so, each tamper resistant chip issues a group signature (rather
than a standard signature) on system components that it signs. Here the group is the set
of all TCG-enabled machines. The group signature proves that the attestation was issued

by a valid tamper-resistant chip, but hides which machine it comes from.

79



CHAPTER 6. GROUP SIGNATURES 80

Another is the Vehicle Safety Communications project (VSC), a collaboration of major
car-makers and the U.S. Department of Transportation [34], which has attracted a great
deal of other research [21]. The system embeds short-range transmitters in cars; these
transmit status information to other cars in close proximity. For example, if a car executes
an emergency brake, all cars in its vicinity are alerted. To prevent message spoofing, all
messages are signed by a tamper-resistant chip in each car. (MACs were ruled out for this
many-to-many broadcast environment.) Since VSC messages reveal the speed and location
of the car, there is a strong desire to provide user privacy so that the full identity of the car
sending each message is kept private. Using group signatures — where the group is the set
of all cars— we can maintain privacy while still being able to revoke a signing key in case
the tamper resistant chip in a car is compromised. Due to the number of cars transmitting
concurrently there is a hard requirement that the length of each signature be under 250
bytes.

The two examples above illustrate the need for efficient group signatures. The second
example also shows the need for short group signatures. Currently, group signatures based
on Strong-RSA are too long for this application.

We construct short group signatures whose length is under 200 bytes that offer approx-
imately the same level of security as a regular RSA signature of the same length. The
security of our scheme is based on the SDH and Linear assumptions (Sects. 2.2.2 and 2.2.3).
While SDH is similar to the Strong-RSA assumption, our results suggest that systems based
on SDH are simpler and shorter than their Strong-RSA counterparts.

Our system is based on a new Zero-Knowledge Proof of Knowledge (ZKPK) of the
solution to an SDH problem. We convert this ZKPK to a group signature via the Fiat-
Shamir heuristic [51] and prove security in the random oracle model. Our security proofs
use a variant of the security model for group signatures proposed by Bellare, Micciancio,
and Warinschi [15].

Recently, Camenisch and Lysyanskaya [33] proposed a signature scheme with efficient
protocols for obtaining and proving knowledge of signatures on committed values. They
derive a group signature scheme using these protocols as building blocks. Their signature
scheme is based on the LRSW assumption [80], which, like SDH, is a discrete-logarithm—
type assumption. Their methodology can also be applied to the SDH assumption, yielding
a different SDH-based group signature.



CHAPTER 6. GROUP SIGNATURES 81

6.2 A Zero-Knowledge Protocol for SDH

We begin by presenting a protocol for proving possession of a solution to an SDH problem.
The public values are g1,u,v,h € G1 and go,w € G5. Here u,v, h are random in Gy, g2 is
a random generator of Gz, g1 equals ¥(g2), and w equals g5 for some (secret) v € Z,. The
protocol proves possession of a pair (A,z) € G1 X Z, such that A" = g;. Such a pair
satisfies e(A,wg3) = e(g1,92). We use a standard generalization of Schnorr’s protocol for

proving knowledge of discrete logarithm in a group of prime order [107].

Protocol 1. Alice, the prover, selects exponents «, (3 & Zy, and computes a Linear en-
cryption of A:
Ty —u®  Ty—o® Ty ApOHP (6.1)

She also computes two helper values §; «— za and dy < 23 € Z).
Alice and Bob then undertake a proof of knowledge of values (v, 3, x, d1,02) satisfying

the following five relations:

uo‘ = T1 Uﬁ = T2
€(T3, 92)1‘ : €(h, w)—a—ﬁ ’ €(h792)_61_62 = 6(91792)/€(T37 w)
TEu= =1 TSv %2 =1 .

This proof of knowledge of (v, 3, x, d1, d2) proceeds as follows. Alice picks blinding values

Ta, T8, Tz, Ts;, and 1s, at random from Z,. She computes five values based on all these:

Ry «— u™ Ry «— 0™
Rs — e(T5,92)™ - e(h,w) ™70 - e(h, gg) "1 "% (6.2)
Ry — 17" -u™"™ Ry — Ty -v™ "2 |

She then sends (71,7%,73, R1, Ro, R3, R4, R5) to the verifier. Bob, the verifier, sends a
challenge value ¢ chosen uniformly at random from Z,. Alice computes and sends back the

values

Sq — Tao + ca sg <« rg+cf3 Sy — Ty +cx 85, < 15, + o1 85, < T§, + CO2 .

(6.3)



CHAPTER 6. GROUP SIGNATURES 82

Finally, Bob verifies the following five equations:

u =Ty - Ry (6.4)

v LTS Ry (6.5)

e(Ts,g2)% - e(h,w) %% - e(h, gg) %01~ %2 Z (e(g1,92)/e(T3,w))" - Rs (6.6)
Ts .y~ = Ry (6.7)

T5 v=%2 L R . (6.8)

Bob accepts if all five hold.

Theorem 6.2.1. Protocol 1 is a public-coin honest-verifier zero-knowledge proof of knowl-

edge of an SDH pair under the Decision Linear assumption.

The proof of the theorem follows from the following lemmas that show that the protocol
is (1) complete (the verifier always accepts an interaction with an honest prover), (2) zero-

knowledge (can be simulated), and (3) a proof of knowledge (has an extractor).
Lemma 6.2.2. Protocol 1 is complete.

Proof. Tf Alice is an honest prover in possession of an SDH pair (A, z) she follows the

computations specified for her in the protocol. In this case,
use = e = (y®)e e = TC. Ry |
so (6.4) holds. For analogous reasons (6.5) holds. Further,
szu_sfsl _ (ua)Tz+cxu—r51 A ()T Ty = T{zu—ml — R, ,
so (6.7) holds. For analogous reasons (6.8) holds. Finally,

e(Ts, g2)* - e(h,w) 5% - e(h, go) %175
= e(Ts,g2)" T - e(h,w)TeTTBTCATB L o(], go) o1 oy oA CTS
— (Ts,93)" - e(h™" %, wgd)° - (e(Th, 92)" - e(h,w) """ - e(h, go) ~"5177%)
= e(T3h™ "7, wg3)" - e(T3,w)~° - (R3)

(e(A, wgs) /e(T5,w))° - Ry



CHAPTER 6. GROUP SIGNATURES 83

= (e(g1,92)/e(T3,w))* - Ry .

0 (6.6) holds. O

Lemma 6.2.3. For an honest verifier, transcripts of Protocol 1 can be simulated, under

the Decision Linear assumption.

Proof. We describe a simulator that outputs transcripts of Protocol 1. The simulator begins
by picking A & G and a, 3 & Zp. Tt sets Ty « u®, Ty « P and Ty «— AhTE.
Assuming the Decision Linear assumption holds on G, the tuples (71, T, T3) generated by
the simulator are drawn from a distribution that is indistinguishable from the distribution
output by any particular prover.

The remainder of this simulation does not assume knowledge of A, z, «, or 3, so it can
also be used when T7, Ts, and T3 are pre-specified. When the pre-specified (T}, T, T3) are a
random Linear encryption of some A, the remainder of the transcript is simulated perfectly,
as in a standard simulation of a Schnorr proof of knowledge.

The simulator chooses a challenge ¢ & Z,, and values sq, 53, Sz, 55,5 S5, & L. It com-
putes Ry, Ry, R3, R4, R5 as:

Ry «— v« - Tl_c Ry «— v°8 . TQ_C Ry — Tlsz R TE R5 Tzsz ST %02

R3 — e(T3,92)% - e(h,w) %78 - e(h, ga) ~*1 %2 - (e(Ts,w)/e(g1,92)) -

It is easy to see that the resulting values Rj, Ro, R3, R4, R5 satisfy Equations (6.4)—(6.8)
and are distributed as in a real transcript.

The simulator outputs the transcript (11,75, T3, R1, R2, R3, R4, R5, ¢, Sa; S8, 52555, 565 )-
As discussed above, this transcript is indistinguishable from transcripts of Protocol 1, as-

suming the Decision Linear assumption holds. O
Lemma 6.2.4. There exists an extractor for Protocol 1.

Proof. Suppose that an extractor can rewind a prover in the protocol above to the point
just before the prover is given a challenge ¢. At the first step of the protocol, the prover
sends 11,715, T5 and Ry, R, R3, R4, R5. Then, to challenge value ¢, the prover responds with
Sas 84, Sz, Ssy, and ss,. To challenge value ¢’ # ¢, the prover responds with s;,, i3, 85, S5,
and sj,. If the prover is convincing, all five verification equations (6.4)-(6.8) hold for each

set of values.



CHAPTER 6. GROUP SIGNATURES 84

For brevity, let Ac = c¢— ¢, Asq = sq — s, and similarly for Asg, Asy, Ass,, and Ass,.

Now consider (6.4) above. Dividing the two instances of this equation (one instance
using ¢ and the other using ), we obtain u®% = TlAc. The exponents are in a group of
known prime order, so we can take roots; let & = As,/Ac. Then u® = Ty. Similarly, from
(6.5), we obtain § = Asg/Ac such that WP =T

Consider (6.7) above. Dividing the two instances gives T2% = 2%,

Substituting
Ty = u® gives u®dse = %1 or Ass, = a@Asg. Similarly, from (6.8) we deduce that
Ass, = (Asy.

Finally, dividing the two instances of (6.6), we obtain

Ac s —Asq—As —Ass, —As
(e(g1,92)/e(Ts,w)) ™" = e(T5,2) 2 - e(h,w) 2575 - e(h, ga) 20175

— (T3, 92) 5 - e(h, w) 2525 . g(h, gy)~FAseBAs

Taking Ac-th roots, and letting & = As,/Ac, we obtain

6(91)92)/6(T37 w) = €(T3, 92).’2 . G(h, w)*a*B : 6(h792)7j(d+3) .

This can be rearranged as

e(g1,92) = e(Tsh™ %P wg3) |

or, letting A = Tgh_d_B,

e(A, wg3) = e(g1,92) -

Thus the extractor obtains an SDH tuple (A,#). Moreover, the A in this SDH tuple is,
perforce, the same as that in the Linear encryption (71,75, T3). O

6.3 Short Group Signatures from SDH

Armed with Theorem 6.2.1, we obtain from Protocol 1 a regular signature scheme secure
in the random oracle model by applying the Fiat-Shamir heuristic [51, 1]. Signatures ob-
tained from a proof of knowledge via the Fiat-Shamir heuristic are often called signatures
of knowledge.

The resulting signature scheme is, in fact, also a group signature scheme, and we describe

it as such. In our construction we use a variant of the Fiat-Shamir heuristic, used also by



CHAPTER 6. GROUP SIGNATURES 85

Ateniese et al. [6], where the challenge ¢ rather than the values Ry, ..., R5 is transmitted
in the signature; the output of the random oracle acts as a checksum for those values not
transmitted.

In describing the group signature, we use the terminology of Bellare et al. [15]. Consider
a bilinear group pair (G, G2) with a computable isomorphism 1, as in Section 2.1. Suppose
further that the SDH assumption holds on (G, G2), and the Linear assumption holds on G;.
The scheme employs a hash function H : {0,1}" — Z,, treated as a random oracle in the

proof of security.

BBS.Kg(n). This randomized algorithm takes as input a parameter n, the number of mem-
bers of the group, and proceeds as follows. Select a generator go in G2 uniformly at
random, and set g1 < 1(g2). Select h & Gi\{lg, } and &1, & & Zy, and set u,v € Gy
such that u¢' = v% = h. Select v B Ly, and set w «— qgq.

Using ~, generate for each user i, 1 < ¢ < n, an SDH tuple (4;,x;): select z; & Zy,

and set A; «— g%/(7+xi) € Gy.

The group public key is gpk = (g1, g2, h, u, v, w). The private key of the group manager
(the party able to trace signatures) is gmsk = (£1,&2). Each user’s private key is her
tuple gskl[i] = (A;,z;). No party is allowed to possess 7; it is only known to the

private-key issuer.

BBS.Sig(gpk, gsk[i], M). Given a group public key gpk = (g1, g2, h, u, v, w), a user’s private
signing key gskli] = (A4;,x;), and a message M € {0,1}", compute the signature as

follows:

1. Compute the values 11,75, 13, R1, Ro, R3, R4, R5 as specified in the first round
of Protocol 1 (Equations (6.1) and (6.2)).

2. Compute a challenge ¢ using the hash function as:
C<—H(M,Tl,TQ,Tg,,Rl,RQ,Rg,R4,R5) EZp . (6.9)

3. Using c construct the values s, sg, 5z, S5, , S5, as in the third round of Protocol 1
(Equation (6.3)).

4. Output the signature o, computed as o « (11,12, T3, ¢, Sa, S8, Sz 56,5 55 )-



CHAPTER 6. GROUP SIGNATURES 86

BBS.Vf(gpk, M, o). Given a group public key gpk = (g1, g2, h, u,v,w), a message M, and

a group signature o, verify that o is a valid signature as follows:

1. Use Equations (6.4)—(6.8) to re-derive Ry, R, R3, R4, and Ry as follows:

Ry «— u - Tl_c Ry «— 06 - Tz_c Ry — Tlsz Sy %0 Rs TQSI -y %2

(6.10)

Ry — e(T3,92)% - e(h,w) 7% - e(h, go) 51~ - (e(T3,w)/e(g1,92))" -

2. Check that these, along with the other first-round values included in o, give the

challenge c, i.e., that
C;H(M,Tl,TQ,Tg,R~1,R2,R~3,R~4,R5) . (611)

Accepts if this check succeeds and reject otherwise.

BBS.Open(gpk, gmsk, M, o). This algorithm is used for tracing a signature to a signer. It
takes as input a group public key gpk = (g1, g2, h, u, v, w) and the corresponding group
manager’s private key gmsk = (£1,&2), together with a message M and a signature
o = (Th,1»,T5,¢, 54, 3, Sz, S5, 85,) to trace, and proceeds as follows. First, verify
that o is a valid signature on M. Second, consider the first three elements (77, 15, T3)
as a Linear encryption, and recover the user’'s A as A «— T3/ (Tf1 ~T§2)7 following
the decryption algorithm given at the end of Section 2.2.3. If the group manager
is given the elements {A;} of the users’ private keys, he can look up the user index

corresponding to the identity A recovered from the signature.

Signature Length. A group signature in the system above comprises three elements
of Gy and six elements of Z,. Using either the supersingular or MNT family of curves
described in Section 2.3.5, one can take p to be a 170-bit prime and use a group G; where
each element is 171 bits. Thus, the total group signature length is 1533 bits or 192 bytes.
With these parameters, security is approximately the same as a standard 1024-bit RSA
signature, which is 128 bytes. Using the Barreto Naehrig curves of Section 2.3.5, we can
instead take p to be a 160-bit prime. This gives 1443-bit group signatures with the same

security level.



CHAPTER 6. GROUP SIGNATURES 87

Performance. The pairings e(h,w), e(h, g2), and e(g1, g2) can be precomputed and their
value cached by signers and by verifiers. The signer can cache e(A4, g2), and, when signing,
compute e(T3,g2) without evaluating a pairing. Accordingly, creating a group signature
requires eight exponentiations (or multi-exponentiations) and no pairing computations. The
verifier can derive Rs efficiently by collapsing the e(T3, g2)** and e(T3,w)¢ pairings into a
single e(T3, wg5*) term. Thus verifying a group signature requires six multi-exponentia-
tions and one pairing computation. With parameters selected as above, the exponents are
in every case 170-bit numbers. For the signer, all bases for exponentiation are fixed, which

allows substantial further speedups by precomputation.

6.4 BBS Group Signature Security

We now turn to proving security of the BBS scheme. Bellare, Micciancio, and Warinschi [15]

give three properties that a group signature scheme must satisfy:

e correctness, which ensures that honestly-generated signatures verify and trace cor-

rectly;
e full-anonymity, which ensures that signatures do not reveal their signer’s identity; and

e full-traceability, which ensures that all signatures, even those created by the collusion

of multiple users and the group manager, trace to a member of the forging coalition.

For the details, see Bellare et al. [15]. A notable feature of the BMW definitions is that
all keys are generated and distributed by a trusted dealer. In many earlier schemes (e.g.,
that of Ateniese et al. [6]), the key-generator is not fully trusted, and users engage in an
interactive protocol with him to derive their keys. We consider this further in Section 7.2.

We prove the security of our scheme using a variation of these properties. Specifically,
we relax the full-anonymity requirement. As presented [15, Section 2], the full-anonymity
experiment allows the adversary to query the opening (tracing) oracle before and after
receiving the challenge o. In this respect, the experiment mirrors the indistinguishability
experiment against an adaptive CCA2 adversary. If we term this experiment CCA2-full-
anonymity, we can analogously define another experiment, CPA-full-anonymity, in which
the adversary cannot query the opening oracle. We prove privacy in the weakened model

that comprises the full-traceability and CPA-full-anonymity experiments.



CHAPTER 6. GROUP SIGNATURES 88

Access to the tracing functionality will likely be carefully controlled when group sig-
natures are deployed, so CPA-full-anonymity is a reasonable model to consider. In any
case, anonymity and unlinkability, the two traditional group signature security require-
ments implied by full anonymity [15, Section 3], also follow from CPA-full-anonymity. Thus
a fully-traceable and CPA-fully-anonymous group signature scheme is still secure in the
traditional sense.

In the statements of the theorem, we use big-O notation to elide the specifics of additive
terms in time bounds, noting that, for given groups G; and G, operations such as sampling,

exponentiation, and bilinear map evaluation are all constant-time.!

Theorem 6.4.1. The BBS group signature scheme is correct.

Proof. For any group public key gpk = (g1, 92, h, u, v, w), and for any user with key gskl[i] =
(A;,x;), the key generation algorithm guarantees that A;’H“ = g1, so (A4;,x;) is an SDH
tuple for w = gJ. A correct group signature o is a proof of knowledge, which is itself a
transcript of the SDH protocol given in Section 6.2. Verifying the signature entails verifying
that the transcript is correct; thus Lemma 6.2.2 shows that o will always be accepted by
the verifier.

Moreover, an honest signer outputs, as the first three components of any signature o,
values (11,15, T3) = (u®,v%, A; - h**P) for some «a, 3 € Z,. These values form a Linear
encryption of A; under public key (u,v, h), which the group manager, possessing the corre-
sponding private key (£1,&2), can always recover. Therefore any valid signature will always

be opened correctly. I

Theorem 6.4.2. If Linear encryption is (t',€')-semantically secure on Gy then the BBS
group signature scheme is (t, qu, €)-CPA-fully-anonymous, where e = € andt =t —q,0(1).
Here qy is the number of hash function queries made by the adversary and n is the number

of members of the group.

Proof. Suppose A is an algorithm that (¢, ¢y, €)-breaks the anonymity of the group signature
scheme. We show how to construct a t+ ¢, ©(1)-time algorithm B that breaks the semantic

security of Linear encryption from Section 2.2.3 with advantage at least e.

!This big-O notation can be made more precise by considering a family of bilinear map groups indexed
by a security parameter A\. The only complication that arises is that the basic operations are no longer all
O(1) but, e.g., O(X®) for pairing evaluation.



CHAPTER 6. GROUP SIGNATURES 89

Algorithm B is given a Linear encryption public key (u,v,h). It generates the remain-
ing components of the group signature public key by following the group signature’s key
generation algorithm. It then provides to A the group public key (g1, g2, h, u, v, w), and the
users’ private keys (A;, ;).

At any time, A can query the random oracle H. Algorithm B responds with elements
selected uniformly at random from Z,, making sure to respond identically to repeated
queries.

Algorithm A requests its full-anonymity challenge by providing two indices, i¢ and 1,
and a message M. Algorithm B, in turn, requests its indistinguishability challenge by
providing the two user private keys A;, and A;, as the messages whose Linear encryption
it must distinguish. It is given a Linear encryption (T4, T%,T3) of A;,, where bit b is chosen
by the Linear encryption challenger.

Algorithm B generates from this Linear encryption a protocol transcript (73,75, T3,
R1, Ry, R3, R4, Rs, ¢, 50, 53, Sz, 55,5 55,) by means of the simulator of Lemma 6.2.3. This
simulator can generate a trace given (17, 7T»,T3), even though B does not know «, 3, or x.
Since (11, T5,T3) is a random Linear encryption of A;,, the remainder of the transcript is
distributed exactly as in a real protocol with a prover whose secret A is A;,.

Algorithm B then patches H at (M, Ty, T, T3, R1, Re, R3, Ry, R5) to equal c. It encoun-
ters a collision only with negligible probability. In case of a collision, B declares failure and
exits. Otherwise, it returns the valid group signature o « (771,75, T3, ¢, Sa; 58, Sz, 5515 56,)
to A.

Finally, A outputs a bit ¥'. Algorithm B returns b’ as the answer to its own challenge.
Since the encryption of A;, is turned by B into a group signature by user i;, B answers its
challenge correctly whenever A does.

The keys given to A, and the answers to A’s queries, are all valid and properly dis-
tributed. Therefore A succeeds in breaking the anonymity of the group signature o with
advantage €, and B succeeds in distinguishing the Linear encryption (77,7%,73) with the
same advantage.

Algorithm B’s running time exceeds A’s by the amount it takes to answer A4’s queries.
Each hash query can be answered in constant time, and there are at most ¢y of them.
Algorithm B can also create the challenge group signature ¢ in constant time. If A runs in

time ¢, B runs in time t + ¢z ©O(1). O



CHAPTER 6. GROUP SIGNATURES 90

The following theorem proves full traceability of our system. The proof is based on the
Forking Lemma [102].

Theorem 6.4.3. If SDH is (q,t', €' )-hard on (G, Gs), then the BBS group signature scheme
is (t,qu, qs,n, €)-fully-traceable, where n = q — 1, € = 4n\/2¢'qy + n/p, and t = O(1) - t'.
Here qy is the number of hash function queries made by the adversary, qs is the number of

stgning queries made by the adversary, and n is the number of members of the group.

Proof. Our proof proceeds in three parts. First, we describe a framework for interacting
with an algorithm that wins a full-traceability game. Second, we show how to instantiate
this framework appropriately for different types of such breaker algorithms. Third, we
show how to apply the Forking Lemma [102] to the framework instances, obtaining SDH
solutions.

Suppose we are given an algorithm A that breaks the full-traceability of the group

signature scheme. We describe a framework for interacting with A.

Setup. We are given groups (G1,G2) as above. We are given generators g; and gs such
that g1 = 1(g2). We are also given w = g € Go, and a list of pairs (A;, z;) for
1 =1,...,n. For each i, either x; = %, indicating that the x; corresponding to A; is
not known, or else (A4;,x;) is an SDH pair, and e(A4;, wgy") = e(g1,g2). We pick a
generator h & G1\ {l¢, } and values &, & pid Zy, and compute u,v € G such that
utt = v%2 = h. We then run A, giving it the group public key (g1, g2, h,u, v, w) and

the group manager’s private key (£1,&2). We answer its oracle queries as follows.

Hash Queries. When A asks for the hash of (M, Ty, T, T3, R1, R2, R3, R4, R5), we respond
with a random element of G, memoizing the answer in case the same query is made

again.

Signature Queries. Algorithm A asks for a signature on message M by a key at index 7. If
x; # *, we follow the group signing procedure with key (A;, z;) to obtain a signature o
on M, and return o to A. If x; = x, we pick «, & L, set T1 «— u®, Ty = v?, and
T5 — Ag?J”g and run the Protocol 1 simulator with values T, T5,T5. The simulator
returns a transcript (71, Ts, 13, R1, Ra, R3, R4, Rs, ¢, S, 58, Sz, 55, 56, ), from which we
derive a group signature o = (11,75, T3, ¢, Sa, 58, Sz, 55,5 55,)- In addition, we must
patch the hash oracle at (M, Ty, Ts,T5, R1, Ra, R3, Ry, R5) to equal c. If this causes a

collision, i.e., if we previously set the oracle at this point to some other ¢/, we declare



CHAPTER 6. GROUP SIGNATURES 91

failure and exit. Otherwise, we return ¢ to A. A signature query can trigger a hash

query, which we charge against A’s hash query limit to simplify the accounting.

Private Key Queries. Algorithm A asks for the private key of the user at some index i.

If x; # %, we return (A;, z;) to A. Otherwise, we declare failure and exit.

Output. Finally, if algorithm A is successful, it outputs a forged group signature o =
(T1, T2, T3, ¢, Sas S8, Sz, S5, S5,) on a message M. We use the group manager’s key
(&1,&2) to trace o, obtaining some A*. If A* £ A; for all i, we output o. Otherwise,
A* = A+ for some i*. If s;» = *, we output o. If, however, s;+ # x, we declare failure

and exit.

As implied by the output phase of the framework above, there are two types of forger
algorithm. Type I forgers output a forgery o on a message M that traces to some iden-
tity A* ¢ {A1,...,A,}. Type II forgers output a forgery that traces to an identity A* such
that A* = A+ for some i*, and the forger did not make a private-key oracle query at i*.
We treat these two types of forger differently.

Given a ¢-SDH instance (gi,gé,(gé)V,(gé)VQ,...,(gé)”q), we apply the technique of
Boneh and Boyen’s Lemma 3.2 [23] that we recalled in Section 3.4.1, obtaining generators
g1 € G1, g2 € Ga, w = g7, and ¢ — 1 SDH pairs (4;, z;) such that e(4;,wgs5") = e(g1, g2) for
each i. Any SDH pair (A, z) besides these ¢ — 1 pairs can be transformed into a solution to

the original ¢-SDH instance, again using Boneh and Boyen’s Lemma 3.2.

Type I Forger. Against a (¢, qu, gs,n, €)-Type I forger A, we turn an instance of (n+ 1)-
SDH into values (g1, g2, w), and n SDH pairs (A;, z;). We then apply the framework to .4
with these values. Algorithm A’s environment is perfectly simulated, and the framework

succeeds whenever A succeeds, so we obtain a Type I forgery with probability e.

Type II Forger. Against a (t,qu,qs,n,€)-Type II forger A, we turn an instance of n-
SDH into values (g1, g2, w), and n—1 SDH pairs. These pairs we distribute amongst n pairs
(A;,x;). The unfilled entry at random index i* we fill as follows. Pick A;« & G1, and set
T+ < *, a placeholder value. Now we run A under the framework. The framework declares
success only if A never queries the private key oracle at ¢*, but forges a group signature that
traces to A;«. It is easy to see that the framework simulation is perfect unless A queries

the private key oracle at i*. Because the protocol simulator invoked by the signing oracle



CHAPTER 6. GROUP SIGNATURES 92

produces group signatures that are indistinguishable from those of a user whose SDH tuple
includes A;«, the value of i* is independent of A’s view unless and until it queries the private
key oracle at i*. (Since the hash oracle takes as input nine elements of G; or G2 besides
the message M, the probability of collision in simulated signing queries is bounded above
by (qrqs + ¢2)/p°. Assuming g5 < gy < p = |G1], this probability is negligible, and we
ignore it in the analysis.) Finally, when 4 outputs its forgery o, implicating some user i
whose private key A has not requested, the value of * (amongst the users whose keys it
has not requested) remains independent of A’s view. It is easy to see, then, that A outputs
a forged group signature that traces to user i* with probability at least €/n.

Now we show how to use the application of our framework to a Type I or Type II
adversary A to obtain another SDH pair, contradicting the SDH assumption. The remainder
of this proof follows closely the methodology and notation of the Forking Lemma [102].

Let A be a forger (of either type) for which the framework succeeds with probabil-
ity €. From here on, we abbreviate signatures as (M, o, c,01), where oy = (11,15, T5,
R1, Ro, R3, Ry, R5), the values given, along with M, to the random oracle H, and from
which c is derived, and where o1 = (S4, 58, 5z,55,,55,). Those values normally omitted
from the signature can be recovered as in Equation (6.10).

A run of the framework on A is completely described by the randomness string w used
by the framework and A, and by the vector f of responses made by the hash oracle. Let S
be the set of pairs (w, h) such that the framework, invoked on A, completes successfully with
forgery (M, 00, c,01), and A queried the hash oracle on (M, 0p). In this case, let Ind(w, f)
be the index of f at which A queried (M, o0p). We define v = Pr[S] = ¢’ — 1/p, where the
1/p term accounts for the possibility that A guessed the hash of (M, 0p) without the hash
oracle’s help. For each j, 1 < j < gy, let S; be the set of pairs (w, h) as above, and such
that Ind(w, f) = j. Let J be the set of auspicious indices j such that Pr[S; | S] > 1/(2q¢#).
Then PrInd(w, f) € J | S] > 1/2.

Let f\z be the restriction of f to its elements at indices a,a + 1,...,b. For each j € J,
we consider the heavy-rows lemma [102, Lemma 1] with rows X = (w, f H;I) and columns
Y = (f|§"). Clearly Pr,,[(z,y) € Sj] > v/(2qu). Let the heavy rows Q; be those rows
such that, Y(z,y) € Q; : Pry[(z,vy") € Sj] > v/(4qy). Then, by the heavy-rows lemma,
Pr[Q; | S;] > 1/2. A simple argument then shows that Pr[3j € J: Q;NS; | S] > 1/4.

Thus, with probability v/4, the framework, invoked on A, succeeds and obtains a forgery

(M, 09, c,01) that derives from a heavy row (z,y) € §; for some j € J, i.e., an execution



CHAPTER 6. GROUP SIGNATURES 93

(w, f) such Prp[(w, f) € S5 | R = FI71] = v/(4gn).

If we now rewind the framework and A to the jth query, and proceed with an oracle vec-
tor f’ that differs from f from the jth entry on, we obtain, with probability at least v/(4qx),
a successful framework completion and a second forgery (M, oo, c,0}), with (M, op) still
queried at A’s jth hash query.

By using the extractor of Lemma 6.2.4, we obtain from (o9, ¢, 1) and (09, ¢, 0}) an SDH
tuple (A, z). The extracted A is the same as the A in the Linear encryption (71,75, T3)
in 0g. The framework declares success only when the A encrypted in (T1,75,T3) is not
amongst those whose x it knows. Therefore, the extracted SDH tuple (A, x) is not amongst
those that we ourselves created, and can be transformed, again following the technique of
Boneh and Boyen’s Lemma 3.2 [23], to an answer to the posed ¢-SDH problem.

Putting everything together, we have proved the following claims.

Claim 18. Using a (t,qu,qs,n,€)-Type I forger A, we solve an instance of (n + 1)-SDH
with probability (e — 1/p)%/(16qy) in time O(1) - t.

Claim 19. Using a (t,qu,qs,n,€)-Type II forger A, we solve an instance of n-SDH with
probability (e/n — 1/p)?/(16qy) in time O(1) - t.

We can guess which of the two forger types a particular forger is with probability 1/2;

then assuming the more pessimistic scenario of Claim 2 proves the theorem. 0

6.5 Conclusions

We presented a group signature scheme based on the Strong Diffie-Hellman (SDH) and Lin-
ear assumptions. The signature makes use of a bilinear map e : G1 x G3 — Gr. Instantiated
over appropriate curves are used, the group GG; has a short representation and consequently
we get a group signature whose length is under 200 bytes—Iless than twice the length of
an ordinary RSA signature (128 bytes) with comparable security. Signature generation re-
quires no bilinear pairing computations, and verification requires a single pairing; both also

require a few exponentiations with short exponents.



Chapter 7

Group Signature Variants and

Extensions

7.1 Introduction

The BBS group signature scheme presented in Chapter 6 is very flexible. In this chapter,
we show how to add a number of features to it.

We first consider a modification to key issuing intended to achieve a stronger excul-
pability guarantee. In many group signature schemes, users obtain their private keys by
engaging in a JOIN protocol with a key issuer. At the conclusion of this protocol, the user
obtains the private key she will use to sign, but the key issuer does not. As a result, the
key issuer cannot frame the user using her key, a property known as strong exculpability.
(In the Bellare-Micciancio-Warinschi model [15], the key issuer is fully trusted.)

For the remainder of the chapter, we consider on revocation mechanisms for group
signatures. Group signature research has focused more on key issuing than revocation.
However, in the recent applications described in Section 6.1, whereas it seems reasonable
to trust the device manufacturers that issue the signing keys, revocation is critical: If, for
example, the private key in a TCG chip is exposed, all signatures from that chip must be
invalidated since otherwise attestation becomes meaningless.

Consider three natural communication models for revoking a user’s signing capabilities,

without affecting other group members:

1. The simplest method revokes user ¢ by issuing a new signature verification key and

94



CHAPTER 7. GROUP SIGNATURE VARIANTS AND EXTENSIONS 95

giving each signer, except user ¢, a new signing key. This requires an individual secret

message to each signer (e.g., TCG chip) and a public broadcast message to all verifiers.

2. A better revocation mechanism sends a single short public broadcast message to all
signers and verifiers. A recent system by Camenisch and Lysyanskaya [32], based on

dynamic accumulators, provides such a mechanism.

3. Brickell [30] proposes a simpler mechanism where revocation messages are only sent
to signature verifiers, so that there is no need ever to communicate with an end-user
machine. A similar mechanism was considered by Ateniese et al. [8] and Kiayias et

al. [73]. We refer to this as Verifier-Local Revocation (VLR) group signatures.

Of these models, the first can trivially be applied to any group signature scheme.

The second model can also be applied to BBS group signatures, as we show in Section 7.3.
In particular, we adapt the accumulator-based revocation mechanism of Camenisch and
Lysyanskaya to the BBS scheme and its underlying SDH problem.

Finally, we construct VLR group signatures based on BBS. Signatures in our VLR
system are about the same length as standard RSA signatures of comparable security. For
our proof of security, we give a precise security definition, which is modeled on the Bellare-

Micciancio-Warinschi framework [15].

7.2 Strong Exculpability for BBS

Exculpability, a group signature security property introduced by Ateniese and Tsudik [7],
is informally defined by Bellare, Micciancio, and Warinschi [15] as follows: No member of
the group and not even the group manager — the entity that is given the tracing key — can
produce signatures on behalf of other users. Thus, no user can be framed for producing a
signature he did not produce. Bellare et al. argue that a group signature secure in the sense
of full-traceability also has the exculpability property. Thus, in the terminology of Bellare
et al. [15], our BBS group signature scheme has the exculpability property.

A stronger notion of exculpability is considered in much of the group signature litera-
ture—e.g., in Ateniese et al. [6]. In this stronger version, it is required that even the entity
that issues user keys cannot forge signatures under users’ keys. Formalizations of strong
exculpability have recently been proposed by Kiayias and Yung [74, 75] and by Bellare, Shi,
and Zhang [18].



CHAPTER 7. GROUP SIGNATURE VARIANTS AND EXTENSIONS 96

To achieve this stronger property the system of Ateniese et al. [6] uses a protocol (called
JOIN) to issue a key to a new user. At the end of the protocol, the key issuer does not know
the full private key given to the user and therefore cannot forge signatures under the user’s
key.

The BBS group signature scheme can be extended to provide strong exculpability using

(VJFI"), x;), the user

a similar mechanism. Instead of simply giving user i the private key (g% /
and key issuer engage in a JOIN protocol where at the end of the protocol user i has a triple
(A;, x;,y;) such that AZH“ h?{" = g1 for some public parameter h;. The value y; is chosen by
the user and is kept secret from the key issuer. The ZKPK of Section 6.2 can be modified
to prove knowledge of such a triple. The resulting system is a short group signature with
strong exculpability.

The JOIN protocol envisaged above would mean that the key generator no longer knows
users’ private keys, though it could still generate different keys and ascribe them to the
users. In the Girault hierarchy [64], this is a move from level 1 to level 2. To ensure that
the authority will be caught if it attempts to frame users with self-generated keys—level 3

in the hierarchy —requires that the users sign their (public) group membership certificate,

and that the the tracing authority produce a proof of correct tracing.

7.3 Revocation for BBS using Accumulators

We now discuss how to revoke users in the BBS group signature scheme of Section 6.3.
A number of revocation mechanisms for group signatures have been proposed [8, 32]. In
this section, we describe a revocation mechanism along the lines of Camenisch and Lysyan-
skaya’s [32], based on dynamic accumulators.

Recall that the group’s public key in our scheme is (g1, g2, b, u, v, w) where w = gg € Go
for random v € Z; and random h,u,v € Gi. User i’s private key is a pair (A;,x;) where
A = g%/(“ﬁﬂw) en

Now, suppose we wish to revoke users 1,...,r without affecting the signing capability
of other users. To do so, the revocation authority publishes a revocation list containing
the private keys of all revoked users. More precisely, rl = {(A} z1),..., (A5 x,)}, where
AY = g;/(ﬂwzi) € Go. Note that A; = 1¢(A}). Here the SDH secret v is needed to compute
the A}’s. In the case that G; and G2 are the same group we have A; = A} and consequently

the revocation list can be derived directly from the private keys of revoked users without



CHAPTER 7. GROUP SIGNATURE VARIANTS AND EXTENSIONS 97

having to use 7.

The list rl is given to all signers and verifiers in the system. It is used to update the
group public key used to verify signatures. Let y = [[;_;(y + x;) € Z;. The new public
key is (g1, g2, h,u, v, w) where g; = gi/y, go = gé/y, and w = (g2)”. We show that, given rl,
anyone can compute this new public key, and any unrevoked user can update her private
key locally so that it is well formed with respect to this new public key. Revoked users are
unable to do so.

We show how to revoke one private key at a time. By repeating the process r times
(as the revocation list grows over time) we can revoke all private keys on the Revocation
List. We first show how given the public key (g1, 92, h,u,v,w) and one revoked private
key (A}, xz1) € rl anyone can construct the new public key (g1, g2, h,u,v,w) where g =

g}/ ('le), go = g%/ (7+x1), and 1 = (g2)?. This new public key is constructed simply as:

gr—y(A]) g A and gy (AT
1—-F1
then g1 = (A1)" = /0" and b = ga- (A7) =g, 77T = (A1) = (32)", as required.
Next, we show how unrevoked users update their own private keys. Consider an un-
revoked user whose private key is (A4, z). Given a revoked private key, (A3, 1) the user
computes A — p(A})Y @=#1)/A1/(#=21) and sets his new private key to be (A,z). Then,
indeed,

(A = w5 A = o) T T = pan =
as required. Hence, (fl, x) is a valid private key with respect to (g1, g2, h, u, v, W).

By repeating this process r times (once for each revoked key in rl) anyone can compute
the updated public key (g1, g2, b, u, v, w) defined above. Similarly, an unrevoked user with
private key (A,z) can compute his updated private key (A4, x) where A = (g;)Y/+). We
note that it is possible to process the entire rl at once (as opposed to one element at a time)
and compute (g1, g2, h, u, v, w) directly; however this is less efficient when keys are added
to rl incrementally.

A revoked user cannot construct a private key for the new public key (g1, g2, h, u, v, @).
In fact, the proof of Theorem 6.4.3 shows that, if a revoked user can generate signatures
for the new public key (g1, g2, h,u,v,w), then that user can be used to break the SDH

assumption. Very briefly, the reason is that given an SDH challenge one can easily generate a



CHAPTER 7. GROUP SIGNATURE VARIANTS AND EXTENSIONS 98

public key tuple (g1, g2, h, u, v, w) along with the private key for a revoked user (g}/(‘HV), x).
Then an algorithm that can forge signatures given these two tuples can be used to solve
the SDH challenge.

In the revocation mechanism above a user is revoked by the publication of a value that
exposes that user’s private key. Consequently, it is crucial that updates to the revocation
list be sent simultaneously to all verifiers. Otherwise, someone who obtains a new entry on
the revocation list can fool a verifier who has not yet updated his copy of the revocation list.

The verifier-local revocation method described in the next section addresses this limitation.

7.4 Verifier-Local Revocation

In a group signature with verifier-local revocation, signers are stateless, and revocation
messages are processed by the verifiers alone [30, 8, 73]. Distributing revocation infor-
mation only to the signers simplifies revocation when verifiers are fewer than signers and,
when signing functionality is implemented in a tamper-resistant module, allowing signers
to be stateless gives added robustness and security. Therefore, verifier-local revocation is
advantageous for privacy-preserving attestation in the trusted computing environment.

We implement verifier-Local group signatures by providing to the signature verification
algorithm the Revocation List (rl) as additional argument. The rl contains a token for each
revoked user. The verification algorithm accepts all signatures issued by unrevoked users
and reveals no information about which unrevoked user issued the signature. However, if a
user is ever revoked (by having his revocation token added to the rl), signatures from that
user are no longer accepted. It follows that signatures from a revoked user become linkable:
To test that two signatures were issued by the same revoked user, verify the signatures once
using the rl before the user is revoked and once using the rl after. In the case of trusted
computing, for example, users who break the tamper resistance of their TCG chip and are
revoked would lose their privacy by design.

Our specific VLR group signatures have an additional useful property: given a user’s
private key it is easy to derive that user’s revocation token — the revocation token is the left
half of the private key. Hence, any private key that is published on the web can be trivially
added to the rl and revoked. This potentially eliminates the need for a trusted revocation
authority. Instead, revocation could be done by just scanning the web and newsgroups for

exposed private keys and telling all signature verifiers to add these keys to their rl. We



CHAPTER 7. GROUP SIGNATURE VARIANTS AND EXTENSIONS 99

discuss this in more detail in the next section.

7.4.1 Definitions

Formally, a VLR group signature scheme comprises three algorithms, Kg, Sig, and Vf, which

behave as follows:

VLR.Kg(n). This randomized algorithm takes as input a parameter n, the number of mem-
bers of the group. It outputs a group public key gpk, an n-element vector of user
keys gsk = (gsk[1], gsk[2],..., gsk[n]), and an n-element vector of user revocation

tokens grt, similarly indexed.

VLR.Sig(gpk, gsk[i], M). The (randomized) signing algorithm takes as input the group
public key gpk, a private key gsk[i], and a message M € {0,1}*, and returns a

signature o.

VLR.Vf(gpk, rl o, M). The verification algorithm takes as input the group public key gpk,
a set of revocation tokens rl (whose elements form a subset of the elements of grt),
and a purported signature ¢ on a message M. It returns either valid or invalid.
The latter response can mean either that ¢ is not a valid signature, or that the user

who generated it has been revoked.

Implicit Tracing Algorithm Any VLR group signature scheme has an associated im-
plicit tracing algorithm that, using a secret tracing key, can trace a signature to at least
one group member who generated it. The vector of revocation tokens, grt, functions as
this secret tracing key. Given a valid message-signature pair (M, o), a party possessing all
the revocation tokens grt can determine which user issued the signature using the following

algorithm:

1. For each ¢ = 1,...,n run the verification algorithm on M,o with revocation list
rl = {grt[i]}.

2. Output the index of the first user for which the verification algorithm says invalid.

Output fail if the signature verifies properly for all n users.

Our security definitions below explain why this is a correct tracing algorithm. The algorithm

above demonstrates that the grt vector can function as a secret tracing key, if so desired.



CHAPTER 7. GROUP SIGNATURE VARIANTS AND EXTENSIONS 100

Note that grt in the BS scheme can be derived from just one value so that there is no need
to store a large vector as a tracing key.

In the constructions we have in mind, a user can derive her revocation token from her
private key, and can therefore determine whether her key was used to generate a particular
signature. We refer to this as selfless-anonymity: a group member can tell whether she
generated a particular signature o, but if she didn’t she learns nothing else about the origin
of 0. We describe a new security model that captures this notion. We use the framework
of Bellare et al. [15].

A secure VLR group signature scheme must satisfy three requirements: correctness,

traceability, and selfless-anonymity. We describe each in turn.

Correctness This requires that, for all (gpk, gsk, grt) generated by the generation algo-
rithm, every signature generated by a user verify as valid, except when the user is revoked;

or, formally, that
Vf(gpk, rl, Sig(gpk, gsk[i|, M), M) = valid <= grt[i| ¢ rl .

Traceability We say that a VLR group signature scheme is traceable if no adversary
can win the traceability game. In the traceability game, the adversary’s goal is to forge a
signature that cannot be traced to one of the users in his coalition using the implicit tracing
algorithm above. Let n be a given group size. The traceability game, between a challenger

and an adversary 4, is defined as follows.

Setup. The challenger runs algorithm Kg(n), obtaining group parameters gpk, gsk,
and grt. He provides the adversary A with gpk and grt, and sets U « ().

Queries Algorithm A can make queries of the challenger, as follows.

Signing. Algorithm A requests a signature on an arbitrary message M for
the user at index i, where 1 < ¢ < n. The challenger computes o «
Sig(gpk, gskli], M) and returns the signature o to A.

Corruption. Algorithm A requests the private key of the user at index i, 1 <
1 < n. The challenger appends i to U, the adversary’s coalition, and responds
with gsk]i].

Response. Finally, forger A outputs a message M*, a set rI* of revocation tokens,

and a signature o*.



CHAPTER 7. GROUP SIGNATURE VARIANTS AND EXTENSIONS 101

The forger wins if: (1) o* is accepted by the verification algorithm as a valid signature
on M* with revocation-token set rI*; (2) o* traces (using the implicit tracing algorithm
above) to some user outside of the coalition U \ rI*, or the tracing algorithm fails; and

(3) o* is nontrivial, i.e., A did not obtain o* by making a signing query at M*.

We denote by Adv;’/lzg?jf the probability that A4 wins the game. The probability is taken
over the coin tosses of A and the randomized key generation and signing algorithms.

The security proof for our system is set in the random oracle model [16] and therefore
we include in our security definitions an extra parameter gz denoting the number of random

oracle queries that the adversary issues.

Definition 7.4.1. An aggregate forger A (t,qu,qs,n,€)-breaks traceability in an n-user
VLR group signature scheme if: A runs in time at most ¢; A makes at most g, hash oracle

queries and at most ¢g signing queries; and Adv;’,lzgaf is at least e.

Selfless-anonymity In the selfless-anonymity game, the adversary’s goal is to determine
which of two keys generated a signature. He is not given access to either key. The game is

defined as follows.

Setup. The challenger runs the Kg algorithm, obtaining group parameters gpk, gsk,
and grt. It provides the adversary A with gpk.

Queries. Algorithm A can make queries of the challenger, as follows.

Signing. Algorithm A requests a signature on an arbitrary message M for
the user at index i, where 1 < ¢ < n. The challenger computes o «
Sig(gpk, gskl[i], M) and returns the signature o to A.

Corruption. Algorithm A request the private key of the user at index i, 1 <
i < n. The challenger responds with gsk][i].

Revocation. Algorithm A can request the revocation token of the user at in-

dex 7, 1 <1i < n. The challenger responds with grt[i].

Challenge. Algorithm A outputs a message M and two indices ip and ¢;. It must
have made neither a corruption nor a revocation query at either index. The
challenger chooses a bit b & {0,1} uniformly at random, computes a signature
on M by user i, as o* < Sig(gpk, gsk][ip], M), and provides o* to A.

Restricted Queries. After obtaining the challenge, algorithm A is allowed to make

additional queries of the challenger, restricted as follows.



CHAPTER 7. GROUP SIGNATURE VARIANTS AND EXTENSIONS 102

Signing. Algorithm A can make signing queries as before.
Corruption. As before, but A cannot make corruption queries at ig and 7.

Revocation. As before, but A cannot make revocation queries at iy and ;.

Output. Finally, A outputs a bit ¥, its guess of b. The adversary wins if ' = b.

We define A’s advantage in winning the game as Adv;’}z;z " as |Pr[b = b] —1/2|. The
probability is taken over the coin tosses of A, of the randomized key generation and signing
algorithms, and the choice of b. Note that .4 can make no more than n — 2 corruption and

revocation queries.

Definition 7.4.2. An aggregate adversary A (¢, qu, qs, n, €)-breaks selfless-anonymity in an
n-user VLR group signature scheme if: A runs in time at most ¢; A makes at most gy queries

to the hash function and at most gg signing queries; and Adv;’)lz'%a Ijn is at least e.

Definition 7.4.3. A group signature scheme with verifier-local revocation is (¢, ¢y, gs, n, €)
secure in the VLR security model if: it is correct; no algorithm (¢, gy, gs,n, €)-breaks its

traceability; and no algorithm (¢, qx, g5, n, €)-breaks its selfless-anonymity.

We note that a signature scheme that satisfies the VLR security model above is exis-
tentially unforgeable under a chosen message attack. This follows immediately from the

traceability game.

7.4.2 Short VLR Group Signatures from SDH

In this subsection, we describe in detail the BS VLR group signature scheme. (In the
next subsection, we give intuition for how the scheme is derived.) As with the BBS group
signature scheme of Section 6.3, we base security on the SDH and Linear assumptions.
Consider bilinear groups (G1, G2) with isomorphism ¢ and respective generators ¢g; and
g2, as in Section 2.1. The scheme employs hash functions Hy and H, with respective ranges

G% and Z,, treated as random oracles.

BS.Kg(n). The key generation algorithm takes as input n, the number of user keys to

generate. It proceeds as follows:

1. Select a generator g in Gy uniformly at random, and set g; < 1¥(g2). (In the

unlikely case that e(1(g2), g2) = 1, repeat this step; see Section 2.1.2.)



CHAPTER 7. GROUP SIGNATURE VARIANTS AND EXTENSIONS 103

2. Select v & Zj, and set w = gg.

3. Using v, generate for each user an SDH tuple (4, z;) by selecting x; & 73 such
that v + x; # 0, and setting A; «— gi/(’HZi)‘

The group public key is gpk = (g1, g2, w). Each user’s private key is her tuple gsk[i] =
(A;,x;). The revocation token corresponding to a user’s key (A4;,x;) is grt[i] = A;.
The algorithm outputs (gpk, gsk, grt). No party is allowed to possess 7; it is only

known to the private-key issuer.

BS.Sig(gpk, gskli|, M). The signing algorithm takes as input a group public key gpk =
(91,92, w), a user private key gsk[i] = (A;,z;), and a message M € {0,1}", and

proceeds as follows.

1. Pick a random nonce r & Zp. Obtain generators (u,?) in Gy from Hy as
(4, ) < Ho(gpk, M,r) € G5 , (7.1)
and compute their images in G1:
ue—a) ,  ve—1p(0) .
2. Select an exponent « & Z,, and compute:
Ty — u® and Ty «— A;0% . (7.2)

3. Set 0 «— z;a € Zy. Pick blinding values 7y, v, and rs & L.

4. Compute helper values R1, Ry, and Rg:

Ry — u'e R3 — Tlrx LqyTTe
(7.3)
Ry — e(Ta,92)" - e(v,w) ™" - e(v,92)™" .
5. Compute a challenge value ¢ € Z,, using H:
¢« H(gpk, M,r,T1, T, Ry, Re, R3) € Zy . (7.4)

6. Compute s, = rq + ca, 55 = 75 + cx;, and s5 =15 + ¢ € Zp.



CHAPTER 7. GROUP SIGNATURE VARIANTS AND EXTENSIONS 104

Output the signature o «— (1,11, T3, ¢, Sa, Sz, S5)-

BS.Vf(gpk, rl,o, M). The verification algorithm takes as input a group public key gpk =
(91,92, w), a set rl of revocation tokens (each an element of G1), a purported signature
o= (r,T1,Ts, ¢, Sqa, Sz, Ss), and a message M € {0,1}", and proceeds in two phases.
First, it ensures that the signature ¢ is valid; then it ensures that ¢ was not generated

by a revoked user. It accepts only if both conditions hold.

1. Signature Check. Check that o is a valid signature, as follows.

1. Compute @ and v using equation (7.1), and their images v and v in Gy:
u—Pa) , v P(o) .
2. Re-derive Ry, Ro, and R3 as:

Ry usa/Tlc R3 TISC”U_S‘S

_ . (7.5)
Ry — e(Tz, 92)""e(v,w)~*e(v,92) ™" - (e(T,w)/e(g1,92))" -
3. Check that the challenge c is correct:
c;H(gpkaM7T7T17T27R~17R~2aR~3) . (76)

If it is, accept. Otherwise, reject.

2. Revocation Check. For each element A € rl, check whether A is encoded in
(Th,T>) by checking if
e(Tp/A, @) = e(T1,0) .

If no element of rlis encoded in (73, T3), the signer of o has not been revoked.

The algorithm outputs valid if both phases accept, invalid otherwise.

Signature Length A group signature in the system above comprises two elements of G
and five elements of Z,. Using either the supersingular or MNT family of curves described
in Section 2.3.5, one can take p to be a 170-bit prime and use a group G where each
element is 171 bits. Thus, the total group signature length is 1192 bits or 149 bytes. With

these parameters, security is approximately the same as a standard 1024-bit RSA signature,



CHAPTER 7. GROUP SIGNATURE VARIANTS AND EXTENSIONS 105

which is 128 bytes. Using the Barreto Naehrig curves of Section 2.3.5, we can instead take
p to be a 160-bit prime. This gives 1122-bit group signatures with the same security level.

Performance Signature generation requires two applications of the isomorphism . Com-
puting the isomorphism takes roughly the same time as an exponentiation in G; (using fast
computations of the trace map). Thus, signature generation requires about 8 exponentia-
tions (or multi-exponentiations) and 2 bilinear map computations. Signature verification
takes 6 exponentiations and 3 4 2|rl| computations of the bilinear map. A far more effi-
cient revocation check algorithm, whose running time is independent of |rl|, is described in
Section 7.4.5.

We now prove the correctness of the BS scheme. The proofs of the selfless-anonymity

and traceability are given in Section 7.4.4.
Theorem 7.4.4. The BS VLR signature scheme is correct, as defined in equation (7.4.1).

Proof. Consider public parameters gpk = (g1, g2, w); secret-key vector gsk where, for
each i, gsk[i] = (A;,x;), an SDH tuple, i.e., a tuple satisfying e(A4;, wgs’) = e(g1,g2);
and revocation-token list grt where grt[i] = A;, as output by the key generation algorithm.

An honest signer with private key (A;, z;) generates a signature (r, 771,75, ¢, S, Sz, S5)
by following the signing algorithm described above. In particular, the signer computes the
generators @ and ¢ according to equation (7.1), so the verifier uses the same generators.
Now, the first phase of the signature verification algorithm accepts a signature if the output
of H equals the challenge ¢. This will only be true (except with negligible probability)
when all inputs to H are exactly the same for the verifier as for the signer. An honest
signer’s signature includes all these inputs except Ri, Ro, and Rg, which are re-derived
by the verifier. We must therefore show that the values re-derived by the verifier using

equations (7.5) equal those derived by the signer using equations (7.3). First,
Ry = u®/T¢ = uo+ (u®)° = v = Ry |
SO ]%1 = R;. Further,

Rs = Tlsg;u—sg — (ua)rx-i-cmi LTI — (uoc)rx LT = T{z LT = Rs3 ,



CHAPTER 7. GROUP SIGNATURE VARIANTS AND EXTENSIONS 106

SO }%3 = R3. Finally,

R~2 = e(T’27g2)sgC : 6(,0710)—50( : 6(0792)_85 ' <M)C

e(91, 92)
= (e g2)" - e(v,w) "™ - e(v,g2) )

. _ . e(TQ,U)) €
. - a zioo | S\L2, %)
X <6( 2792) S(U,U)) G(U,g2) 6(91792))
(T gy _ | (elAwugd)y:
R, (A22Y YR I\ _p (A6 Wh N B
2 e(91,92) ) ( (91, 92) )

so Ry = Ry. The last equality follows from the SDH equation. Thus (7.6) will be satisfied.

In a signature generated by the signing algorithm, we have T = ¢(u)* and Ty = A;1(0)*
for some a. The revocation check algorithm will reject a signature as originating from a
revoked user with token A exactly when (u,0,T1,T2/A) is a co-Diffie-Hellman tuple, i.e.,
when A equals A;. Thus the group signature verification algorithm will accept a signature

as valid exactly when A; is not included in its input rl, as required. O

7.4.3 Intuition

The BS scheme presented in Section 7.4.2 above is derived, via a variant of the Fiat-Shamir
heuristic [51], from a new protocol for proving possession of an SDH tuple. We present this
protocol below to give intuition into the construction of the BS scheme.

The protocol is a proof of knowledge, which means that by rewinding a prover it is
possible to extract an SDH pair. The protocol is intentionally not zero-knowledge; a verifier
in possession of a revocation token can determine whether he is interacting with a revoked
prover.

The public values are g € (G1 and g2, w € G2. Here g2 is a random generator of Ga,
g1 equals 1(g2), and w equals g9 for some (secret) v € Z,. The prover wishes to demonstrate
possession of a pair (A, x), where A € Gy and = € Z,, such that A" = g;. Such a pair
satisfies e(A,wg3) = e(g1,92). We use a generalization of Schnorr’s protocol for proving

knowledge of discrete logarithm [107] in a group of prime order.

Protocol 2. Bob, the verifier, selects elements 4 and ¢ uniformly at random from G5 and

sends them to Alice, the prover. Alice sets u < 1(u) and v < ¥ (0). She selects exponent
R

o < Zyp, and computes

T, — u® and Ty «— Av® .



CHAPTER 7. GROUP SIGNATURE VARIANTS AND EXTENSIONS 107

Alice and Bob then undertake a proof of knowledge of values («, z, §) satisfying the following

three relations:
u =T, T =’ e(Tov %, wgsy) = e(g1,92) -

This proof of knowledge proceeds as follows. Alice computes a helper value § = xa. She
then picks blinding values rq, 7, and 5 at random from Z,. She computes three values

based on all these:

Ry —u™ Ry —T("-u™"

Ry — e(Ta,92)™ - e(v,w) ™" - e(v,g2)" " .

She then sends (17, T3, R1, R, R3) to Bob. Bob sends a challenge value ¢ chosen uniformly
at random from Z,. Alice computes and sends back s, = 7o + co, s, = r, + cx, and

ss = rs + ¢d. Finally, Bob verifies the following three equations:

)
we L TE. Ry (7.7)

e(Tz, g2)™ - e(v,w) " - e(v,ga) ™ i (e(g1,92)/e(T2,w))" - Ry (7.8)
Tseq~% £ Ry . (7.9)

Bob accepts if all three hold. Applying a standard variant of the Fiat-Shamir heuristic to

this protocol produces the signature scheme of the previous section.

The protocol above is (by design) not a zero-knowledge protocol. Given (T3,7T5) and
a candidate A, anyone can check whether A is ElGamal-encrypted in (71,75) by checking
whether e(T5/A, ) = e(T1,v) holds. Below, however, we show that the protocol has an
extractor and, given a (T7,7>) pair, can be simulated. The correctness of the protocol

follows from Theorem 7.4.4.
Lemma 7.4.5. For any (4,0,T1,Ts), Transcripts of Protocol 2 can be simulated.

Proof. Choose challenge ¢ pid Zyp. Select sq & Zy, and set Ry «— u®*/Ty. Then equation (7.7)
is satisfied. With « and c fixed, a choice for either of r, or s, determines the other, and
a uniform random choice of one gives a uniform random choice of the other. Therefore s,

and R; are distributed as in a real transcript.



CHAPTER 7. GROUP SIGNATURE VARIANTS AND EXTENSIONS 108

Select s, E Zyp. Now, A and « are fixed by T and T, x is implicitly fixed by the SDH
equation for A, r, is fixed by x and s,, and § is fixed as za. Select sg & Zy; a uniform
distribution on this gives a uniform distribution on rs. Set R3 « T7"u~%. Again, all the

computed values are distributed as in a real transcript. Finally, set

e(Tg,w))c .

Ry — e(Ty,g92)% - e(v,w)” %> - e(v, ga _55-<
( ) - e(v, w) (v, g2) (91, 52)

This Ry satisfies (7.8), so it, too, is properly distributed.
Finally, the simulator outputs the transcript (@, v, T4, 1%, R1, R2, R3, ¢, 54, 53, Sz, S5). As
argued above, this transcript is distributed identically to transcripts of actual Protocol 2

interactions for the given (4,0, Ty, Ts). ]

Lemma 7.4.6. There exists an extractor for Protocol 2 that extracts an SDH pair from a

COMVINCING Prover.

Proof. Suppose that an extractor can rewind a prover in the protocol above. The verifier
sends 4, v to the prover. Let u = ¢(u) and v = 9(0). The prover then sends 77, T> and
R1, Ro, R3. To challenge value ¢, the prover responds with s,, s, and ss. To challenge
value ¢’ # ¢, the prover responds with s, s7, and sj. If the prover is convincing, all three
verification equations hold for each set of values.

For brevity, let Ac = ¢ — ¢/, Asy = $o — 8, and similarly for As,, and As;.

Consider (7.7) above. Dividing the two instances of this equation, we obtain u®%« = TA¢.
The exponents are in a group of known prime order, so we can take roots; let & = As,/Ac.
Then u® = Tj.

Ass

Now consider (7.9) above. Dividing the two instances gives TlA Sz = 2%, Substituting

T1 = u® gives u®®%* = u®% or As; = @As,.

Finally, dividing the two instances of (7.8), we obtain

(g1, 92)/e(Ta, w)) 2 = e(Ta, g2)2% - e(v, w) 2% - (v, go) 345 .

Taking Ac-th roots, and letting & = As,/Ac, we obtain

e(g1, 92)/e(Ta,w) = e(Th, g2)* - e(v,w) ™ - e(v, go) ~%¢



CHAPTER 7. GROUP SIGNATURE VARIANTS AND EXTENSIONS 109

This can be rearranged as

6(91,92) = e(TQU_d7wg2j) )

a

or, letting A =Tov ,
e(A,wg3) = e(g1,92) -

Thus the extractor obtains an SDH tuple (121,50) Moreover, the A in this SDH tuple is,
perforce, the same as that in the ElGamal encryption (77, 7%). In other words, the extractor

recovers the same A that a revocation-checker matches. O

7.4.4 Proof of Security

We show that the BS scheme described in Section 7.4.2 is a VLR group signature scheme.
Correctness was demonstrated in Theorem 7.4.4, above. Below we give proofs of selfless-

anonymity and traceability, as defined in Section 7.4.1.

Selfless- Anonymity

Lemma 7.4.7. The BS VLR group signature scheme in (G1,G2) has (t,qu,qs,n, €) selfless
anonymity in the random oracle model assuming the (t, €') Decision Linear assumption

holds in the group G for € = § (i - M) ~ €/2n?.

n? P
Proof. Suppose algorithm A (¢, qu, gs,n, €)-breaks the selfless anonymity of the BS VLR
group signature scheme. We build an algorithm B that breaks the Decision Linear assump-
tion in Go. Algorithm B is given as input a 6-tuple (ug, u1, v, ho = ud, h1 = v}, Z) € GS
where ug, uq, v & Go, a,b & Z;; and either Z = vt € Gy or Z is random in Gs. Algorithm

B decides which Z it was given by interacting with A as follows:

Setup. Recall that g1, g2 are the fixed generators of GG1, G respectively. Algorithm B does
the following:

1. Algorithm B picks a random ~y & Z, and sets w = gJ. It gives A the gpk =
(91,92, w).

2. B picks two random users i, i1 & {1,...,n} and keeps ip, i1 secret. For all users
J # io,i1 it generates private keys gsk[j] = (A4;,x;) using v and the standard

key generation algorithm.

3. B picks a random W E Gs.



CHAPTER 7. GROUP SIGNATURE VARIANTS AND EXTENSIONS 110

To give some intuition for the rest of the simulation we define A;, = ZW/v® and
A;; = Wb, In what follows, B will behave as if user ig’s private key is (Aiy, xi,) and
user iq’s private key is (A;,, z;,) for some z;,, x;, € Z,. We emphasize that B does not

know either A;, or A;, since it doesn’t know a or b. Observe that if Z = 0% then
Ajy = ZW /v = v*PPW /0 = Wob = Ay,

Hence, if Z = v users i and 4; have the same private key. But if Z is random in

G then ig,i; have independent private keys.

Hash queries. At any time, A can query the hash functions H and Hy. Algorithm B

responds with random values while ensuring consistency.

Phase 1. Algorithm A can issue signing queries, corruption queries, and revocation queries.
If a query is for user i # ig,i; then B uses the private key gskl[i] to respond to the

query. For queries for users ig or i1 algorithm B responds as follows:
e Signing queries: given a message M € {0,1}* and a user ¢ € {ig, i1} algorithm B
must generate a signature for M using user ¢’s private key.

. . . . R
— To generate a signature for user i = ig, B picks random s,t,l < Z; and

makes the following assignments:
T1 «— houg Ty — ZWvhud! i u) b — (vub)t .

Let o = (a+ )/l € Zp. Then Ty = 4* and Ty = A, - 0°.
— To generate a signature for user ¢ = ¢1, B picks random s,¢,! & Z,, and

makes the following assignments:
Ty — hiu  Tp — Whiuit/v® a—u o — (ul /o) .

Let o = (b+s)/l € Zy. Then T} = u* and T = A;, - 0*.

Either way, 71 = 4 and T» = A;0% for some random o € Z, and random
and independent 4,9 € Gs. Algorithm B next picks random 7, ¢, Sq, Sz, S§ &
Z, and computes the corresponding Ri, R, R3 using equations (7.5). In the
unlikely event that A has already issued a hash query either for H(gpk, M,r,



CHAPTER 7. GROUP SIGNATURE VARIANTS AND EXTENSIONS 111

W(T1),v(T2), Ri, Ra, R3) or for Hy(gpk, M,r), B reports failure and terminates.
Since r is random in Z, this happens with probability at most ¢y /p. Otherwise,
B defines

H(gpkv M? r, ¢(T1)a ¢(T2)7R17 R2a R3) =cC
HO(gpka Mv 7’) = (@“7@) .

Algorithm B then computes the signature o as o « (r,9(11), ¥ (12), ¢, Sa, Sz, S5),
and gives o to A. Note that by Lemma 7.4.5, o is a properly distributed signature

under user ¢’s private key.

e Corruption queries and revocation queries: if A ever issues a corruption of revo-

cation query for users ig or 41 then B reports failure and aborts.

Challenge Algorithm A outputs a message M and two users i, and ¢] where it wishes to
be challenged. if {ii}} # {io, i1} then B reports failure and aborts. Otherwise, we
assume i = i9 and ] = 41. Algorithm B picks a random b & {0,1} and generates
a signature ¢* under user ;’s key for M using the same method used to respond to

signing queries in Phase 1. It gives o* as the challenge to A.
Phase 2. Algorithm A issues restricted queries. B responds as in Phase 1.

Output. Eventually, A outputs its guess b’ € {0,1} for b. If b = ¥’ then B outputs 0
(indicating that Z is random in G5); otherwise B outputs 1 (indicating that Z = v®*?).

Suppose B does not abort during the simulation. Then, when Z is random in Gq
algorithm B emulates the selfless-anonymity game perfectly. Hence, Pr[b = V'] > % + €.
When Z = v**® then the private keys for users ig and i; are identical and therefore the
challenge signature o* is independent of b. It follows that Pr[b = V'] = 1/2. Therefore,
assuming B does not abort, it has advantage at least €/2 in solving the given linear challenge
(ug, u1,v, ho, h1, Z) € GS.

Algorithm B does not abort if it correctly guesses the values i;; and ¢] during the setup
phase and none of the signature queries cause it to abort. The probability that a given
signature query causes B to abort is at most ¢y /p and therefore the probability that B
aborts as a result of A’s signature queries is at most ¢sqy/p. As long as B does not abort

during phase 1, algorithm A gets no information about the choice of ig,i;. Therefore, the



CHAPTER 7. GROUP SIGNATURE VARIANTS AND EXTENSIONS 112

probability that the query pattern during phase 1 and the choice of challenge do not cause
B to abort is at least 1/n%. It now follows that B solves the given linear challenge with

advantage at least § (n—g - %), as required. O

Traceability

Theorem 7.4.8. If SDH is (q,t',€")-hard on (G1,G2), then the BS VLR group signature
scheme is (t,qu, qs, n, €)-traceable, where n = q — 1, € = 4n\/2é'qy + n/p, and t = O(1) - t'.

Proof. Our proof proceeds in three parts. First, we describe a framework for interacting
with an algorithm that wins a traceability game. Second, we show how to instantiate this
framework appropriately for different types of such breaker algorithms. Third, we show how

to apply the forking lemma [102] to the framework instances, obtaining SDH solutions.

Interaction Framework Suppose we are given an algorithm A that breaks the trace-

ability of the BS scheme. We describe a framework for interacting with A.

Setup. We are given groups (G1,G2) as above, with respective generators g; and ga. We
are also given w = g € Go, and a list of pairs (4;, ;) for i = 1,...,n. For each 1,
either z; = *, indicating that the x; corresponding to A; is not known, or else (4;, z;)
is an SDH pair, and e(A;, wgy') = e(g1, g2). We then run A, giving it the group public
key (g1, g2, w) and the users’ revocation tokens {A;}. We answer its oracle queries as

follows.

Hash Queries. At any time, A can query the hash functions to obtain generators (i, ?)
or challenge c. We respond with random values while maintaining consistency. made

again.

Signature Queries. Algorithm .4 asks for a signature on message M by a key at index 7. If
s; # *, we follow the group signing procedure with key (A;, x;) to obtain a signature o

on M, and return o to A.

Otherwise s; = . We pick a nonce r & Zp, obtain generators (u,v) «— Ho(gpk, M, ),
and set u < ¥(u) and v < 1(0). We then pick « E Ly, set T1 «— u®, and T «— Agf
and run the Protocol 2 simulator with values (u,0,71,7>). The simulator returns
a transcript (4, v,T1,Ts, R1, Ra, R3, ¢, S, Sz, S5), from which we derive a VLR group

signature o = (r,T1,T5, ¢, Sa, Sz, S5). In addition, we must patch the hash oracle at



CHAPTER 7. GROUP SIGNATURE VARIANTS AND EXTENSIONS 113

(M,r,T1,Ts, Ry, R, R3) to equal c. If this causes a collision, i.e., if we previously set
the oracle at this point to some other ¢/, we declare failure and exit. Otherwise, we
return o to A. A signature query can trigger a hash query, which we charge against

A’s hash query limit to simplify the accounting.

Private Key Queries. Algorithm A asks for the private key of the user at some index 1.

If x; # %, we return (A;, z;) to A. Otherwise, we declare failure and exit.

Output. Finally, if algorithm A is successful, it outputs a forged VLR group signature o =
(r,Th,T5,¢, S, Sz, S5) on a message M with nonce r, along with a revocation list rI*.
We apply the implicit revocation algorithm, with revocation tokens {A;} to determine
which A* is encoded in (77,7%). This A* cannot be on rl*; if it were, the signature
would have been rejected as invalid. Thus for the forgery to be nontrivial, A* must
also be outside the adversary’s coalition U. If A* does not equal A; for any ¢, we
output o. Otherwise, A* = A;« for some *. If s;+ = *, we output o. If, however,

s # %, we declare failure and exit.

As implied by the output phase of the framework above, there are two types of forger
algorithm. Type I forgers output a forgery o on a message M that encodes some iden-
tity A* ¢ {Aq,..., A, }. Type II forgers output a forgery that encodes an identity A* such
that A* = A;» for some i*, and the forger did not make a private-key oracle query at i*.
We treat these two types of forger differently.

Given a ¢-SDH instance (gi,gé,(gé)“’,(gé)“ﬁ,...,(gé)”q), we apply the technique of
Boneh and Boyen’s Lemma 3.2 [23] that we recalled in Section 3.4.1, obtaining genera-
tors g1 € G1, g2 € Ga, w = g7, along with ¢ — 1 SDH pairs (A4;, x;) such that e(4;, wgy') =
e(g1, g2) for each i. Any SDH pair (A, z) besides these ¢ — 1 pairs can be transformed into

a solution to the original ¢-SDH instance, again using Boneh and Boyen’s Lemma 3.2.

Type I Forger Against a (t,qy,qs,n,€)-Type I forger A, we turn an instance of (n+ 1)-
SDH into values (g1, g2, w), and n SDH pairs (A;, z;). We then apply the framework to .4
with these values. Algorithm A’s environment is perfectly simulated, and the framework

succeeds whenever A succeeds, so we obtain a Type I forgery with probability e.

Type II Forger Against a (¢,qyu,qs,n,€)-Type II forger A, we turn an instance of n-

SDH into values (g1, g2, w), and n—1 SDH pairs. These pairs we distribute amongst n pairs



CHAPTER 7. GROUP SIGNATURE VARIANTS AND EXTENSIONS 114

(A;,x;). The unfilled entry at random index i* we fill as follows. Pick A;« & G1, and set
T+ < *, a placeholder value. Now we run A under the framework. The framework declares
success only if A never queries the private key oracle at i*, but forges a group signature that
traces to A;«. It is easy to see that the framework simulation is perfect unless A queries
the private key oracle at i*. Because the protocol simulator invoked by the signing oracle
produces group signatures that are indistinguishable from those of a user whose SDH tuple
includes A;«, the value of i* is independent of A’s view unless and until it queries the private
key oracle at i*. (Since the hash oracle takes as input five elements of G or Gy besides
the message M, the probability of collision in simulated signing queries is bounded above
by (gugs + ¢%)/p°. Assuming ¢s < qy < p = |G1|, this probability is negligible, and we
ignore it in the analysis.) Finally, when A outputs its forgery o, implicating some user i
whose private key A has not requested, the value of i* (amongst the users whose keys it
has not requested) remains independent of A’s view. It is easy to see, then, that A outputs

a forged group signature that traces to user i* with probability at least €/n.

Application of Forger Now we show how to use the application of our framework to
a Type I or Type II adversary A to obtain another SDH pair, contradicting the SDH
assumption. The remainder of this proof follows closely the methodology and notation of
the forking lemma [102].

Let A be a forger (of either type) for which the framework succeeds with probabil-
ity €. From here on, we abbreviate signatures as (M, 0g, ¢, 01), where ooy = (r, 4,0, Ty, To,
R1, Ro, R3), the values given, along with M, to the random oracle H, and from which ¢ is
derived, and where 01 = (Sq, Sz, 55). (Those values normally omitted from the signature
can be recovered as the verification algorithm in Section 7.4.2 does.)

We require that A always query Hy at (M,r) before querying H at (M,r,...). Any
adversary can be modified mechanically into satisfying this condition. This technical re-
quirement means that, even if in rewinding we change the value of H(M,r,...), the value
of Hy(M,r), and therefore of the u and v used implicitly in the arguments of the H call,
remains unchanged.

For any fixed fo vector of Hy responses, a run of the framework on A is completely
described by the randomness string w used by the framework and A, by the vector f
of responses made by the Hy hash oracle, and by the vector f of responses made by the
H hash oracle. Let S be the set of tuples (w, fo, f) such that the framework, invoked



CHAPTER 7. GROUP SIGNATURE VARIANTS AND EXTENSIONS 115

on A, completes successfully with forgery (M, og,c,01), and A queried the hash oracle H
on (M, 0p). In this case, let Ind(w, fo, f) be the index of f at which A queried (M, o(). We
define v = Pr[S] = € — 1/p, where the 1/p term accounts for the possibility that A guessed
the hash of (M, o) without the hash oracle’s help. For each j, 1 < j < gy, let S; be the set
of tuples (w, fo, f) as above and such that Ind(w, fo, f) = j. Let J be the set of auspicious
indices j such that Pr[S; | S] > 1/(2¢y). Then

Pr[Ind(w, f) € J | S] >1/2 .

Let f|Z be the restriction of f to its elements at indices a,a+1,...,b. For each j € J, we
consider the heavy-rows lemma [102, Lemma 1] with rows X = (w, fo, f|2~') and columns
Y = (f\?-H). Clearly Pr(,,)[(7,y) € S;] > v/(2qy). Let the heavy rows ; be those rows
such that, V(z,y) € Q; : Pry[(x,y') € S;] > v/(4qx). Then, by the heavy-rows lemma,
Pr[Q; | S;] > 1/2. A simple argument then shows that Pr[3j € J: Q;NS; | S] > 1/4.

Thus, with probability v /4, the framework, invoked on A, succeeds and obtains a forgery
(M, 09, c,01) that derives from a heavy row (z,y) € ; for some j € J, i.e., an execution
(w, fo, f) such that

Prl(w fo. f) €85 | IV = £ 2 v/ (daw) -

If we now rewind the framework and A to the jth query and proceed with an oracle vec-
tor f’ that differs from f from the jth entry on, we obtain, with probability at least v/(4qy),
a successful framework completion and a second forgery (M, oo, ,0}), with (M, og) still
queried at A’s jth hash query. Since the adversary queried Hp at (M,r) (where r is the
first element of og) before he made his jth H oracle query, the values of 4 and ¢ in these
two forgeries will be the same.

By using the extractor of Lemma 7.4.6, we obtain from the forgeries (og,c,01) and
(00,¢,0)) an SDH tuple (A, x). The extracted A is the same as the A encoded in (71, 75)
in 0g. The framework declares success only when the A encoded in (77, 7%) is not amongst
those whose z it knows. Therefore, the extracted SDH tuple (A, x) is not amongst those that
we ourselves created, and can be transformed, again following the technique of Boneh and
Boyen’s Lemma 3.2 [23], to an answer to the posed ¢-SDH problem.

Putting everything together, we have proved the following claims.



CHAPTER 7. GROUP SIGNATURE VARIANTS AND EXTENSIONS 116

Claim 20. Using a (t,qu,qs,n,€) Type I forger, we solve an instance of (n+ 1)-SDH with
probability (e — 1/p)%/(16qy) in time O(1) - t.

Claim 21. Using a (t,qu,qs,n,€) Type II forger, we solve an instance of n-SDH with
probability (e/n — 1/p)%/(16qy) in time O(1) - t.

We can guess which of the two forger types a particular forger is with probability 1/2;

then assuming the more pessimistic scenario of Claim 2 proves the theorem. ]

7.4.5 Efficient Revocation for BS Signatures

In the BS scheme (Section 7.4.2), signature verification time grows linearly in the number of
revoked users. It is desirable to have a Verifier-Local Revocation system where verification
time is constant. In this section we describe a simple modification to the signing and
verification algorithms that achieves this at the cost of slightly reduced anonymity.
Consider how our system is used for privacy-preserving attestation: Users connect to
various web sites and at each site they perform a private attestation using the group signa-
ture issued by the tamper-resistant chip in their machine. For an efficient revocation check,
when the chip issues a signature for attesting to a site S it uses the signing algorithm from

Section 7.4.2 with the small modification that the parameters u and v are generated as:
(’LL, U) ﬁ HO(gpk7 Sa ’l“)

where 7 is random in the range {1,...,k} and k is a security parameter (e.g., k¥ = 128).
Note that, unlike Section 7.4.2, here (u,v) do not depend on the message being signed.
Hence, at a given site S there are only k possible values for the pair (u,v).

Now, suppose site S has been supplied with a revocation list rl = {A4;,...,4;}. To
verify that a signature o = (r, T1,Ts, ¢, Sq, Sz, Ss) Was not issued by a revoked user the site

uses the same procedure as in Section 7.4.2:
1. Compute (u,v) & Hy(gpk, S,r), and
2. Fori=1,...,b check that e(T1,v)e(A;,u) # e(Ta,u).

Since at site S there are only k possible values for u, the value e(A4;, u) can be precomputed
for the entire rl for all possible u’s. Thus, site S stores a |rl| x k table of values, e(A;,u;).

To check revocation, it simply does a table-lookup to see if the value e(T5,u)/e(T,v) is



CHAPTER 7. GROUP SIGNATURE VARIANTS AND EXTENSIONS 117

in the r’th row of the table. If not, then the signature was not issued by a revoked user.
Hence, the revocation check takes time independent of the size of rl

The downside is that the scheme is now only partially anonymous. If the user issues
two signatures at site S using the same random value r € {1,...,k} then the site can test
that these two signatures came from the same user. However, signatures issued at different
sites are still completely unlinkable. Similarly, signatures issued at the same site using
different r’s are unlinkable (e.g., with & = 100 only 1% of signatures at S are linkable). For
some applications, this trade-off between partial linkability and efficient revocation might

be acceptable.

7.4.6 Backward Unlinkability

When a user is revoked in the BS scheme, all her signatures can be traced, including any
issued before her key was compromised. It might be preferable keep these older signatures
unlinkable, a property called backward unlinkability [7, 112]. This property is typically
achieved by dividing time into intervals. signatures are tied to the interval in which they
were issued, and revocation is effective only from the current interval onwards.

Nakanishi and Funabiki have proposed a variant of BS signatures with backward un-
linkability using time intervals [93]. They prove the security of their construction under

security definitions adapted from those in Section 7.4.1.

7.4.7 Strong Exculpability for BS

In the BS VLR scheme, as in the BBS scheme of Section 6.3, keys are issued by a trusted key
generator. This is in keeping with the security definitions given in Section 7.4.1, which them-
selves are modeled after the Bellare-Micciancio-Warinschi definitions for ordinary group
signatures [15].

It is possible to achieve strong exculpability —where even the entity that issues user
keys cannot forge signatures under users’ keys— for BS signatures as well. The necessary
modifications are essentially those suggested for BBS in Section 7.2.

An appropriate model for proving the modified BS signatures secure would closely resem-
ble the definitions for traceable signatures proposed by Kiayias and Yung [73]. (“Claiming”
a signature, in the Kiayias-Yung terminology, would simply require proving knowledge of a
value A; such that (u,0,T7,T2/A;) is a co-Diffie-Hellman tuple.)



CHAPTER 7. GROUP SIGNATURE VARIANTS AND EXTENSIONS 118

7.5 Conclusions and Open Problems

We have described extensions to the BBS group signature scheme to achieve strong exculpa-
bility and (traditional) revocation. In addition, we have described a short group signature
scheme where user revocation only requires sending revocation information to signature ver-
ifiers, a setup we call verifier-local revocation. Our signatures are short: only 141 bytes for a
standard security level. They are shorter than group signatures built from the Strong-RSA
assumption and are shorter even than BBS short group signatures.

There are still a number of open problems related to VLR signatures. Most importantly,
is there an efficient VLR group signature scheme where signature verification time is sub-

linear in the number of revoked users, without compromising user privacy?



Bibliography

1]

M. Abdalla, J. An, M. Bellare, and C. Namprempre. From identification to signatures
via the Fiat-Shamir transform: Minimizing assumptions for security and forward-
security. In L. Knudsen, editor, Proceedings of Eurocrypt 2002, volume 2332 of LNCS,
pages 418-33. Springer-Verlag, May 2002.

J. H. An, Y. Dodis, and T. Rabin. On the security of joint signature and encryption.
In L. Knudsen, editor, Proceedings of Eurocrypt 2002, volume 2332 of LNCS, pages
83-107. Springer-Verlag, May 2002.

ANSI X9 Committee. DSTU X9.59-2000: Electronic commerce for the financial ser-

vices industry: Account-based secure payment objects. Online: http://www.x9.org/.
ANSI X9.62 and FIPS 186-2. Elliptic curve digital signature algorithm, 1998.

N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital signatures.
IEEE J. Selected Areas in Comm., 18(4):593-610, Apr. 2000.

G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably se-
cure coalition-resistant group signature scheme. In M. Bellare, editor, Proceedings of
Crypto 2000, volume 1880 of LNCS, pages 255-70. Springer-Verlag, Aug. 2000.

G. Ateniese and G. Tsudik. Some open issues and directions in group signatures.
In M. Franklin, editor, Proceedings of Financial Cryptography 1999, volume 1648 of
LNCS, pages 196-211. Springer-Verlag, Feb. 1999.

G. Ateniese, G. Tsudik, and D. Song. Quasi-efficient revocation of group signatures. In
M. Blaze, editor, Proceedings of Financial Cryptography 2002, volume 2357 of LNCS,
pages 183-97. Springer-Verlag, 2003.

119



BIBLIOGRAPHY 120

[9]

[11]

[12]

[13]

[14]

[15]

F. Bao, R. Deng, and W. Mao. Efficient and practical fair exchange protocols with
offine TTP. In P. Karger and L. Gong, editors, Proceedings of IEEE Security &
Privacy, pages 77-85, May 1998.

N. Baric and B. Pfitzman. Collision-free accumulators and fail-stop signature schemes
without trees. In W. Fumy, editor, Proceedings of Eurocrypt 1997, volume 1233 of
LNCS, pages 480-494. Springer-Verlag, May 1997.

P. Barreto, S. Galbraith, C. o) hEigeartaigh, and M. Scott. Efficient pairing computa-
tion on supersingular abelian varieties. Cryptology ePrint Archive, Report 2004/375,
2004. http://eprint.iacr.org/.

P. Barreto, H. Kim, B. Lynn, and M. Scott. Efficient implementation of pairing-based
cryptosystems. J. Cryptology, 17(4):321-34, Sept. 2004.

P. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order. In B. Pre-
neel and S. Tavares, editors, Proceedings of SAC 2005, LNCS. Springer-Verlag, 2005.
To appear.

M. Bellare, J. Garay, and T. Rabin. Fast batch verification for modular exponentiation
and digital signatures. In K. Nyberg, editor, Proceedings of Furocrypt 1998, volume
1403 of LNCS, pages 236-50. Springer-Verlag, May—Jun. 1998.

M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures: Formal
definitions, simplified requirements, and a construction based on general assumptions.
In E. Biham, editor, Proceedings of FEurocrypt 2003, volume 2656 of LNCS, pages 614—
29. Springer-Verlag, May 2003.

M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In D. Denning, R. Pyle, R. Ganesan, R. Sandhu, and V. Ashby,
editors, Proceedings of CCS 1993, pages 62-73. ACM Press, Nov. 1993.

M. Bellare and P. Rogaway. The exact security of digital signatures: How to sign
with RSA and Rabin. In U. Maurer, editor, Proceedings of FEurocrypt 1996, volume
1070 of LNCS, pages 399-416. Springer-Verlag, May 1996.



BIBLIOGRAPHY 121

[18]

[20]

[21]

[27]

M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case of
dynamic groups. In A. J. Menezes, editor, Proceedings of CT-RSA 2005, volume 3376
of LNCS. Springer-Verlag, Feb. 2005. To appear.

M. Bellare and M. Yung. Certifying permutations: Non-interactive zero-knowledge

based on any trapdoor permutation. J. Cryptology, 9(1):149-66, 1996.

1. F. Blake, G. Seroussi, and N. Smart. Elliptic Curves in Cryptography, volume 265
of London Mathematical Society Lecture Notes. Cambridge University Press, 1999.

J. Blum. CARAVAN: A Communication Architecture for Reliable Adaptive Vehicular
Ad hoc Networks. PhD thesis, George Washington University, May 2005.

A. Boldyreva. Efficient threshold signature, multisignature and blind signature
schemes based on the gap-Diffie-Hellman-group signature scheme. In Y. Desmedt, ed-
itor, Proceedings of PKC 2003, volume 2567 of LNCS, pages 31-46. Springer-Verlag,
Jan. 2003.

D. Boneh and X. Boyen. Short signatures without random oracles. In C. Cachin and
J. Camenisch, editors, Proceedings of Eurocrypt 2004, volume 3027 of LNCS, pages
56-73. Springer-Verlag, May 2004.

D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. Franklin, editor,
Proceedings of Crypto 2004, volume 3152 of LNCS, pages 41-55. Springer-Verlag, Aug.
2004.

D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. SIAM J.
Computing, 32(3):586-615, 2003. Extended abstract in Proceedings of Crypto 2001.

D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted
signatures from bilinear maps. In E. Biham, editor, Proceedings of Eurocrypt 2003,
volume 2656 of LNCS, pages 416-32. Springer-Verlag, May 2003.

D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In
C. Boyd, editor, Proceedings of Asiacrypt 2001, volume 2248 of LNCS, pages 514-32.
Springer-Verlag, Dec. 2001.



BIBLIOGRAPHY 122

[28]

[32]

[34]

[35]

D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. J.
Cryptology, 17(4):297-319, Sept. 2004. Extended abstract in Proceedings of Asiacrypt
2001.

D. Boneh and H. Shacham. Group signatures with verifier-local revocation. In B. Pfitz-
mann and P. Liu, editors, Proceedings of CCS 2004, pages 168-77. ACM Press, Oct.
2004.

E. Brickell. An efficient protocol for anonymously providing assurance of the container

of a private key, Apr. 2003. Submitted to the Trusted Computing Group.

C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval
with polylogarithmic communication. In J. Stern, editor, Proceedings of Furocrypt
1999, volume 1592 of LNCS, pages 402—-14. Springer-Verlag, May 1999.

J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to efficient
revocation of anonymous credentials. In M. Yung, editor, Proceedings of Crypto 2002,
volume 2442 of LNCS, pages 61-76. Springer-Verlag, Aug. 2002.

J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials
from bilinear maps. In M. Franklin, editor, Proceedings of Crypto 2004, volume 3152
of LNCS, pages 56-72. Springer-Verlag, Aug. 2004.

CAMP Vehicle Safety Communications Consortium. Vehicle safety communications
project task 3 final report, Mar. 2005. Online: http://www-nrd.nhtsa.dot.gov/
pdf/nrd-12/1665CAMP3web/.

D. Chaum and T. Pedersen. Wallet databases with observers. In E. Brickell, editor,
Proceedings of Crypto 1992, volume 740 of LNCS, pages 89-105. Springer-Verlag, Aug.
1992.

D. Chaum and E. van Heyst. Group signatures. In D. W. Davies, editor, Proceedings
of Eurocrypt 1991, volume 547 of LNCS, pages 257—65. Springer-Verlag, Apr. 1991.

B. Chevallier-Mames. An efficient CDH-based signature scheme with a tight security
reduction. In V. Shoup, editor, Proceedings of Crypto 2005, volume 3621 of LNCS,
pages 511-26. Springer-Verlag, Aug. 2005.



BIBLIOGRAPHY 123

[38]

[41]

[43]

[44]

[48]

D. Coppersmith. Fast evaluation of logarithms in fields of characteristic two. IEFE
Tran. Info. Th., 30(4):587-94, 1984.

J.-S. Coron. On the exact security of full domain hash. In M. Bellare, editor, Pro-
ceedings of Crypto 2000, volume 1880 of LNCS, pages 229-35. Springer-Verlag, Aug.
2000.

J.-S. Coron. Optimal security proofs for PSS and other signature schemes. In L. Knud-
sen, editor, Proceedings of Furocrypt 2002, volume 2332 of LNCS, pages 272-87.
Springer-Verlag, May 2002.

J.-S. Coron. Security proof for partial-domain hash signature schemes. In M. Yung,
editor, Proceedings of Crypto 2002, volume 2442 of LNCS, pages 613-26. Springer-
Verlag, Aug. 2002.

J.-S. Coron and D. Naccache. Boneh et al.’s k-element aggregate extraction assump-
tion is equivalent to the Diffie-Hellman assumption. In C. S. Laih, editor, Proceedings

of Asiacrypt 2003, volume 2894 of LNCS, pages 392—7. Springer-Verlag, Dec. 2003.

N. Courtois, M. Daum, and P. Felke. On the security of HFE, HFEv- and Quartz. In
Y. Desmedt, editor, Proceedings of PKC 2003, volume 2567 of LNCS, pages 337-50.
Springer-Verlag, Jan. 2003.

R. Cramer and V. Shoup. A practical public key encryption system provably secure
against adaptive chosen ciphertext attack. In H. Krawczyk, editor, Proceedings of
Crypto 1998, volume 1642 of LNCS, pages 13-25. Springer-Verlag, Aug. 1998.

R. Cramer and V. Shoup. Signature schemes based on the strong RSA assumption.
ACM Trans. Info. & System Security, 3(3):161-85, 2000.

C. Diem. The GHS attack in odd characteristic. J. Ramanujan Math. Soc., 18(1):1-32,
2003.

X. Ding, G. Tsudik, and S. Xu. Leak-free group signatures with immediate revocation.
In T. Lai and K. Okada, editors, Proceedings of ICDCS 2004, Mar. 2004.

Y. Dodis. Efficient construction of (distributed) verifiable random functions. In
Y. Desmedt, editor, Proceedings of PKC 2003, volume 2567 of LNCS, pages 1-17.
Springer-Verlag, Jan. 2003.



BIBLIOGRAPHY 124

[49]

[52]

[53]

[57]

Y. Dodis and L. Reyzin. On the power of claw-free permutations. In S. Cimato,
C. Galdi, and G. Persiano, editors, Proceedings of SCN 2002, volume 2576 of LNCS,
pages 55—73. Springer-Verlag, Sept. 2002.

A. Fiat. Batch RSA. In G. Brassard, editor, Proceedings of Crypto 1989, volume 435
of LNCS, pages 175-85. Springer-Verlag, Aug. 1989.

A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In A. M. Odlyzko, editor, Proceedings of Crypto 1986, volume
263 of LNCS, pages 186-194. Springer-Verlag, Aug. 1986.

G. Frey, M. Muller, and H. Riick. The Tate pairing and the discrete logarithm applied
to elliptic curve cryptosystems. IEEE Trans. Info. Th., 45(5):1717-9, 1999.

S. Galbraith. Pairings. In I. F. Blake, G. Seroussi, and N. Smart, editors, Advances
in Elliptic Curve Cryptography, volume 317 of London Mathematical Society Lecture
Notes, chapter IX, pages 183-213. Cambridge University Press, 2005.

S. Galbraith, K. Harrison, and D. Soldera. Implementing the Tate pairing. In C. Fieker
and D. Kohel, editors, Proceedings of ANTS V, volume 2369 of LNCS, pages 324-37.
Springer-Verlag, July 2002.

S. Galbraith and V. Rotger. Easy decision-Diffie-Hellman groups. LMS J. Comput.
Math, 7:201-18, aug 2004.

S. Galbraith and N. Smart. A cryptographic application of Weil descent. In M. Walker,
editor, Proceedings of Cryptography and Coding 1999, volume 1746 of LNCS, pages
191-200. Springer-Verlag, Dec. 1999.

J. Garay, M. Jakobsson, and P. MacKenzie. Abuse-free optimistic contract signing. In
M. Wiener, editor, Proceedings of Crypto 1999, volume 1666 of LNCS, pages 449—66.
Springer-Verlag, Aug. 1999.

T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: A virtual
machine-based platform for trusted computing. In L. Peterson, editor, Proceedings of
SOSP 2003, pages 193-206. ACM Press, Oct. 2003.

P. Gaudry, F. Hess, and N. Smart. Constructive and destructive facets of Weil descent

on elliptic curves. J. Cryptology, 15(1):19-46, 2002.



BIBLIOGRAPHY 125

[60]

[61]

[62]

[63]

[64]

[65]

P. Gemmel. An introduction to threshold cryptography. RSA CryptoBytes, 2(3):7-12,
Winter 1997.

R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed key generation
for discrete-log based cryptosystems. In J. Stern, editor, Proceedings of Eurocrypt
1999, volume 1592 of LNCS, pages 295-310. Springer-Verlag, May 1999.

R. Gennaro, T. Rabin, S. Jarecki, and H. Krawczyk. Robust and efficient sharing of
RSA functions. J. Cryptology, 13(2):273-300, 2000.

C. Gentry. How to compress Rabin ciphertexts and signatures (and more). In
M. Franklin, editor, Proceedings of Crypto 2004, volume 3152 of LNCS, pages 179-200.
Springer-Verlag, Aug. 2004.

M. Girault. Self-certified public keys. In D. W. Davies, editor, Proceedings of Furo-
crypt 1991, volume 547 of LNCS, pages 490-7. Springer-Verlag, Apr. 1991.

E.-J. Goh and S. Jarecki. A signature scheme as secure as the Diffie-Hellman problem.
In E. Biham, editor, Proceedings of Eurocrypt 2003, volume 2656 of LNCS, pages 401—
15. Springer-Verlag, May 2003.

S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Computing, 17(2):281-308, 1988.

R. Hayashi, T. Okamoto, and K. Tanaka. An RSA family of trap-door permutations
with a common domain and its applications. In F. Bao, R. H. Deng, and J. Zhou,
editors, Proceedings of PKC 2004, volume 2947 of LNCS, pages 291-304. Springer-
Verlag, Mar. 2004.

F. Hess. On the security of the verifiably encrypted signature scheme of Boneh,
Gentry, Lynn and Shacham. Info. Processing Letters, 89(3):111-4, Feb. 2004.

ISO TC86 Committee. ISO 8583: Financial transaction card originated messages —

interchange message specifications. Online: http://wuw.tc68.org/.

A. Joux and K. Nguyen. Separating decision Diffie-Hellman from computational Diffie-

Hellman in cryptographic groups. J. Cryptology, 16(4):239-47, Sept. 2003.



BIBLIOGRAPHY 126

[71]

[75]

J. Katz and N. Wang. Efficiency improvements for signature schemes with tight
security reductions. In V. Atluri and T. Jaeger, editors, Proceedings of CCS 2003,
pages 155-64. ACM Press, Oct. 2003.

S. Kent, C. Lynn, and K. Seo. Secure border gateway protocol (Secure-BGP). IEEE
J. Selected Areas in Comm., 18(4):582-92, April 2000.

A. Kiayias, Y. Tsiounis, and M. Yung. Traceable signatures. In C. Cachin and
J. Camenisch, editors, Proceedings of Eurocrypt 2004, volume 3027 of LNCS, pages
571-89. Springer-Verlag, May 2004.

A. Kiayias and M. Yung. Efficient secure group signatures with dynamic joins and
keeping anonymity against group managers. In E. Dawson and S. Vaudenay, editors,
Proceedings of Mycrypt 2005, volume 3715 of LNCS, pages 151-70. Springer-Verlag,
Sept. 2005.

A. Kiayias and M. Yung. Group signatures with efficient concurrent join. In
R. Cramer, editor, Proceedings of Eurocrypt 2005, volume 3494 of LNCS, pages 198—
214. Springer-Verlag, May 2005.

S. Lang. FElliptic Functions. Addison-Wesley, Reading, MA, 1973.

B. Laurie and N. Bohm. Signatures: an interface between law and technology, Jan.

2003. Online: http://www.apache-ssl.org/tech-legal.pdf.

A. Lysyanskaya. Unique signatures and verifiable random functions from the DH-
DDH separation. In M. Yung, editor, Proceedings of Crypto 2002, volume 2442 of
LNCS, pages 597-612. Springer-Verlag, Aug. 2002.

A. Lysyanskaya, S. Micali, L. Reyzin, and H. Shacham. Sequential aggregate signa-
tures from trapdoor permutations. In C. Cachin and J. Camenisch, editors, Proceed-
ings of FEurocrypt 2004, volume 3027 of LNCS, pages 74-90. Springer-Verlag, May
2004.

A. Lysyanskaya, R. Rivest, A. Sahai, and S. Wolf. Pseudonym systems. In H. Heys
and C. Adams, editors, Proceedings of SAC 1999, volume 1758 of LNCS, pages 184-99.
Springer-Verlag, Aug. 1999.



BIBLIOGRAPHY 127

[81]

[83]

[84]

[87]

U. Maurer. Towards the equivalence of breaking the Diffie-Hellman protocol and
computing discrete logarithms. In Y. Desmedt, editor, Proceedings of Crypto 1994,
volume 839 of LNCS, pages 271-81. Springer-Verlag, Aug. 1994.

A. Menezes, T. Okamoto, and P. Vanstone. Reducing elliptic curve logarithms to
logarithms in a finite field. IEEE Trans. Info. Th., 39(5):1639-46, 1993.

A. J. Menezes, editor. FElliptic Curve Public Key Cryptosystems. Kluwer Academic
Publishers, 1993.

A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone. Handbook of Applied Cryp-
tography. CRC Press, 1997.

S. Micali, K. Ohta, and L. Reyzin. Provable-subgroup signatures. Unpublished

manuscript, 1999.

S. Micali, K. Ohta, and L. Reyzin. Accountable-subgroup multisignatures (extended
abstract). In P. Samarati, editor, Proceedings of CCS 2001, pages 245-54. ACM Press,
Nov. 2001.

S. Micali and R. Rivest. Transitive signature schemes. In B. Preneel, editor, Pro-
ceedings of CT-RSA 2002, volume 2271 of LNCS, pages 236—43. Springer-Verlag, Feb.
2002.

V. Miller. The Weil pairing, and its efficient calculation. J. Cryptology, 17(4):235-61,
Sept. 2004.

I. Mironov. A short signature as secure as DSA. Unpublished manuscript, 2001.

S. Mitsunari, R. Sakai, and M. Kasahara. A new traitor tracing. IFICE Trans.
Fundamentals, E85-A(2):481-4, Feb. 2002.

A. Miyaji, M. Nakabayashi, and S. Takano. New explicit conditions of elliptic curve
traces for FR-reduction. IEICE Trans. Fundamentals, E84-A(5):1234-43, May 2001.

D. Naccache and J. Stern. Signing on a postcard. In Y. Frankel, editor, Proceedings of
Financial Cryptography 2000, volume 1962 of LNCS, pages 121-35. Springer-Verlag,
2001.



BIBLIOGRAPHY 128

[93]

[98]

[100]

[101]

[102]

[103]

T. Nakanishi and N. Funabiki. Verifier-local revocation group signature schemes with
backward unlinkability from bilinear maps. In B. Roy, editor, Proceedings of Asiacrypt
2005, LNCS. Springer-Verlag, Dec. 2005. To appear.

K. Nyberg and R. Rueppel. Message recovery for signature schemes based on the
discrete logarithm problem. Designs, Codes and Cryptography, 7(1-2):61-81, 1996.

K. Ohta and T. Okamoto. Multisignature schemes secure against active insider at-
tacks. IEICE Trans. Fundamentals, E82-A(1):21-31, 1999.

T. Okamoto. A digital multisignature scheme using bijective public-key cryptosys-
tems. ACM Trans. Computer Systems, 6(4):432-41, November 1988.

T. Okamoto and D. Pointcheval. The gap problems: A new class of problems for the
security of cryptographic primitives. In K. Kim, editor, Proceedings of PKC 2001,
volume 1992 of LNCS, pages 104—-18. Springer-Verlag, Feb. 2001.

J. Patarin, N. Courtois, and L. Goubin. QUARTZ, 128-bit long digital signatures.
In D. Naccache, editor, Proceedings of CT-RSA 2001, volume 2020 of LNCS, pages
282-97. Springer-Verlag, Apr. 2001.

K. Paterson. Cryptography from pairings. In I. F. Blake, G. Seroussi, and N. Smart,
editors, Advances in Elliptic Curve Cryptography, volume 317 of London Mathematical
Society Lecture Notes, chapter X, pages 215-51. Cambridge University Press, 2005.

T. Pedersen. A threshold cryptosystem without a trusted third party. In D. W.
Davies, editor, Proceedings of Eurocrypt 1991, volume 547 of LNCS, pages 522—6.
Springer-Verlag, Apr. 1991.

L. Pintsov and S. Vanstone. Postal revenue collection in the digital age. In Y. Frankel,
editor, Proceedings of Financial Cryptography 2000, volume 1962 of LNCS, pages 105—
20. Springer-Verlag, 2001.

D. Pointcheval and J. Stern. Security arguments for digital signatures and blind
signatures. J. Cryptology, 13(3):361-96, 2000.

G. Poupard and J. Stern. Fair encryption of RSA keys. In B. Preneel, editor, Proceed-
ings of Furocrypt 2000, volume 1807 of LNCS, pages 172—89. Springer-Verlag, May
2000.



BIBLIOGRAPHY 129

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and
public key cryptosystems. Commun. ACM, 21(2):120-6, Feb. 1978.

K. Rubin and A. Silverberg. Supersingular Abelian varieties in cryptology. In M. Yung,
editor, Proceedings of Crypto 2002, volume 2442 of LNCS, pages 336—53. Springer-
Verlag, Aug. 2002.

O. Schirokauer, D. Weber, and T. Denny. Discrete logarithms: The effectiveness of
the index calculus method. In H. Cohen, editor, Proceedings of ANTS II, volume 1122
of LNCS, pages 337—61. Springer-Verlag, May 1996.

C. Schnorr. Efficient signature generation by smart cards. J. Cryptology, 4(3):161-174,
1991.

V. Shoup. Lower bounds for discrete logarithms and related problems. In W. Fumy,
editor, Proceedings of Eurocrypt 1997, volume 1233 of LNCS, pages 256—66. Springer-
Verlag, May 1997.

V. Shoup. Practical threshold signatures. In B. Preneel, editor, Proceedings of Euro-
crypt 2000, volume 1807 of LNCS, pages 207-20. Springer Verlag, May 2000.

J. H. Silverman. The Arithmetic of Elliptic Curves, volume 106 of Graduate Texts in
Mathematics. Springer-Verlag, 1986.

N. Smart and F. Vercauteren. On computable isomorphisms in efficient pairing based
systems. Cryptology ePrint Archive, Report 2005/116, 2005. http://eprint.iacr.
org/.

D. Song. Practical forward secure group signature schemes. In P. Samarati, editor,
Proceedings of CCS 2001, pages 225-34. ACM Press, Nov. 2001.

R. Steinfeld, L. Bull, H. Wang, , and J. Pieprzyk. Universal designated-verifier sig-
natures. In C. S. Laih, editor, Proceedings of Asiacrypt 2003, volume 2894 of LNCS,
pages 523—-42. Springer-Verlag, Dec. 2003.

Trusted Computing Group. Trusted Computing Platform Alliance (TCPA) Main

Specification, 2003. Online: www.trustedcomputinggroup.org.



BIBLIOGRAPHY 130

[115]

[116]

[117]

[118]

G. Tsudik and S. Xu. Accumulating composites and improved group signing. In C. S.
Laih, editor, Proceedings of Asiacrypt 2003, volume 2894 of LNCS, pages 269-86.
Springer-Verlag, Dec. 2003.

E. R. Verheul. Self-blindable credential certificates from the Weil pairing. In C. Boyd,
editor, Proceedings of Asiacrypt 2001, volume 2248 of LNCS, pages 533-51. Springer-
Verlag, Dec. 2001.

B. Waters. Efficient identity-based encryption without random oracles. In R. Cramer,
editor, Proceedings of Eurocrypt 2005, volume 3494 of LNCS, pages 114-27. Springer-
Verlag, May 2005.

F. Zhang, R. Safavi-Naini, and W. Susilo. An efficient signature scheme from bilinear
pairings and its applications. In F. Bao, R. H. Deng, and J. Zhou, editors, Proceedings
of PKC 2004, volume 2947 of LNCS, pages 277-90. Springer-Verlag, Mar. 2004.



