
Collected Papers where Every Theorem Is Filled with Grief

Hovav Shacham

December 2005

Contents

1 Introduction 4
1.1 Previous Publication . 5

2 Mathematical Background 6
2.1 Mathematical Setting . 6

2.1.1 Groups . 6
2.1.2 The Bilinear Map . 6
2.1.3 Running Times . 7
2.1.4 Hashing . 7

2.2 Complexity Assumptions . 7
2.2.1 Computational and Decisional co-Diffie-Hellman 7
2.2.2 The Strong Diffie-Hellman Assumption . 8
2.2.3 The Decision Linear Diffie-Hellman Assumption 9
2.2.4 Implications of DDH Hardness on G1 . 9

2.3 Elliptic Curves and Bilinear Maps . 10
2.3.1 Notation and Background . 10
2.3.2 Intractability of co-CDH on (G1, G2) . 11
2.3.3 Hashing onto elliptic curves . 12
2.3.4 Suitable Curves . 12
2.3.5 The bad news . 13

3 Short Signatures 15
3.1 Introduction . 15
3.2 Signature Security Definitions . 16
3.3 Short Signatures based on CDH . 17

3.3.1 Security . 17
3.4 Short Signatures based on SDH . 20

3.4.1 Proof of Security . 21
3.4.2 A BB Variant Secure without Random Oracles 22
3.4.3 Performance . 23

3.5 Conclusions . 24

4 Signature Variants and Extensions 25
4.1 Introduction . 25
4.2 Threshold Signatures . 25

1

4.3 Multisignatures and Batch Signature Verification . 26
4.4 Aggregate Signatures . 27

4.4.1 Aggregate Signature Definitions . 28
4.4.2 Aggregate Signatures from Bilinear Maps . 29

4.5 Verifiably Encrypted Signatures . 34
4.5.1 Verifiably Encrypted Signature Definitions . 34
4.5.2 Aggregate Extraction . 35
4.5.3 Verifiably Encrypted Signatures via Aggregation 36
4.5.4 Verifiably-Encrypted Signatures from Bilinear Maps 37
4.5.5 Proofs of Security . 38
4.5.6 Observations on Verifiably Encrypted Signatures 42

4.6 Conclusions and Open Problems . 42

5 Sequential Aggregate Signatures from Trapdoor Permutations 44
5.1 Introduction . 44
5.2 Preliminaries . 45

5.2.1 Trapdoor One-Way Permutations . 45
5.2.2 Certified Trapdoor Permutations . 46
5.2.3 Claw-Free Permutations, Homomorphic Trapdoor Permutations 46
5.2.4 Full-Domain Signatures . 47

5.3 Sequential Aggregate Signatures . 47
5.4 Sequential Aggregates from Trapdoor Permutations 49

5.4.1 The Scheme . 49
5.4.2 Security . 50

5.5 Aggregating with RSA . 56
5.5.1 Concrete Proposals for Sequential Aggregates with RSA 58
5.5.2 Security . 59

6 Group Signatures 60
6.1 Introduction . 60
6.2 A Zero-Knowledge Protocol for SDH . 61
6.3 Short Group Signatures from SDH . 64
6.4 BBS Group Signature Security . 65
6.5 Conclusions . 70

7 Group Signature Variants and Extensions 71
7.1 Introduction . 71
7.2 Strong Exculpability for BBS . 72
7.3 Revocation for BBS using Accumulators . 72
7.4 Verifier-Local Revocation . 74

7.4.1 Definitions . 74
7.4.2 Short VLR Group Signatures from SDH . 77
7.4.3 Intuition . 80
7.4.4 Proof of Security . 82
7.4.5 Efficient Revocation for BS Signatures . 87
7.4.6 Backward Unlinkability . 87

2

7.4.7 Strong Exculpability for BS . 88
7.5 Conclusions and Open Problems . 88

Bibliography 89

3

Chapter 1

Introduction

In a digital signature scheme, Alice uses her private key to sign a message of her choice. This
procedure creates a signature, a short string that binds Alice to the message and the message
to her. Anyone who has Alice’s public key, the signature, and the message can verify that the
signature is valid, i.e., was produced by Alice on the message at hand. No one but Alice can
generate a signature on any message that verifies as valid under Alice’s public key.

Digital signatures thus provide authenticity and integrity. That is, a signature by Alice on
a message demonstrates that it was Alice who signed (and, therefore, intended to send) that
message; and that the message is exactly the message sent by Alice, and was not tampered with.
In a legal setting, they are sometimes said to provide nonrepudiation; however, this term is not
well defined [78].

Signatures are a standard cryptographic primitive with many applications in higher-level pro-
tocols.

My Thesis. Groups featuring a computable bilinear map are particularly well suited for signature-
related primitives.

For some signature variants the only construction known is based on bilinear maps. Where
constructions based on, e.g., RSA are known, bilinear-map–based constructions are simpler, more
efficient, and yield shorter signatures.

Evidence. In this thesis, we describe several constructions that support the claim above.
First, we consider Boneh-Lynn-Shacham (BLS) and Boneh-Boyen short signatures. BLS sig-

natures with security comparable to 1024-bit RSA are 160 bits long, the shortest of any scheme
based on standard assumptions. BB signatures can be as short as BLS or (in a variant with longer
signatures) can be proved secure without random oracle.

Next, we present several extension and variants of BLS signatures. Amongst these is the Boneh-
Gentry-Lynn-Shacham (BGLS) aggregate signature scheme. In an aggregate signature scheme, it
is possible, given n signatures on n distinct messages from n distinct users, to aggregate all these
signatures into a single short signature. This single aggregate suffices to convince a verifier that
the the users did indeed sign their respective messages.

BGLS aggregates are based on BLS signatures and are 160 bits long, regardless of how many
signatures are aggregated. No construction is known for aggregate signatures that does not employ
bilinear maps.

4

We also show that BGLS aggregates give rise to verifiably encrypted signatures, a signature
variant with applications in contract signing.

In a digression, we show how one can construct sequential aggregate signatures based only on
the existence of trapdoor permutations. Sequential aggregate signatures is variant of aggregate
signatures in which signing-and-aggregation is a single operation, in which each signer adds her
signature to the aggregate signature of all the signers before her.

Next, we present the Boneh-Boyen-Shacham (BBS) group signature scheme. Group signatures
provide anonymity for signers. Any member of the group can sign messages, but the resulting
signature keeps the identity of the signer secret. In some systems there is a third party that can
trace the signature, or undo its anonymity, using a special trapdoor. BBS group signatures with
security comparable to 1024-bit RSA are 1443 bits long, shorter than any previous scheme by an
order of magnitude. The signing operation is also an order of magnitude more efficient than in
previous schemes.

Finally, we consider variants and extensions of the BBS group signature scheme, including a
group signature with a novel revocation mechanism that we call verifier-local revocation (VLR). In
a VLR group signature, messages announcing the revocation of some users need only be processed
by the verifiers; the signers are stateless. We present the Boneh-Shacham VLR group signature
scheme, which has signatures even shorter than in BBS.

1.1 Previous Publication

The BLS short signature scheme of Section 3.3 and the notes on elliptic curve families in Section 2.3
originally appeared in “Short Signatures from the Weil Pairing,” joint work with Dan Boneh and
Ben Lynn, of which an extended abstract was presented at Asiacrypt 2001 [27] and which appeared
in the Journal of Cryptology [28].

The BGLS aggregate signature scheme of Section 4.4 and the BGLS2 verifiably encrypted signa-
ture scheme of Section 4.5 originally appeared in “Aggregate and Verifiably Encrypted Signatures
from Bilinear Maps,” joint work with Dan Boneh, Craig Gentry, and Ben Lynn, which was presented
at Eurocrypt 2003 [26].

The LMRS sequential aggregate signature scheme of Chapter 5 originally appeared in “Sequen-
tial Aggregate Signatures from Trapdoor Permutations,” joint work with Anna Lysyanskaya, Silvio
Micali, and Leonid Reyzin, which was presented at Eurocrypt 2004 [80].

The BBS group signature scheme of Chapter 6, along with its extensions in Sections 7.2 and 7.3
originally appeared in “Short Group Signatures,” joint work with Xavier Boyen and Dan Boneh,
which was presented at Crypto 2004 [24].

The BS group signature with verifier-local revocation of Section 7.4 originally appeared in
“Group Signatures with Verifier-Local Revocation,” joint work with Dan Boneh, which was pre-
sented at ACM CCS 2004 [29].

5

Chapter 2

Mathematical Background

2.1 Mathematical Setting

2.1.1 Groups

Throughout the thesis, we use the following notation:

• G1 is a multiplicative cyclic group of prime order p;

• G2 is a multiplicative group of exponent p, whose order is some power of p.

• ψ is a homomorphism from G2 onto G1.

• g2 is an order-p element of G2 and g1 is a generator of G1 such that ψ(g2) = g1.

The elements g1 and g2 are selected at random as part of system setup. Having selected g2, we
typically restrict G2 to its cyclic order-p subgroup 〈g2〉. The restriction of ψ to this subgroup gives
an isomorphism onto G1.1

One could set G1 = G2, but we allow for the more general case where G1 6= G2 so that we
can take advantage of certain families of non-supersingular elliptic curves as described in Sections
2.3.5 and 2.3.5.

Some schemes described in this thesis make explicit use of the map ψ. For others (e.g., the BLS
short signature scheme of Section 3.3), the map is used only in the proof of security. Even so, the
map isn’t merely a proof artifact. We give in Section 3.3.1 an example of a bilinear group pair on
which the BLS signature scheme is insecure precisely because ψ does not exist.

2.1.2 The Bilinear Map

We also employ bilinear maps. For these, we use the following notation:

• GT is a multiplicative cyclic group of order p.

• e is a map e : G1 ×G2 → GT with the following properties:
1When G2 is not restricted in this way, it is possible to use the pairing to test whether two points g2, h ∈ G2

are such that h ∈ 〈g2〉. Protocols in which messages include elements of G2 can thus leak information. None of the
protocols in this thesis transmits elements of G2.

6

– Bilinear: for all u ∈ G1, v ∈ G2 and a, b ∈ Z, e(ua, vb) = e(u, v)ab.

– Non-degenerate: e(ψ(g2), g2) 6= 1 for all but at most a (2/p)-fraction of g2 ∈ G2.

When provided a generator g2 by an untrusted party, one can use the pairing to verify that
e(ψ(g2), g2) 6= 1 holds.

2.1.3 Running Times

Throughout this thesis, we use a concrete analysis in which time is measured according to some
fixed computational model — say, state transitions in a probabilistic (oracle) Turing machine — and
then normalized so that the following operations take unit time:

• computing the group operation on G1 and on G2;

• evaluating the homomorphism ψ;

• selecting an element of G1 or G2 uniformly at random; and

• evaluating the bilinear map e.

2.1.4 Hashing

Some schemes in this thesis make use of a hash function H : {0, 1}∗ → Zp. Others require that
H map onto G1 or (in the case of BS group signatures, Section 7.4.2) onto G2. In Section 2.3.3,
we discuss how one might instantiate a hash function onto these groups.

2.2 Complexity Assumptions

2.2.1 Computational and Decisional co-Diffie-Hellman

With the setup above we obtain natural generalizations of the CDH and DDH problems:

Computational co-Diffie-Hellman (co-CDH) on (G1, G2): Given g2, g
a
2 ∈ G2 and h ∈ G1 as

input, compute ha ∈ G1.

Decision co-Diffie-Hellman (co-DDH) on (G1, G2): Given g2, g
a
2 ∈ G2 and h, hb ∈ G1 as in-

put, output yes if a = b and no otherwise.

We call a tuple of the form (g2, g
a
2 , h, h

a) a co-Diffie-Hellman tuple. When G1 = G2 these problems
reduce to standard CDH and DDH.

We define the success probability of an algorithm A in solving the Computational co-Diffie-
Hellman problem on (G1, G2) as

Advco-cdh
A

def= Pr
[
A(g2, g

a
2 , h) = ha : g2

R← G2, a
R← Zp, h

R← G1

]
.

The probability is over the uniform random choice of g2 from G2, a from Zp, h from G1, and over
the coin tosses of A. We say that an algorithm A (t, ε)-breaks Computational co-Diffie-Hellman on
(G1, G2) if A runs in time at most t, and Advco-cdh

A is at least ε.
We are interested in the case where a computable bilinear map exists, but Computational

co-Diffie-Hellman is hard, motivating the following definition:

7

Definition 2.2.1. We say that two groups (G1, G2) as in Section 2.1 above are a (t, ε)-bilinear
group pair if no algorithm (t, ε)-breaks Computational co-Diffie-Hellman on (G1, G2). If G1 = G2,
we say that G1 is a bilinear group.

Joux and Nguyen [70] showed that an efficiently-computable bilinear map e provides an algo-
rithm for solving the Decision co-Diffie-Hellman problem as follows: For a tuple (g2, g

a
2 , h, h

b) where
h ∈ G1 we have

a = b mod p ⇐⇒ e(h, ga2) = e(hb, g2) .

This test succeeds except when e(ψ(g2), g2) = 1 and therefore e(h, g2) = 1; but this only happens
with negligible probability. Consequently, Decision co-Diffie-Hellman can be solved in 2 time units
on a bilinear group pair (G1, G2).

When we wish to highlight that a scheme requires only that it be easy to solve Decision co-
Diffie-Hellman on (G1, G2), we refer to (G1, G2) as a Gap co-Diffie-Hellman group pair. Specifically,
two groups (G1, G2) as in Section 2.1 above (omitting the bilinear map e) are a (t, ε)-Gap co-
Diffie-Hellman group pair if there is a procedure for solving Decision co-Diffie-Hellman on (G1, G2)
in 2 time units, but no algorithm (t, ε)-break Computational co-Diffie-Hellman on (G1, G2). If
G1 = G2, we say that G1 is a Gap Diffie-Hellman group.

Currently, the only examples of such Gap co-Diffie-Hellman groups arise from bilinear maps. It
is possible that other constructions for useful Gap co-Diffie-Hellman groups exist.

2.2.2 The Strong Diffie-Hellman Assumption

We present the q-Strong Diffie-Hellman (SDH) problem. This problem, introduced by Boneh and
Boyen [23], has similar properties to the Strong-RSA problem [10], as we will see.

q-Strong Diffie-Hellman Problem: Given a (q + 2)-tuple (g1, g2, g
γ
2 , g

(γ2)
2 , . . . , g

(γq)
2) as input,

with g1 = ψ(g2), output a pair (g1/(γ+x)
1 , x), where x ∈ Zp.

We define the success probability of an algorithm A in solving the q-Strong Diffie-Hellman
problem on (G1, G2) as

Advsdh
A (q) def= Pr

[
A(g1, g2, g

γ
2 , . . . , g

(γq)
2) = (g

1
γ+x

1 , x) :

g2
R← G2, γ

R← Z∗p, g1 ← ψ(g2)

]

The probability is over the uniform random choice of g2 from G2 and γ from Zp, and over the coin
tosses of A. An algorithm A (t, q, ε)-breaks Strong Diffie-Hellman on (G1, G2) if A runs in time at
most t, and Advsdh

A (q) is at least ε.

Definition 2.2.2. We say that the (q, t, ε)-SDH assumption holds in (G1, G2) if no t-time algorithm
(t, q, ε)-breaks Strong Diffie-Hellman on (G1, G2).

Occasionally we drop the t and ε and refer to the q-SDH assumption rather than the (q, t, ε)-SDH
assumption.

Mitsunari et al. [91] use a related assumption (where x is specified in advance rather than chosen
by the adversary) in a tracing-traitors system.

To gain confidence in the q-SDH assumption, Boneh and Boyen prove [23] that it holds in
generic groups in the sense of Shoup [109].

8

2.2.3 The Decision Linear Diffie-Hellman Assumption

With the setup as above, along with arbitrary generators u, v, and h of G1, consider the following
problem:

Decision Linear Problem in G1: Given u, v, h, ua, vb, hc ∈ G1 as input, output yes if a+ b = c
and no otherwise.

One can easily show that an algorithm for solving Decision Linear in G1 gives an algorithm for
solving DDH in G1. The converse is believed to be false. That is, it is believed that Decision Linear
is a hard problem even in bilinear groups where DDH is easy (e.g., when G1 = G2). More precisely,
we define the advantage of an algorithm A in deciding the Decision Linear problem in G1 as

Advlinear
A

def=

∣∣∣∣∣∣ Pr
[
A(u, v, h, ua, vb, ha+b) = yes : u, v, h R← G1, a, b

R← Zp
]

− Pr
[
A(u, v, h, ua, vb, η) = yes : u, v, h, η R← G1, a, b

R← Zp
] ∣∣∣∣∣∣ .

The probability is over the uniform random choice of the parameters to A, and over the coin tosses
of A. We say that an algorithm A (t, ε)-decides Decision Linear in G1 if A runs in time at most t,
and Advlinear

A is at least ε.

Definition 2.2.3. We say that the (t, ε)-Decision Linear Assumption holds in G1 if no t-time
algorithm has advantage at least ε in solving the Decision Linear problem in G1.

Boneh, Boyen, and Shacham show [24] that the Decision Linear Assumption holds in generic
bilinear groups [109].

Linear Encryption

The Decision Linear problem gives rise to the Linear encryption scheme, a natural extension of
ElGamal encryption. Unlike ElGamal encryption, Linear encryption can be secure even in groups
where a DDH-deciding algorithm exists. In this scheme, a user’s public key is a triple of generators
u, v, h ∈ G1; her private key is the exponents x, y ∈ Zp such that ux = vy = h. To encrypt a
message M ∈ G1, choose random values a, b ∈ Zp, and output the triple (ua, vb,m · ha+b). To
recover the message from an encryption (T1, T2, T3), the user computes T3/(T x1 · T

y
2). By a natural

extension of the proof of security of ElGamal, Linear encryption is semantically secure against a
chosen-plaintext attack, assuming Decision Linear holds.

2.2.4 Implications of DDH Hardness on G1

When G1 and G2 are distinct groups, the Boneh-Boyen-Shacham proof [24] shows that, in the
generic model, the standard Decision Diffie-Hellman (DDH) problem is hard in the group G1 (even
though DDH in G2 is easy). For DDH to be hard in a specific group G1, the map ψ : G2 →
G1 must be computationally one-way. This requirement may hold when the bilinear groups are
instantiated using the Weil or Tate pairing over MNT and Barreto-Naehrig curves, which we discuss
in Section 2.3.4 below. In this instantiation, G1 is defined over the ground field of the curve where
as G2 is defined over a low-degree extension. Supersingular curves do not have this property since
DDH is known to be easy on all cyclic subgroups [55].

Now suppose that for MNT curves the DDH assumption holds in G1. In this case we can
construct even shorter group signatures and group signatures that satisfy CCA2-full-anonymity.

9

Shorter Group Signatures. If DDH holds in G1 then ElGamal encryption is secure in G1 and
can be used as the encryption in the BBS group signature of Section 6.3: T1 = uα, T2 = A · vα.
(The preimages ψ−1(u), ψ−1(v) ∈ G2 of u, v ∈ G1 must not be revealed.) The group signature then
comprises only two elements of G1 and four of Zp. With parameters chosen as in Section 6.3, we
obtain a 1022-bit group signature whose security is comparable to that of standard 1024-bit RSA
signatures. This is about 30% shorter than the signatures in Section 6.3.

Full-CCA-Anonymity. Likewise, if DDH holds inG1 then the Cramer-Shoup encryption scheme [44]
is secure in G1, and can be used in the BBS group signature scheme. Since Cramer-Shoup encryp-
tion is semantically secure against an adaptive CCA2 attack, the resulting group signature scheme
is CCA2-fully-anonymous and thus secure in the full BMW model. Cramer-Shoup encryption en-
tails a four-tuple (T1, T2, T3, T4) of elements of G1. The proof of security entails four elements of Zp.
Instantiated with the same parameters as above, the resulting group signature is 1364 bits long.

We emphasize that currently nothing is known about the complexity of the DDH problem in the
ground field of an MNT curve and relying on this assumption seems risky. This question deserves
further study.

2.3 Elliptic Curves and Bilinear Maps

We quickly summarize the results from elliptic curves on which we rely. For more details, see Blake,
Seroussi, and Smart [20], Galbraith [53], Menezes [84], Lang [77], and Silverman [111].

2.3.1 Notation and Background

Let q be a prime power. We use E/Fq to denote an elliptic curve with coefficients in Fq. For l ≥ 1,
we use E(Fql) to denote the group of points on E in Fql . We use #E(Fql) to denote the number of
points in E(Fql).

Let r be a prime dividing #E(Fq) such that r - q. The embedding degree of E/Fq is the smallest
positive integer k such that r | qk − 1. Then F∗

qk
contains µr, the group of rth roots of unity.

Let E(Fqk)[r] be the group of r-torsion points in E(Fqk), i.e., {P ∈ E(Fqk) | rP = O}. Then
E(Fqk)[r] is a group of exponent r, and is isomorphic to Zr × Zr. Similarly, let rE(Fqk) be the
group {rP | P ∈ E(Fqk)}. Then E(Fqk)/rE(Fqk) is also a group of exponent r, and is isomorphic
to Zr × Zr.

For the curves of interest, E(Fqk)[r]∧rE(Fqk) = ∅, and we can represent elements of E(Fqk)/rE(Fqk)
using E(Fqk)[r].

The Weil and Tate pairings. The Weil pairing is a map e : E(Fqk)[r] × E(Fqk)[r] → µr with
the following properties:

(i) Identity: for all R ∈ E(Fqk)[r], e(R,R) = 1.

(ii) Bilinear: for all R1, R2 ∈ E(Fqk)[r] and a, b ∈ Z we have e(aR1, bR2) = e(R1, R2)ab.

(iii) Non-degenerate: if for R ∈ E(Fqk)[r] we have e(R,R′) = 1 for all R′ ∈ E(Fqk)[r], then R = O.

(iv) Computable: for all R1, R2 ∈ E[p], the pairing e(R1, R2) can be computed in polynomial
time [89].

10

The Tate pairing [52] (with final powering by (qk−1)/r) is a map e : E(Fqk)[r]×E(Fqk)/rE(Fqk)→
µr. This pairing is again bilinear, computable, and non-degenerate, though the non-degeneracy
condition is more complicated.

The Groups G1, G2, and GT . We define G1 to be E(Fq)[r], the r-torsion points of E over
the base field Fq. This group has r points. (Pairing evaluation is more efficient when the first
argument has coordinates in the base field.) We define G2 to be E(Fqk)[r] for the Weil pairing,
or E(Fqk)/rE(Fqk) for the Tate pairing. (Again, these are equivalent for our purposes.) This is a
group of exponent r, with r2 points.2 Finally, GT is the group µr.

The Trace Map. We present a computable homomorphism ψ : G2 → G1, using the trace map,
tr, which sends points in E(Fqk) to E(Fq). Let σ1, . . . , σk be the Galois maps of Fqk over Fq. Also,
for R = (x, y) ∈ E(Fqk) define σi(R) = (σi(x), σi(y)). Then the trace map tr : E(Fqk) → E(Fq) is
defined by:

tr(R) = (1/k)
[
σ1(R) + · · ·+ σk(R)

]
.

In fact, for points in E(Fqk)[r] = G2, the output of tr is in E(Fq)[r] = G1. It is easy to show
that tr is a homomorphism from G2 to G1. It is computable in time polynomial in k and log q as
required.

2.3.2 Intractability of co-CDH on (G1, G2)

The remaining question is the difficulty of the co-CDH problem on (G1, G2). We review necessary
conditions for CDH intractability. The best known algorithm for solving co-CDH on (G1, G2) is
to compute discrete-log in G1. In fact, the discrete-log and CDH problems in G1 are known to be
computationally equivalent given some extra information about the group G1 [82]. Therefore, it
suffices to consider necessary conditions for making the discrete-log problem on E(Fq) intractable.

Let 〈P 〉 be a subgroup of E(Fq) of order r with embedding degree k. We briefly discuss two
standard ways for computing discrete-log in 〈P 〉.

1. MOV: Use an efficiently computable homomorphism, as in the Menezes-Okamoto-Vanstone
reduction [83], to map the discrete log problem in 〈P 〉 to a discrete log problem in some
extension of Fq, say Fqi . We then solve the discrete log problem in F∗

qi
using the Number

Field Sieve algorithm [107]. The image of 〈P 〉 under this homomorphism must be a subgroup
of F∗

qi
of order r. Thus we have r | qi − 1, which by the definition of k implies that i ≥ k.

Hence, the MOV method can, at best, reduce the discrete log problem in 〈P 〉 to a discrete
log problem in a subgroup of F∗

qk
. Therefore, to ensure that discrete log is hard in 〈P 〉 we

want curves where k is sufficiently large to make discrete log in F∗
qk

intractable.

2. Generic: Generic discrete log algorithms such as Baby-Step-Giant-Step and Pollard’s Rho
method [85] have a running time proportional to

√
p log p. Therefore, we must ensure that p

is sufficiently large.

In summary, we want curves E/Fq where both a generic discrete log algorithm in E(Fq) and
the Number Field Sieve in F∗

qk
are intractable. At the same time, since elements of G1 have

2Of the r2 points, r will coincide with G1, and r will have trace O. This motivates the (2/p) constant in
Section 2.1.2 above.

11

representation of length dlog2 qe and elements G2 have representation of length dk log2 qe, we wish
to keep q as small as possible.

2.3.3 Hashing onto elliptic curves

Many schemes based in this thesis require a hash function H : {0, 1}∗ → G1. In the elliptic curve
setting above, this requires a map onto E(Fq)[r]. Since it is difficult to build hash functions that
hash directly onto a subgroup of an elliptic curve we slightly relax the hashing requirement.

Let Fq be a field of characteristic greater than 2. Let E/Fq be an elliptic curve defined by
y2 = f(x) and let E(Fq) have order m. Let P ∈ E(Fq) be a point of prime order r, where p2

does not divide m. We wish to hash onto the subgroup G1 = 〈P 〉. Suppose we are given a
hash function H ′ : {0, 1}∗ → Fq × {0, 1}. Such hash functions H ′ can be built from standard
cryptographic hash functions. The security analysis will view H ′ as a random oracle. We use the
following deterministic algorithm called MapToGroup to hash messages in {0, 1}∗ onto G1. Fix a
small parameter I = dlog2 log2(1/δ)e, where δ is some desired bound on the failure probability.
MapToGroupH′: The algorithm defines H : {0, 1}∗ → G1 as follows:

1. Given M ∈ {0, 1}∗, set i← 0;

2. Set (x, b)← H ′(i ‖M) ∈ Fq × {0, 1}, where i is represented as an I-bit string;

3. If f(x) is a quadratic residue in Fq then do:

3a. Let y0, y1 ∈ Fq be the two square roots of f(x). We use b ∈ {0, 1} to choose between these
roots. Choose some full ordering of Fq and ensure that y1 is greater than y0 according
to this ordering (swapping y0 and y1 if necessary). Set P̃M ∈ E(Fq) to be the point
P̃M = (x, yb).

3b. Compute PM = (m/r)P̃M . Then PM is inG1. If PM 6= O, declare that MapToGroupH′(M) =
PM and stop; otherwise, continue with Step 4.

4. Otherwise, increment i, and go to Step 2; if i reaches 2I , report failure.

The failure probability can be made arbitrarily small by picking an appropriately large I. For
each i, the probability that H ′(i ‖ M) leads to a point on G1 is approximately 1/2 (where the
probability is over the choice of the random oracle H ′). Hence, the expected number of calls to
H ′ is approximately 2, and the probability that a given message M will be found unhashable is
1/2(2I) ≤ δ.

It can be shown [28] that BLS signatures remain secure when the when the hash function H is
computed with MapToGroupH′ and H ′ is a random oracle hash function H ′ : {0, 1}∗ → Fq ×{0, 1}.
Similar arguments apply to other schemes.

Hashing onto G2. A similar procedure can be used to construct a hash function with domain
in G2. In this case, it is important that by G2 we mean the full r2-element group E(Fqk)[r]. It is
an open problem to construct a hash onto the r-element subgroup 〈Q〉 when Q /∈ E(Fq)[r] = G1.

2.3.4 Suitable Curves

We briefly describe three families of elliptic curves with useful embedding degrees. The first two
families have embedding degrees k = 6; the third has embedding degree k = 12.

12

curve l Sig Size DLog Security MOV Security
dlog2 3le dlog2 re d6 log2 3le

E− 79 126 126 752
E+ 97 154 151 923
E+ 121 192 155 1151
E+ 149 237 220 1417
E+ 163 259 256 1551
E− 163 259 259 1551

Table 2.1: Supersingular elliptic curves with k = 6. Here r is the largest prime divisor of #E(F3l)
The MOV reduction maps the curve onto a field of characteristic 3 of size 36l.

Supersingular Curves

Boneh, Lynn, and Shacham note [28] that the supersingular curves E± : y2 = x3 + 2x± 1 over F3l

have embedding degree k = 6, the most of any supersingular curves (cf. [118, 76]). They also
show that curves E+ and E− have a useful automorphism that make the prime-order subgroups of
E+(F3l) and E−(F3l) into bilinear groups (as opposed to bilinear group pairs).

Some useful instantiations of these curves are presented in Table 2.1. Note that we restrict these
instantiations to those where ` is prime, to avoid Weil-descent attacks [56, 59], except for ` = 121.
It has recently been shown that certain Weil-descent attacks are not effective for this case [46].

Performance There is a substantial literature on speeding up pairing evaluation on supersin-
gular curves over fields of low characteristic [54, 12, 11]. Accordingly, pairing-based protocols
implemented using the curves E± will be much faster than using the other curves discussed in this
section.

Shorter Representation for G1. To obtain larger embedding degree, Rubin and Silverberg [106]
propose certain Abelian varieties. They show that elements of G1 using the supersingular curves
proposed here can be shortened by 20%. The result is an n-bit signature where the pairing reduces
the discrete log problem to a finite field of size approximately 27.5n.

2.3.5 The bad news

MOV reduces the discrete log problem on E+(F3l) and E−(F3l) to a discrete log problem in F∗
36l .

A discrete-log algorithm due to Coppersmith [38, 107] is specifically designed to compute discrete
log in small characteristic fields. Consequently, a discrete-log problem in F∗3n is much easier than a
discrete-log problem in F∗p where p is a prime of approximately the same size as 3n. To get security
equivalent to DSA using a 1024-bit prime, we would have to use a curve E(F3l) where 36l is much
larger than 1024 bits. This leads to much longer signatures, defeating the point of using these
curves.

13

Discriminant Signature Size DLog Security MOV Security
D dlog2 qe dlog2 re d6 log2 qe

13368643 149 149 894
254691883 150 147 900
8911723 157 157 942
62003 159 158 954

12574563 161 161 966
1807467 163 163 978
6785843 168 166 1008
28894627 177 177 1062
153855691 185 181 1110

658779 199 194 1194
1060147 203 203 1218
20902979 204 204 1224
9877443 206 206 1236

Table 2.2: Suitable MNT curves. Here E is a curve over the prime field Fq and r is the largest prime
dividing its order. The MOV reduction maps the curve onto the field Fq6 . D is the discriminant of
the complex multiplication field of E/Fq.

MNT Curves

Miyaji, Nakabayashi, and Takano [92] describe a family of ordinary (non-supersingular) elliptic
curves with k = 6.

These curves are constructed using complex multiplication [20, chapter VIII].
Table 2.2 gives some values of the discriminant D that lead to suitable curves.

Barreto-Naehrig Curves

Recently, Barreto and Naehrig [13] described a family of ordinary curves with k = 12.
Table 2.3 describes some suitable curves produced by the Barreto-Naehrig method.

Signature Size DLog Security MOV Security
dlog2 qe dlog2 re d6 log2 qe

160 160 1920
192 192 2304
224 224 2688
256 256 3072

Table 2.3: Suitable Barreto-Naehrig curves. Here E is a curve over the prime field Fq and r is the
largest prime dividing its order. The MOV reduction maps the curve onto the field Fq6 . D is the
discriminant of the complex multiplication field of E/Fq.

14

Chapter 3

Short Signatures

3.1 Introduction

Short digital signatures are needed in environments with strong bandwidth constraints. For ex-
ample, product registration systems often ask users to key in a signature provided on a CD label.
When a human is asked to type in a digital signature, the shortest possible signature is needed.
Similarly, due to space constraints, short signatures are needed when one prints a bar-coded digital
signature on a postage stamp [102, 93]. As a third example, consider legacy protocols that allocate
a fixed short field for non-repudiation [3, 69]. One would like to use the most secure signature that
fits in the allotted field length.

The two most frequently used signatures schemes, RSA and DSA, produce relatively long sig-
natures compared to the security they provide. For example, when one uses a 1024-bit modulus,
RSA signatures are 1024 bits long. Similarly, when one uses a 1024-bit modulus, standard DSA
signatures are 320 bits long. Elliptic curve variants of DSA, such as ECDSA, are also 320 bits
long [4]. A 320-bit signature is too long to be keyed in by a human.

In this Chapter, we describe two signature schemes in which signature length is approximately
160 bits and which provide a level of security similar to that of 320-bit DSA signatures. The first,
BLS, is secure against existential forgery under a chosen-message attack (in the random oracle
model), assuming the Computational Diffie-Hellman problem (CDH) is hard on certain elliptic
curves over a finite field. The second, BB, is secure assuming the Strong Diffie-Hellman problem
is hard. A BB variant can also be proven secure without random oracles, but signatures in this
variant are twice as long.

For both BLS and BB, generating a signature is a simple multiplication on the curve. Verifying
the signature is done using a bilinear pairing on the curve. Both schemes inherently use properties
of curves. Consequently they have no equivalent in F∗q , the multiplicative group of a finite field.

Constructing short signatures is an old problem. Several proposals show how to shorten DSA
while preserving the same level of security. Naccache and Stern [93] propose a variant of DSA where
the signature length is approximately 240 bits. Mironov [90] suggests a DSA variant with a similar
length and gives a concrete security analysis of the construction in the random oracle model. Other
work aims at reducing the length of signature in the RSA setting. For example, Gentry shows
how to compress Rabin signatures to two-thirds of their original length. [63]. Another technique
proposed for reducing signature length is signatures with message recovery [95, 102]. In such
systems one encodes a part of the message into the signature thus shortening the total length of

15

the message-signature pair. For long messages, one can then achieve a DSA signature overhead of
160 bits. However, for very short messages (e.g., 64 bits) the total length remains 320 bits. Using
BLS or BB, the signature length is always on the order of 160 bits, however short the message.
We also note that Patarin et al. [99, 43] construct short signatures whose security depends on the
Hidden Field Equation problem.

The BLS signature scheme resembles the undeniable signature scheme of Chaum and Peder-
sen [35]. Because of its simple mathematical structure, the scheme has several useful properties.
These are described in the next chapter. The BB signature scheme is related to the group signature
schemes presented in Chapters 6 and 7.

3.2 Signature Security Definitions

Formally, a signature scheme is a triple of algorithms SIG = (Kg,Sig,Vf), which behave as follows.

Sig.Kg. This randomized algorithm outputs a public verification key pk and a private signing
key sk.

Sig.Sig(sk,M). This algorithm takes as input a private key sk and a message M in some message
space (typically {0, 1}∗) to be signed, and returns a signature σ on M .

Sig.Vf(pk,M, σ). The verification algorithm takes as input a public key pk, and a purported sig-
nature σ on a message M . It returns either valid or invalid.

The signing algorithm Sig can also be a randomized algorithm, in which case we say that the
signature scheme is randomized. In a randomized signature scheme, the signing algorithm will
typically issue different signatures if reinvoked with different randomness. Even if the signing
algorithm is not randomized, there might still be more than one valid signature on a given message
under a given public key.1 A signature scheme where this never occurs — where for every valid
public key and message there is only a single signature that Vf accepts as valid — is said to be
unique.

We now recall the standard definition for signature scheme security. Existential unforgeability
under a chosen message attack [66] for a signature scheme SIG is defined using the following game
between a challenger and an adversary A:

Setup. The challenger runs algorithm Kg to obtain a public key pk and private key sk. The
adversary A is given pk.

Queries. Proceeding adaptively, A requests signatures with pk on at most qS messages of his
choice M1, . . . ,Mqs ∈ {0, 1}∗. The challenger responds to each query with a signature
σi = Sig(sk,Mi). In the random oracle model, the adversary can also make qH queries
to a hash oracle H.

Output. Eventually, A outputs a pair (M,σ) and wins the game if (1) M is not any of
M1, . . . ,Mqs , and (2) Vf(pk,M, σ) = valid.

1An example is the BLS variant with tight security reduction given by Katz and Wang [71], where every message
has two valid signatures, only one of which is ever output by the signing algorithm.

16

We define Advsig-ef-cma
SIG,A to be the probability that A wins in the above game, taken over the coin

tosses of Kg, of A, and of Sig if it randomized.
For non-unique signature schemes, it is possible that the adversary can obtain a signature σ

on a message M from its signing oracle and transform it into a different valid signature σ′. Under
the definition above, this is not considered a forgery. (Under a related security definition, strong
existential unforgeability, this would be a forgery [2]. The signature schemes in this thesis are all
unique, however, so we do not consider strong unforgeability further.)

Definition 3.2.1. A forger A (t, qS, qH , ε)-breaks a signature scheme SIG if A runs in time at
most t, A makes at most qS signature queries and at most qH queries to the hash function, and
Advsig-ef-cma

SIG,A is at least ε. A signature scheme is (t, qS, qH , ε)-existentially unforgeable under an
adaptive chosen-message attack if no forger (t, qS, qH , ε)-breaks it.

3.3 Short Signatures based on CDH

We present a signature scheme that works on any Gap co-Diffie-Hellman group pair (G1, G2). We
prove security of the scheme and, in the next section, show how it leads to short signatures. The
scheme resembles the undeniable signature scheme proposed by Chaum and Pedersen [35]. Okamoto
and Pointcheval [98] briefly note that gap problems can give rise to signature schemes. However,
most gap problems will not lead to short signatures.

Let (G1, G2) be (t, ε)-Gap co-Diffie-Hellman group pair where |G1| = |G2| = p. A signature σ
is an element of G1. The signature scheme comprises three algorithms, Kg, Sig, and Vf. It makes
use of a full-domain hash function H : {0, 1}∗ → G1. In Section 2.3.3 we weaken the requirement
on the hash function H. The security analysis views H as a random oracle [16, 17].

BLS.Kg. Pick random x
R← Zp and compute v ← gx2 . The public key pk is v ∈ G2. The private

key sk is x.

BLS.Sig(sk,M). Parse the user’s private key sk as x ∈ Zp. Compute h← H(M) ∈ G1 and σ ← hx.
The signature is σ ∈ G1.

BLS.Vf(pk,M, σ). Parse the user’s public key pk as v ∈ G2. Compute h ← H(M) ∈ G1 and
verify that (g2, v, h, σ) is a valid co-Diffie-Hellman tuple. If so, output valid; if not, output
invalid.

A signature is a single element of G1. To construct short signatures, therefore, we need co-GDH
group pairs where elements in G1 have a short representation. We briefly describe how to construct
such groups in Section 2.3. Using the Barreto Naehrig curves of Section 2.3.5, we can obtain 160-bit
signatures with 1024-bit security.

3.3.1 Security

We prove the security of the BLS signature scheme against existential forgery under adaptive
chosen-message attacks in the random oracle model. Security follows from the hardness of co-CDH
on (G1, G2). When G1 = G2 security is based on the standard Computational Diffie-Hellman
assumption in G1.

17

Theorem 3.3.1. Let (G1, G2) be a (t′, ε′)-co-GDH group pair of order p. Then BLS on (G1, G2)
is (t, qS, qH , ε)-secure against existential forgery under an adaptive chosen-message attack (in the
random oracle model), for all t and ε satisfying

ε ≥ e(qS + 1) · ε′ and t ≤ t′ − cG1
(qH + 2qS) .

Here cG1
is a constant that depends on G1, and e is the base of the natural logarithm.

Proof. Suppose A is a forger algorithm that (t, qS, qH , ε)-breaks the signature scheme. We show
how to construct a t′-time algorithm B that solves co-CDH on (G1, G2) with probability at least
ε′. This will contradict the fact that (G1, G2) is a (t′, ε′)-co-GDH group pair.

Let g2 be a generator of G2. Algorithm B is given g2, u ∈ G2 and h ∈ G1, where u = ga2 . Its
goal is to output ha ∈ G1. Algorithm B simulates the challenger and interacts with forger A as
follows.

Setup. Algorithm B starts by giving A the generator g2 and the public key u · gr2 ∈ G2, where r
is random in Zp.

H-queries. At any time algorithm A can query the random oracle H. To respond to these queries
algorithm B maintains a list of tuples 〈Mj , wj , bj , cj〉 as explained below. We refer to this list
as the H-list. The list is initially empty. When A queries the oracle H at a point Mi ∈ {0, 1}∗,
algorithm B responds as follows:

1. If the query Mi already appears on the H-list in a tuple 〈Mi, wi, bi, ci〉 then algorithm B
responds with H(Mi) = wi ∈ G1.

2. Otherwise, B generates a random coin ci ∈ {0, 1} so that Pr[ci = 0] = 1/(qS + 1).

3. Algorithm B picks a random bi ∈ Zp and computes wi ← h1−ci · ψ(g2)bi ∈ G1.

4. Algorithm B adds the tuple 〈Mi, wi, bi, ci〉 to the H-list and responds to A by setting
H(Mi) = wi.

Note that either way wi is uniform in G1 and is independent of A’s current view as required.

Signature queries. Let Mi be a signature query issued by A. Algorithm B responds to this query
as follows:

1. Algorithm B runs the above algorithm for responding to H-queries to obtain a wi ∈ G1

such that H(Mi) = wi. Let 〈Mi, wi, bi, ci〉 be the corresponding tuple on the H-list. If
ci = 0 then B reports failure and terminates.

2. Otherwise, we know ci = 1 and hence wi = ψ(g2)bi ∈ G1. Define σi = ψ(u)bi ·ψ(g2)rbi ∈
G1. Observe that σi = wa+r

i and therefore σi is a valid signature on Mi under the public
key u · gr2 = ga+r

2 . Algorithm B gives σi to algorithm A.

Output. Eventually algorithm A produces a message-signature pair (Mf , σf) such that no signa-
ture query was issued for Mf . If there is no tuple on the H-list containing Mf then B issues a
query itself for H(Mf) to ensure that such a tuple exists. We assume σf is a valid signature on
Mf under the given public key; if it is not, B reports failure and terminates. Next, algorithm B
finds the tuple 〈Mf , w, b, c〉 on the H-list. If c = 1 then B reports failure and terminates.
Otherwise, c = 0 and therefore H(Mf) = w = h ·ψ(g2)b. Hence, σ = ha+r ·ψ(g2)b(a+r). Then
B outputs the required ha as ha ← σ/(hr · ψ(u)b · ψ(g2)rb).

18

This completes the description of algorithm B. It remains to show that B solves the given instance
of the co-CDH problem on (G1, G2) with probability at least ε′. To do so, we analyze the three
events needed for B to succeed:

E1: B does not abort as a result of any of A’s signature queries.

E2: A generates a valid message-signature forgery (Mf , σf).

E3: Event E2 occurs and c = 0 for the tuple containing Mf on the H-list.

B succeeds if all of these events happen. The probability Pr[E1 ∧ E3] is:

Pr[E1 ∧ E3] = Pr[E1] · Pr[E2 | E1] · Pr[E3 | E1 ∧ E2] . (3.1)

The following claims give a lower bound for each of these terms.

Claim 1. The probability that algorithm B does not abort as a result of A’s signature queries is at
least 1/e. Hence, Pr[E1] ≥ 1/e.

Proof. Without loss of generality we assume that A does not ask for the signature of the same
message twice. We prove by induction that after A makes i signature queries the probability
that B does not abort is at least (1 − 1/(qS + 1))i. The claim is trivially true for i = 0. Let Mi

be A’s i’th signature query and let 〈Mi, wi, bi, ci〉 be the corresponding tuple on the H-list. Then
prior to issuing the query, the bit ci is independent of A’s view — the only value that could be given
to A that depends on ci is H(Mi), but the distribution on H(Mi) is the same whether ci = 0 or
ci = 1. Therefore, the probability that this query causes B to abort is at most 1/(qS + 1). Using
the inductive hypothesis and the independence of ci, the probability that B does not abort after
this query is at least (1− 1/(qS + 1))i. This proves the inductive claim. Since A makes at most qS
signature queries the probability that B does not abort as a result of all the signature queries is at
least (1− 1/(qS + 1))qS ≥ 1/e.

Claim 2. If algorithm B does not abort as a result of A’s signature queries then algorithm A’s
view is identical to its view in the real attack. Hence, Pr[E2 | E1] ≥ ε.

Proof. The public key given to A is from the same distribution as a public key produced by
algorithm Kg. Responses to H-queries are as in the real attack since each response is uniformly
and independently distributed in G1. All responses to signature queries are valid. Therefore, A
will produce a valid message-signature pair with probability at least ε. Hence, Pr[E2 | E1] ≥ ε.

Claim 3. The probability that algorithm B does not abort after A outputs a valid forgery is at least
1/(qS + 1). Hence, Pr[E3 | E1 ∧ E2] = 1/(qS + 1).

Proof. Given that events E1 and E2 happened, algorithm B will abort only if A generates a forgery
(Mf , σf) for which the tuple 〈Mf , w, b, c〉 on the H-list has c = 1. At the time A generates its
output it knows the value of ci for those Mi for which it issued a signature query. All the remaining
ci’s are independent of A’s view. Indeed, if A did not issue a signature query for Mi then the
only value given to A that depends on ci is H(Mi), but the distribution on H(Mi) is the same
whether ci = 0 or ci = 1. Since A could not have issued a signature query for Mf we know that c
is independent of A’s current view and therefore Pr[c = 0 | E1 ∧ E2] = 1/(qS + 1) as required.

19

Using the bounds from the claims above in equation (3.1) shows that B produces the correct
answer with probability at least ε/

(
e(qS + 1)

)
≥ ε′ as required. Algorithm B’s running time is

the same as A’s running time plus the time it takes to respond to (qH + qS) hash queries and qS
signature queries. Each query requires an exponentiation in G1 which we assume takes time cG1

.
Hence, the total running time is at most t + cG1

(qH + 2qS) ≤ t′ as required. This completes the
proof of Theorem 3.3.1.

The analysis used in the proof of Theorem 3.3.1 resembles Coron’s analysis of the Full Domain
Hash (FDH) signature scheme [39]. We note that the security analysis can be made tight using
Probabilistic Full Domain Hash (PFDH) [40], at the cost of increasing signature length. The
security reduction in Theorem 3.3.1 can also be made tight without increasing signature length via
the technique of Katz and Wang [71].

The BLS signature scheme requires an algorithm for deciding DDH. In groups where a DDH-
deciding algorithm is not available, Goh and Jarecki [65] show that it is still possible to construct
a signature scheme based on CDH, at the cost of substantially greater signature length. (Pre-
vious signature schemes based on CDH had only loose security reductions, through the forking
lemma [103].) The scheme analyzed by Goh and Jarecki has since been improved by Katz and
Wang [71] and by Chevallier-Mames [37], but signatures in these variants are still longer than BLS
signatures.

The Necessity of the Map ψ : G2 → G1. Recall that the proof of security relied on the
existence of an efficiently computable isomorphism ψ : G2 → G1. To show the necessity of ψ we
give an example of a bilinear map e : G1 ×G2 → GT for which the co-CDH problem is believed to
be hard on (G1, G2) and yet the resulting signature scheme is insecure.

Let q be a prime and let G2 be a subgroup of Z∗q of prime order p with generator g. Let G1 be
the group G1 = Zp with addition. Define the map e : G1 ×G2 → G2 as e(x, y) = yx. The map is
clearly bilinear since e(ax, yb) = e(x, y)ab. The co-CDH problem on (G1, G2) is as follows: Given
g, ga ∈ G2 and x ∈ G1 compute ax ∈ G1. The problem is believed to be hard since an algorithm
for computing co-CDH on (G1, G2) gives an algorithm for computing discrete log in G2. Hence,
(G1, G2) satisfies all the conditions of Theorem 3.3.1 except that there is no known computable
isomorphism ψ : G2 → G1. It is is easy to see that the resulting signature scheme from this bilinear
map is insecure. Given one message-signature pair, it is easy to recover the private key.

We comment that one can avoid using ψ at the cost of making a stronger complexity assump-
tion [112]. Without ψ the necessary assumption for proving security is that no polynomial time
algorithm can compute ha ∈ G1 given g2, g

a
2 ∈ G2 and g1, g

a
1 , h ∈ G1. Since ψ naturally exists in all

the group pairs (G1, G2) we are considering, there is no reason to rely on this stronger complexity
assumption.

3.4 Short Signatures based on SDH

Boneh and Boyen give a simple signature scheme based on the Strong Diffie-Hellman assump-
tion [23]. In their paper, they present several variants. We will describe two of them: one that
gives a signature as short as BLS, secure in the random oracle model; and another that gives sig-
natures secure without random oracles. The first of these was independently discovered by Zhang
et al. [120]. It proceeds as follows.

20

BB.Kg. Select γ R← Z∗p, and set w ← gγ2 . key pk is w ∈ G2. The private key sk is γ.

BB.Sig(sk,M). Parse the user’s private key sk as γ ∈ Zp. Compute x ← H(M) ∈ Zp and
σ ← g

1/(γ+x)
1 . (If it happens that γ + x equals 0, the message cannot be signed.) The

signature is σ ∈ G1.

BB.Vf(pk,M, σ). Parse the user’s public key pk as w ∈ G2. Compute x← H(M) ∈ Zp and verify
that e(σ, wgx2) = e(g1, g2) holds. If so, output valid; if not, output invalid.

It is easy to see that the scheme is valid: for a correctly formed signature, we have e(σ, wgx2) =
e(g1/(γ+x)

1 , gγ2 · gx2) = e(g1, g2), as required.

3.4.1 Proof of Security

We begin by describing a technique, used in Lemma 3.2 [23], of which we will make use again
in proving the security of the BBS group signature scheme (Section 6.4) and the BS VLR group
signature scheme (Section 7.4.4). A similar construction occurs also in the traitor-tracing scheme
of Mitsunari, Sakai, and Kasahara [91].

Using this technique, we prove the security of the BB scheme in the random oracle model.

The Fundamental SDH Technique. We are given a q-SDH instance (g′1, g
′
2, (g

′
2)γ , (g′2)γ

2
,

. . . , (g′2)γ
q
), where g′1 = psi(g′2). We compute generators g1 ∈ G1, g2 ∈ G2, w = gγ2 , and q − 1

SDH pairs (Ai, xi) such that e(Ai, wgxi2) = e(g1, g2) for each i.
We do this as follows. Consider q − 1 values x1, . . . , xq−1 (chosen arbitrarily). Define formal

products f(X) and g(X) as

f(X) =
q−1∏
i=1

(X + xi) and g(X) = X ·
q−1∏
i=1

(X + xi)

and, for each i, 1 ≤ i ≤ q − 1, define the products fi(X) as

fi(X) =
∏

1≤j≤q−1
i 6=j

(X + xj) .

Each of these is a polynomial of degree at most q; for each, we can compute the coefficients of the
X-powers in O(q) time.

Suppose g(X) expands as
∑q

i=0 aiX
i. Using the coefficients ai and the SDH problem parameters,

we can evaluate (g′2)g(γ) as
∏q
i=0

[
(g′2)γ

i]ai . The same holds true for the other formal products. Each
such evaluation takes O(q) time.

Now, we make the assignment

g2 ← (g′2)f(γ) w ← (g′2)g(γ) g1 ← ψ(g2)

Ai ← ψ
(
(g′2)fi(γ)

)
, 1 ≤ i ≤ q − 1

It is easy to see that w = gγ2 holds and, for each i that Aγ+xi
i = g1 holds; thus we have q − 1 SDH

pairs for the SDH problem instance (g1, g2, w). Note that if g′2 is a random generator of G2, so
is g2.

21

Now suppose we find another SDH pair (A, x), where x /∈ {x1, . . . , xq−1}. We transform this pair
into an SDH pair for the original problem instance. Let t(X) be the rational function f(X)/(X+x).
Using long division, we can write t(X) as t(X) = α

X+x + τ(X), where τ(X) is a (q − 2)-degree
polynomial. Because x /∈ {x1, . . . , xq−1}, α cannot be 0. By the the procedure used above, we can
evaluate gτ(γ)

2 . By the SDH equation and the setup above, we have Aγ+x = g1 = ψ
(
(g′2)f(γ)

)
and

A = ψ
(
(g′2)t(γ)

)
= ψ

(
(g′2)

α
γ+x

+τ(γ)). Now set

A′ ←

[
A

ψ
(
g
τ(γ)
2

)]1/α

=

[
ψ
(
(g′2)

α
γ+x

+τ(γ))
ψ
(
g
τ(γ)
2

)]1/α

= ψ
(
(g′2)

α
γ+x
)1/α = (g′1)1/γ+x ;

then (A′, x) is an SDH solution for the original SDH parameters, as required. As before, this step
takes O(q) time.

We are now ready to prove that the BB scheme is secure.

Theorem 3.4.1. Suppose (q′, t′, ε′)-SDH holds on (G1, G2). Then BB on (G1, G2) is (t, qS, qH , ε)-
secure against existential forgery under an adaptive chosen-message attack (in the random oracle
model), for all t and ε satisfying

ε ≥ e(qS + 1) · ε′ and t ≤ t′ −O(q2
H) ,

and for q ≥ qH + 1. Here e is the base of the natural logarithm.

Proof. We assume that A is well-behaved in the sense that it always requests the hash of a mes-
sage M before it requests a signature on M and at M∗ before it forges at M∗. It is trivial to modify
any forger algorithm A to have this property.

Given a q-SDH instance (g′1, g
′
2, (g

′
2)γ , (g′2)γ

2
, . . . , (g′2)γ

q
), we apply the fundamental SDH tech-

nique above, obtaining generators g1 ∈ G1, g2 ∈ G2, w = gγ2 , and q − 1 SDH pairs (Ai, xi) such
that xi is uniformly chosen from Zp and e(Ai, wgxi2) = e(g1, g2) for each i. We will obtain from
the adversary A another SDH pair (A, x), which will be transformed into a solution to the original
q-SDH instance, again using the fundamental technique.

The proof now proceeds much as the proof of Theorem 3.3.1 did. We run A with parameters
(g1, g2, w). To respond to the ith hash query, on message Mi, we generate a random coin ci ∈ {0, 1}
so that Pr[ci = 0] = 1/(qS + 1). If ci is 1, we set hi ← xi; otherwise, we set hi

R← Zp. In either
case, we respond with H(Mi) = hi. To signature query on Mi we respond with Ai if ci is 1,
or report failure and exit if ci is 0. Finally, A outputs a forgery (M∗, σ∗), where M∗ = Mi∗ for
some i∗. If ci∗ is 1, we report failure and exit. Otherwise, we have an SDH pair (σ∗, hi∗), and
hi∗ /∈ {x1, . . . , xq−1} with overwhelming probability.

The same independence analysis as in the Claims of Theorem 3.3.1 shows that we succeed with
probability ε/

(
e(qS + 1)

)
≥ ε′, as required. The running time overhead is essentially just that of

the fundamental technique, which is O(q2).

3.4.2 A BB Variant Secure without Random Oracles

Boneh and Boyen also show that a simple modification of the BB scheme above can be proved
secure in the standard model, i.e., without random oracles. We obtain this modified BB2 scheme
as follows. We add to the private key a value γ′ R← Z∗p and to the public key the value w′ ← gγ

′

2 .

22

To sign a message M ∈ Zp, choose a random r ∈ Zp, compute σ ← g
1/(γ+rγ′+M)
1 , and output the

pair (σ, r). (If it happens that γ + rγ′ +M equals 0, try again with a different r.) To verify, check
that e

(
σ, w · (w′)r · gM2

)
= e(g1, g2) holds.

The BB2 proof of security also uses the fundamental SDH technique. We use the free choice
of r in the signing oracle to force γ+rγ′+M to hit one of the γ+xi values which we precomputed;
this allows us to do away with the hash oracle. We must deal with two types of forger, as follows.

Type-I Forger. This adversary either makes a hash query Mi = −γ, or issues a forgery (σ∗, r∗)
at M∗ such that r∗γ′+M∗ /∈ r1γ

′ +M1, . . . , rqγ
′ +Mq. Against this adversary we pick γ′ R←

Z∗p and set w′ ← gγ
′

2 . We answer a signing query on message Mi by setting ri ← (xi−Mi)/γ′

so that xi = riγ
′ + Mi and we can use the SDH pair (Ai, xi). (We also check whether

Mi equals −γ; if so, we can compute any SDH pair we wish.) Finally, the forgery (σ∗, r∗)
on M∗ gives us an SDH pair (σ∗, r∗γ′ + M∗) which is different from each pair (Ai, xi) by
hypothesis.

Type-II Forger. This adversary never makes a hash query Mi = −γ, and issues a forgery (σ∗, r∗)
at M∗ such that r∗γ′ + M∗ = ri∗γ

′ + Mi∗ for some i∗. For this adversary, we choose γ R←
Zp ourselves, set w ← gγ2 , and use the values from the fundamental SDH technique for γ′ and
w′; that is, we have pairs (Ai, xi such that e(Ai, (w′)gxi2) = e(g1, g2). Now we answer a
signature query on Mi by choosing ri ← (γ +Mi)/xi) and σi ← A

1/ri
i . Then

e
(
σi, w · (w′)ri · gMi

2

)
= e
(
A

1/ri
i , (w′)ri · gγ+Mi

2

)
= e(Ai, w′ · gxi2) = e(g1, g2) ,

as required. Finally, the adversary returns the forgery (σ∗, r∗) on M∗, such that r∗γ′+M∗ =
xi∗ for some i∗. (We can find i∗ by testing e

(
(w′)r

∗ · gM∗2

) ?= e
(
(w′)ri · gMi

2

)
for each i.) But

this means that we have r∗γ′ + M∗ = ri∗γ
′ + Mi∗ for (r∗,M∗) 6= (ri∗ ,Mi∗) since otherwise

the forgery would be trivial, and we recover γ′ as (M∗ −Mi∗)/(r∗ − ri∗), from which we can
compute any SDH pair we wish.

The omitted details of the reduction are quite straightforward. Note that BB2 is secure if q-SDH
holds where q = qS + 1, not qH + 1 as for BB.

BB2 signatures are about twice as long as BLS signatures. However, they are much shorter
than those in previous schemes with proofs in the standard model: in particular, the Cramer-Shoup
scheme [45], which is based on the Strong RSA assumption. We note that the Waters identity-
based encryption scheme [119] gives a signature secure in the standard model under CDH. This
follows from Naor’s observation (recorded by Boneh and Franklin [25]) that every IBE gives rise to
a signature scheme.

3.4.3 Performance

Though BLS.Sig and BB.Sig appear to be equally fast, BB (and BB2) signing is in fact substantially
faster. First, a hash function mapping into Zp can be computed without the iterated trials suggested
in Section 2.3.3 for hashing onto G1. Second, the inversion in Zp, required for computing 1/(γ+x), is
faster than taking roots in Zp, again required for hashing onto g1. Third, for BB the exponentiation

23

is with respect to the fixed base g1, and is amenable to speedup using lookup tables.2 For BLS,
the best we can do is to find an addition chain for the fixed exponent x. Taken together, these
differences make BB signing about 5 times as fast as BLS signing. BB verification is also somewhat
faster, since it requires computing a single pairing rather than the product of two pairings.

3.5 Conclusions

We presented two short signature schemes, BLS and BB, based on bilinear maps on elliptic curves.
In both schemes, a signature is only one element in a finite field, much shorter than all current
variants of DSA for the same security. BLS is existentially unforgeable under a chosen message
attack (in the random oracle model), assuming the Computational Diffie-Hellman problem is hard
on certain elliptic-curve groups; BB is secure assuming the Strong Diffie-Hellman problem is hard.

Both schemes are simple and elegant, and therefore amenable to extension. In Chapter 4, we
consider several variants of BLS. In Chapters 6 and 7 we build group signature schemes related to
BB.

2Specifically, precomputing
ˆ
u, u2, . . . , u2b−1

˜
;
ˆ
u2b

, u2b·2, . . . , u2b·(2b−1)
˜
;
ˆ
u22b

, u22b·2, . . . , u22b·(2b−1)
˜
; . . . allows

one to evaluate ux in d(lg p)/be multiplications, at the cost of 2b · d(lg p)/be elements of storage. This technique
was communicated to me by Xavier Boyen.

24

Chapter 4

Signature Variants and Extensions

4.1 Introduction

The BLS signature scheme presented in Chapter 3 is very flexible. In this chapter, we show how
to add a number of features to it.

We begin by surveying, in Sections 4.2 and 4.3, how BLS has been extended to construct
some of the standard signature variants in the literature, including threshold signatures, batch
signature verification, and multisignatures. For further extensions, such as blind signatures, refer
to Verheul [117], Boldyreva [22], Steinfeld et al. [114], and the survey of pairing-based cryptosystems
by Paterson [100].

We then introduce, in Section 4.4, a generalization of multisignatures called an aggregate sig-
natures: a single short object that stands for n signatures by n different signers on n different
messages. Aggregate signatures have several important applications. For example, they can be
used to reduce the size of certificate chains and reduce communication bandwidth in protocols
such as SBGP. We construct an efficient aggregate signature scheme based on bilinear maps. Key
generation, aggregation, and verification require no interaction. We prove security in a model that
gives the adversary his choice of public keys and messages to forge.

Finally, as a further application for aggregate signatures we show in Section 4.5 that certain
aggregate signature schemes give rise to simple verifiably encrypted signatures. These signatures
enable user Alice to give Bob a signature on a message M encrypted using a third party’s public
key and enable Bob to verify that the encrypted signature is valid. Unlike previous schemes, our
verifiably encrypted are short and can be validated efficiently; and verifiably encrypted signing
requires no interaction with the third party.

4.2 Threshold Signatures

Boldyreva shows [22] that BLS signatures give rise to a robust t-out-of-n threshold signature scheme
through standard secret sharing techniques [85, 62, 60]. In a threshold signature scheme, there are
n parties where each possesses a share of a private key. Each party can use its share of the private
key to produce a share of a signature on some message M . A complete signature on M can only
be constructed if at least t shares of the signature are available.

A robust t-out-of-n threshold signature scheme derives from BLS as follows. A central authority
generates a public/private key pair. Let x ∈ Zp be the private key and v = gx2 ∈ G2 be the public

25

key. The central authority picks a random polynomial ω ∈ Zp[X] of degree at most t− 1 such that
ω(0) = x. For i = 1, . . . , n, the authority gives user i the value xi = ω(i), its share of the private
key. The authority publishes the public key v and n values ui = gxi2 ∈ G2.

When a signature on a message M ∈ {0, 1}∗ is needed each party that wishes to participate in
signature generation publishes its share of the signature as σi = H(M)xi ∈ G1. Without loss of
generality, assume users 1, . . . , t participate and generate shares σ1, . . . , σt. Anyone can verify that
share σi is valid by checking that (g2, ui, H(M), σi) is a co-Diffie-Hellman tuple. When all t shares
are valid, the complete signature is recovered as

σ ←
t∏
i=1

σλii where λi =

∏t
i=1,j 6=i(0− j)∏t
i=1,j 6=i(i− j)

(mod p) .

If fewer than t users are able to generate a signature on some message M then these users can
be used to solve co-CDH on (G1, G2) [22]. This threshold scheme is robust: A participant who
contributes a bad partial signature σi will be detected immediately since (g2, ui, H(M), σi) will not
be a co-Diffie-Hellman tuple.

The same result can also be achieved without recourse to a trusted third party for generating
private key shares. The n users can generate these shares without the help of a trusted party using
the protocol due to Gennaro et al. [61], which is a modification of a protocol due to Pedersen [101].
This protocol does not rely on the difficulty of DDH for security and can thus be employed on gap
Diffie-Hellman groups.

4.3 Multisignatures and Batch Signature Verification

Suppose n users all sign the same message M ∈ {0, 1}∗. We obtain n signatures σ1, . . . , σn. We
show that these n signatures can be verified as a batch much faster than verifying them one by
one. A similar property holds for other signature schemes [14].

Let (G1, G2) be a co-GDH group pair of prime order p. Suppose user i’s private key is xi ∈ Zp
and his public key is vi = gxi2 ∈ G2. Signature σi is σi = H(M)xi ∈ G1. To verify the n signatures
as a batch we use a technique due to Bellare et al. [14]:

1. Pick random integers c1, . . . , cn from the range [0, B] for some value B. This B controls the
error probability as discussed below.

2. Compute V ←
∏n
i=1 v

ci
i ∈ G2 and U ←

∏n
i=1 σ

ci
i ∈ G1.

3. Test that (g2, V,H(M), U) is a co-Diffie-Hellman tuple. Accept all n signatures if so; reject
otherwise.

Theorem 3.3 of [14] shows that we incorrectly accept the n signatures with probability at most
1/B. Hence, verifying the n signatures as a batch is faster than verifying them one by one. Note
that if all signers are required to prove knowledge of their private keys, then taking c1 = · · · = cn = 1
is sufficient, yielding even faster batch verification [22].

In fact, if we take c1 = · · · = cn = 1, we can transmit U =
∏
i σi instead of the individual

signatures. Since U is the same size as any single signature, we get a substantial bandwidth
savings. This is a multisignature: a single short object that stands for n signatures by n signers on
the same message.

26

There is a large literature on multisignatures [97, 96]. Micali, Ohta, and Reyzin [87] were
the first to define a security model for multisignatures. Boldyreva [22] introduced the BLS-based
multisignature scheme given above and showed, using a variant of the Micali-Ohta-Reyzin defini-
tions, that it secure in gap Diffie-Hellman groups. The proof requires, as above, that all signers
prove knowledge of their private keys. This is to address an attack that we consider further in
Section 4.4.2, in the context of BGLS aggregate signatures.

A similar batch verification procedure can be used to verify quickly, and a similar multisignature
can be used to compress, n signatures on n messages issued by the same public key.

4.4 Aggregate Signatures

Many real-world applications involve signatures on many different messages generated by many
different users. For example, in a Public Key Infrastructure (PKI) of depth n, each user is given
a chain of n certificates. The chain contains n signatures by n Certificate Authorities (CAs) on
n distinct certificates. Similarly, in the Secure BGP protocol (SBGP) [72] each router receives a
list of k signatures attesting to a certain path of length k in the network. A router signs its own
segment in the path and forwards the resulting list of k + 1 signatures to the next router. As
a result, the number of signatures in routing messages is linear in the length of the path. Both
applications would benefit from a method for compressing the list of signatures on distinct messages
issued by distinct parties. Specifically, X.509 certificate chains could be shortened by compressing
the n signatures in the chain into a single signature.

An aggregate signature scheme enables us to achieve precisely this type of compression. Suppose
each of n users has a public-private key pair (pki, ski). User ui signs message Mi to obtain a
signature σi. Then there is a public aggregation algorithm that takes as input all of σ1, . . . , σn and
outputs a short compressed signature σ. Anyone can undertake the aggregation. Moreover, the
aggregation can be incremental: Signatures σ1, σ2 can be aggregated into σ12 which can then be
further aggregated with σ3 to obtain σ123. In the generation of a certificate chain, each CA can
incrementally aggregate its own signature into the chain. There is also an aggregate verification
algorithm that takes pk1, . . . ,pkn, M1, . . . ,Mn, and σ and decides whether the aggregate signature
is valid. Intuitively, the security requirement is that the aggregate signature σ is declared valid only
if the aggregator who created σ was given all of σ1, . . . , σn. Precise security definitions are given
in Sect. 4.4.1. Thus, an aggregate signature provides non-repudiation at once on many different
messages by many users.

We construct an aggregate signature scheme based on BLS short signatures. Surprisingly,
though BLS signatures can be instantiated on any gap group, general gap groups are insufficient
for constructing efficient aggregate signatures. Our construction relies on properties of bilinear
maps beyond their use — noted by Joux and Nguyen [70] — for solving DDH.

Related Work. Aggregate signatures are related to multisignatures, which we described in Sec-
tion 4.3. Multisignatures are insufficient for the applications we have in mind, such as certificate
chains and SBGP. For these applications we must be able to aggregate signatures on distinct mes-
sages.

Also relevant are threshold signatures, in particular the BLS-based threshold signature consid-
ered in Section 4.2 and the non-interactive threshold signature scheme due to Shoup [110], where
we have a set of n signers, and a threshold t, such that signature shares from any t < k ≤ n signers

27

can be combined into one signature. These differ from aggregate signatures in several important
respects: threshold signatures require an expensive (or trusted) setup procedure; each piece of a
threshold signature is not a stand-alone signature; pieces of a threshold signature can be combined
into a signature only once there are enough of them; and a threshold signature looks the same no
matter which of the signers contributed pieces to it.

Our application of aggregate signatures to compressing certificate chains is related to an open
problem posed by Micali and Rivest [88]: Given a certificate chain and some special additional
signatures, can intermediate links in the chain be cut out? Aggregate signatures allow the com-
pression of certificate chains without any additional signatures, but a verifier must still be aware
of all intermediate links in the chain. We note that batch RSA [50] also provides some signature
compression, but only for signatures produced by a single signer.

4.4.1 Aggregate Signature Definitions

Consider a set U of users. Every user u ∈ U has a signing keypair (pku, sku). We wish to aggregate
the signatures of some subset U ⊆ U. Each user u ∈ U produces a signature σu on a message Mu of
her choice. These signatures are then combined into a single aggregate σ by an aggregating party.
This aggregating party, which can be different from and untrusted by the users in U , has access to
the users’ public keys, to the messages, and to the signatures on them, but not to any private keys.
The result of this aggregation is an aggregate signature σ whose length is the same as that of any
of the individual signatures. This aggregate has the property that a verifier given σ along with the
identities of the parties involved and their respective messages is convinced that each user signed
her respective message.

Formally, an aggregate signature scheme AS is a signature scheme (as in Section 3.2) with two
additional algorithms, Agg and AVf, which provide the aggregation capability. These algorithms
behave as follows.

AS.Kg, AS.Sig, AS.Vf. As in standard signature schemes.

AS.Agg({pki,Mi, σi}ki=1). For each user in the aggregate the algorithm takes, as input: a public
key pki, a message Mi in some message space; and a signature σi on Mi. The algorithm
combines the signatures into an aggregate signature σ, and outputs σ.

AS.AVf({pki,Mi}ki=1, σ). For each user in the aggregate, the algorithm takes a public key and
a message. The algorithm also takes a purported aggregate signature σ. It returns either
valid or invalid.

The notion of aggregate signature security we consider is a generalization of existential unforge-
ability of ordinary signatures, which we recalled in Section 3.2. Specifically, the adversary attempts
to forge an aggregate signature, on messages of his choice, by some set of users; clearly, at least
one of the users in the set must not be under the adversary’s control.

We formalize the intuition above as the aggregate chosen-key security model. In this model, the
adversary A is given a single public key. His goal is the existential forgery of an aggregate signature
that includes the challenge key; aside from that challenge key the adversary may choose all public
keys in the forgery. The adversary is also given access to a signing oracle on the challenge key. His
advantage, Advagg-forge

AS,A , is defined to be his probability of success in the following game.

28

Setup. The challenger runs algorithm Kg to obtain a public key pk1 and private key sk1.
The aggregate forger A is given pk1.

Queries. Proceeding adaptively, A requests signatures with pk1 on at most qS messages of
his choice M (1)), . . . ,M (qs) ∈ {0, 1}∗. The challenger responds to each query with a
signature σ(i) = Sig(sk,M (i)). In the random oracle model, A can also make qH queries
to a hash oracle H.

Response. Finally, A outputs k−1 additional public keys pk2, . . . ,pkk. Here k is at most n,
a game parameter. These keys, along with the initial key pk1, will be included in
A’s forged aggregate. A also outputs messages M1, . . . ,Mk; and, finally, an aggregate
signature σ by the k users, each on his corresponding message.

The forger wins if the aggregate signature σ is a valid aggregate under public keys pk1, . . . ,pkk
on respective messages M1, . . . ,Mk and σ is nontrivial, i.e., A did not request a signature on
M1 under pk1. The probability is over the coin tosses of the key-generation algorithm and
of A.

Definition 4.4.1. An aggregate forger A (t, qH , qS, n, ε)-breaks an n-user aggregate signature
scheme in the aggregate chosen-key model if: A runs in time at most t; A makes at most qH queries
to the hash function and at most qS queries to the signing oracle; Advagg-forge

AS,A is at least ε; and the
forged aggregate signature is by at most n users. An aggregate signature scheme is (t, qH , qS, n, ε)-
secure against existential forgery in the aggregate chosen-key model if no forger (t, qH , qS, n, ε)-
breaks it.

4.4.2 Aggregate Signatures from Bilinear Maps

We describe the BGLS aggregate signature scheme. This scheme is based on the BLS scheme
presented in Sect. 3.3 above. Individual signatures in the aggregate signature scheme are created
and verified precisely as in BLS. Aggregate verification makes use of a bilinear map on G1 and G2.

The BGLS scheme allows the creation of signatures on arbitrary distinct messages Mi ∈ {0, 1}∗.
An individual signature σi is an element of G1. The base groups G1 and G2, their respective
generators g1 and g2, the computable isomorphism ψ from G2 to G1, and the bilinear map e :
G1 ×G2 → GT , with target group GT , are system parameters. The scheme employs a full-domain
hash function H : {0, 1}∗ → G1, viewed as a random oracle.

We describe the algorithms making up BGLS below. The first three are the same as in BLS,
and we recall them here for convenience.

BGLS.Kg. For a particular user, pick random x
R← Zp, and compute v ← gx2 . The user’s public

key pk is v ∈ G2. The user’s private key sk is x ∈ Zp.

BGLS.Sig(sk,M). Parse the user’s private key sk as x ∈ Zp. The message M to be signed is an
arbitrary string. Compute h← H(M) ∈ G1 and σ ← hx. The signature is σ ∈ G1.

BGLS.Vf(pk,M, σ). Parse the user’s public key pk as v ∈ G2. Compute h ← H(M); accept if
e(σ, g2) = e(h, v) holds.

BGLS.Agg({pki,Mi, σi}ki=1). For each user in the aggregate the algorithm takes, as input: a public
key pki, which we parse as vi ∈ G2; a message Mi ∈ {0, 1}∗; and a signature σi ∈ G1 on Mi.
The messages must all be distinct. Compute σ ←

∏k
i=1 σi. The aggregate signature is σ ∈ G1.

29

BGLS.AVf({pki,Mi}ki=1, σ). For each user in the aggregate, the algorithm takes a public key and
a message, which we parse as above; further, the algorithm takes a purported aggregate
signature σ ∈ G1. To verify the aggregate signature σ,

1. ensure that the messages Mi are all distinct, and reject otherwise; and

2. compute hi ← H(Mi) for 1 ≤ i ≤ k = |U |, and accept if e(σ, g2) =
∏k
i=1 e(hi, vi) holds.

A BGLS aggregate signature, like a BLS signature, is a single element of G1. Note that incremental
aggregation is possible.

The intuition behind BGLS aggregation is as follows. Each user ui has a private key xi ∈ Zp
and a public key vi = gxi2 . User ui’s signature, if correctly formed, is σi = hxii , where hi is the hash
of the user’s chosen message, Mi. The aggregate signature σ is thus σ =

∏
i σi =

∏
i h

xi
i . Using the

properties of the bilinear map, the left-hand side of the verification equation expands:

e(σ, g2) = e
(∏

i
hxii , g2

)
=
∏

i
e(hi, g2)xi =

∏
i
e(hi, gxi2) =

∏
i
e(hi, vi) ,

which is the right-hand side, as required.

A Potential Attack. The adversary’s ability in the chosen-key model to generate keys suggests
the following attack, previously considered in the context of multisignatures [87]. Alice publishes
her public key vA. Bob generates a private key x′B and a public key v′B = g

x′B
2 , but publishes as his

public key vB = v′B/vA, a value whose discrete log he does not know. Then H(M)x
′
B verifies as an

aggregate signature on M by both Alice and Bob. Note that in this forgery Alice and Bob both
sign the same message M .

One countermeasure is to require the adversary to prove knowledge of the discrete logarithms
(to base g2) of his published public keys. For example, Boldyreva, in her multisignature scheme [22],
requires, in effect, that the adversary disclose the corresponding private keys x2, . . . , xk. Micali et
al. [87] discuss a series of more sophisticated approaches based on zero-knowledge proofs, again with
the effect that the adversary is constrained in his key selection. These defenses apply equally well
to our aggregate signature scheme. For aggregate signatures, though, there is a simpler defense.

A Simple Defense. In the context of aggregate signatures we can defend against the attack above
by simply requiring that an aggregate signature is valid only if it is an aggregation of signatures on
distinct messages. This restriction, codified in Step 1 of BGLS.AVf, suffices to prove the security
of the bilinear aggregate signature scheme in the chosen-key model. There is no need for zero-
knowledge proofs or the disclosure of private keys.

The requirement that all messages in an aggregate be distinct is naturally satisfied for the
applications to certificate chains and SBGP we have in mind. Even in more general environments
it is easy to ensure that all messages are distinct: The signer simply prepends her public key to
every message she signs prior to the application of the hash function H. The implicit prefix need
not be transmitted with the signature, so signature and message length is unaffected.

The next theorem shows that this simple constraint is in fact sufficient for proving security in
the chosen-key model.

Theorem 4.4.2. Let (G1, G2) be a (t′, ε′)-bilinear group pair for co-Diffie-Hellman, with each group
of order p, with respective generators g1 and g2, with an isomorphism ψ computable from G2 to G1,

30

and with a bilinear map e : G1×G2 → GT . Then the BGLS aggregate signature scheme on (G1, G2)
is (t, qH , qS, n, ε)-secure against existential forgery in the aggregate chosen-key model for all t and ε
satisfying

ε ≥ e(qS + n) · ε′ and t ≤ t′ − cG1
(qH + 2qS + n+ 4)− (n+ 1) ,

where e is the base of natural logarithms, and exponentiation and inversion on G1 take time cG1
.

Proof. Suppose A is a forger algorithm that (t, qS, qH , n, ε)-breaks BGLS. We show how to construct
a t′-time algorithm C that solves co-CDH in (G1, G2) with probability at least ε′. This will contradict
the fact that (G1, G2) are a (t′, ε′)-co-GDH group pair.

Let g2 be a generator of G2. Algorithm C is given g2, u ∈ G2 and h ∈ G1, where u = ga2 . Its goal
is to output ha ∈ G1. Algorithm C simulates the challenger and interacts with forger A as follows.

Setup. Algorithm C starts by giving A the generator g2 and the public key v1 = u ·gr2 ∈ G2, where
r is random in Zp.

Hash Queries. At any time algorithm A can query the random oracle H. To respond to these
queries, C maintains a list of tuples 〈M (i), w(i), b(i), c(i)〉 as explained below. We refer to
this list as the H-list. The list is initially empty. When A queries the oracle H at a point
M ∈ {0, 1}∗, algorithm C responds as follows:

1. If the query M already appears on the H-list in some tuple 〈M,w, b, c〉 then algorithm C
responds with H(M) = w ∈ G1.

2. Otherwise, C generates a random coin c ∈ {0, 1} so that Pr[c = 0] = 1/(qS + n).

3. Algorithm C picks a random b ∈ Zp. If c = 0 holds, C computes w ← h · ψ(g2)b ∈ G1. If
c = 1 holds, C computes w ← ψ(g2)b ∈ G1.

4. Algorithm C adds the tuple 〈M,w, b, c〉 to the H-list and responds to A as H(M) = w.

Note that, either way, w is uniform in G1 and is independent of A’s current view as required.

Signature queries. Algorithm A requests a signature on some message M under the challenge
key v1. Algorithm C responds to this query as follows:

1. Algorithm C runs the above algorithm for responding to H-queries on M , obtaining the
corresponding tuple 〈M,w, b, c〉 on the H-list. If c = 0 holds then C reports failure and
terminates.

2. We know that c = 1 holds and hence w = ψ(g2)b ∈ G1. Let σ = ψ(u)b · ψ(g2)rb ∈ G1.
Observe that σ = wa+r and therefore σ is a valid signature on M under the public key
v1 = u · gr2 = ga+r

2 . Algorithm C gives σ to algorithm A.

Output. Finally, A halts. It either concedes failure, in which case so does C, or it returns a
value k (where k ≤ n), k−1 public keys v2, . . . , vk ∈ G2, k messages M1, . . .Mk, and a forged
aggregate signature σ ∈ G1. The messages Mi must all be distinct, and A must not have
requested a signature on M1. Algorithm C runs its hash algorithm at each Mi, 1 ≤ i ≤ k,
obtaining the k corresponding tuples 〈Mi, wi, bi, ci〉 on the H-list.

31

Algorithm C now proceeds only if c1 = 0 and, for 2 ≤ i ≤ k, ci = 1; otherwise C declares
failure and halts. Since c1 = 0, it follows that w1 = h · ψ(g2)b1 . For i > 1, since ci = 1, it
follows that wi = ψ(g2)bi . The aggregate signature σ must satisfy the aggregate verification
equation, e(σ, g2) =

∏k
i=1 e(wi, vi). For each i > 1, C sets σi ← ψ(vi)bi . Then, for i > 1,

e(σi, g2) = e(ψ(vi)bi , g2) = e(ψ(vi), g2)bi = e(ψ(g2), vi)bi = e(ψ(g2)bi , vi) = e(wi, vi) ,

So σi is a valid signature on Mi (whose hash is wi) by the key whose public component is vi.
Now C constructs a value σ1: σ1 ← σ · (

∏k
i=2 σi)

−1
. Then

e(σ1, g2) = e(σ, g2) ·
k∏
i=2

e(σi, g2)−1 =
k∏
i=1

e(wi, vi) ·
k∏
i=2

e(wi, vi)
−1 = e(w1, v1) .

Thus σ1 is a valid BLS signature by key v1 = u · gr2 = ga+r
2 on a message whose hash is w1 =

h·ψ(g2)b1 . Then C calculates and outputs the required ha as ha ← σ1 ·(ψ(u)b1 ·hr ·ψ(g2)rb1)−1.

This completes the description of algorithm C. It remains to show that C solves the given instance
of the co-CDH problem in (G1, G2) with probability at least ε′. To do so, we analyze the three
events needed for C to succeed:

E1: C does not abort as a result of any of A’s signature queries.

E2: A generates a valid, nontrivial aggregate signature forgery (k, v2, . . . , vk,M1, . . . ,Mk, σ).

E3: Event E2 occurs, and, in addition, c1 = 0, and, for 2 ≤ i ≤ k, ci = 1, where for each i ci is the
c-component of the tuple containing Mi on the H-list.

C succeeds if all of these events happen. The probability Pr[E1 ∧ E3] decomposes as

Pr[E1 ∧ E3] = Pr[E1] · Pr[E2 | E1] · Pr[E3 | E1 ∧ E2]. (4.1)

The following claims give a lower bound for each of these terms.

Claim 4. The probability that algorithm C does not abort as a result of A’s aggregate signature
queries is at least (1− 1/(qS + n))qS . Hence, Pr[E1] ≥ (1− 1/(qS + n))qS .

Proof. Without loss of generality we assume that A does not ask for the signature of the same
message twice. We prove by induction that after A makes l signature queries the probability that C
does not abort is at least (1−1/(qS +n))l. The claim is trivially true for l = 0. Let M (l) be A’s l’th
signature query and let 〈M (l), w(l), b(l), c(l)〉 be the corresponding tuple on the H-list. Then, prior
to A’s issuing the query, the bit c(l) is independent of A’s view — the only value that could be given
to A that depends on c(l) is H(M (l)), but the distribution of H(M (l)) is the same whether c(l) = 0
or c(l) = 1. Therefore, the probability that this query causes C to abort is at most 1/(qS + n).
Using the inductive hypothesis and the independence of c(l), the probability that C does not abort
after this query is at least (1 − 1/(qS + n))l. This proves the inductive claim. Since A makes at
most qS signature queries the probability that C does not abort as a result of all signature queries
is at least (1− 1/(qS + n))qS .

Claim 5. If algorithm C does not abort as a result of A’s queries then algorithm A’s view is
identical to its view in the real attack. Hence, Pr[E2 | E1] ≥ ε.

32

Proof. The public key given to A is from the same distribution as public keys produced by algo-
rithm Kg. Responses to hash queries are as in the real attack since each response is uniformly and
independently distributed in G1. Since C did not abort as a result of A’s signature queries, all
its responses to those queries are valid. Therefore A will produce a valid and nontrivial aggregate
signature forgery with probability at least ε. Hence Pr[E2 | E1] ≥ ε.

Claim 6. The probability that algorithm C does not abort after A outputs a valid and nontrivial
forgery is at least (1− 1/(qS + n))n−1 · 1/(qS + n).
Hence, Pr[E3 | E1 ∧ E2] ≥ (1− 1/(qS + n))n−1 · 1/(qS + n).

Proof. Events E1 and E2 have occurred, and A has generated some valid and nontrivial forgery
(k, v2, . . . , vk,M1, . . . ,Mk, σ). For each i, 1 ≤ i ≤ k, let 〈Mi, wi, bi, ci〉 be the tuple corresponding
to Mi on the H-list. Algorithm C will abort unless A generates a forgery such that c1 = 0 and, for
i > 1, ci = 1.

Since all the messages M1,M2, . . . ,Mk are distinct, the values c1, c2, . . . , ck are all independent
of each other; as before, H(Mi) = wi is independent of ci for each i.

Since its forgery is nontrivial, A cannot have asked for a signature on M1 under key v1. It
can thus have no information about the value of c1; in the forged aggregate, c1 = 0 occurs with
probability 1/(qS + n). For each i > 1, A either asked for a signature under key v1 on Mi, in which
case ci = 1 with probability 1, or it didn’t, and ci = 1 with probability 1− 1/(qS + n). Regardless,
the probability that ci = 1 for all i, 2 ≤ i ≤ k, is at least (1−1/(qS + n))k−1 ≥ (1−1/(qS + n))n−1.

Therefore Pr[E3 | E1 ∧ E2] ≥ (1− 1/(qS + n))n−1 · 1/(qS + n), as required.

To complete the proof of the theorem, we use the bounds from the claims above in equation (4.1).
Algorithm C produces the correct answer with probability at least(

1− 1
qS + n

)qS+n−1

· 1
qS + n

· ε ≥ ε/e

qS + n
≥ ε′ ,

as required.
Algorithm C’s running time is the same as A’s running time plus the time is takes to respond to

(qH +qS) hash queries and qS signature queries, and the time to transform A’s final forgery into the
co-CDH solution. Each query requires an exponentiation in G1. The output phase requires at most
n additional hash computations, two inversions, two exponentiations, and n + 1 multiplications.
We assume that exponentiation and inversion in G1 take time cG1

. Hence, the total running time
is at most t + cG1

(qH + 2qS + n + 4) + n + 1 ≤ t′ as required. This completes the proof of the
theorem.

Notes on the proof. If hash queries include the intended public key as well as the message — the
countermeasure suggested above — then the challenger can set c ← 1 for any hash query H(M,v)
where v isn’t v1, the challenge key. Then all keys except the challenge key become irrelevant, and
the reduction is precisely like that for BLS in Theorem 3.3.1; in particular, the multiplicative loss
of security no longer depends on n.

One can also allow a single key to be responsible for several messages in an aggregate signature,
and thus appear with multiplicity greater than 1 in the list v1, . . . , vk, provided that no two keys
sign the same message (more specifically, that the challenge key and some other key do not each
sign a message with the same hash).

33

4.5 Verifiably Encrypted Signatures

We now show an application of aggregate signatures to verifiably encrypted signatures. These
signatures are used in applications such as online contract signing [5, 9]. Suppose Alice wants to
show Bob that she has signed a message, but does not want Bob to possess her signature of that
message. (Alice will give her signature to Bob only when a certain event has occurred, e.g., Bob has
given Alice his signature on the same message.) Alice can achieve this by encrypting her signature
using the public key of a trusted third party, and sending this to Bob along with a proof that she
has given him a valid encryption of her signature. Bob can verify that Alice has signed the message,
but cannot deduce any information about her signature. Later in the protocol, if Alice is unable or
unwilling to reveal her signature, Bob can ask the third party to reveal Alice’s signature. We note
that the resulting contract signing protocol is not abuse-free in the sense of Garay et al. [57].

We show that a variant of the bilinear aggregate signature scheme allows the creation of very
efficient verifiably encrypted signatures. Previous constructions [5, 104] require zero knowledge
proofs to verify an encrypted signature. The verifiably encrypted signatures in Section 4.5 are
short and can be verified directly.

4.5.1 Verifiably Encrypted Signature Definitions

A verifiably encrypted signature scheme VES comprises seven algorithms. Three, Kg, Sig, and Vf,
are analogous to those in ordinary signature schemes. The others, AKg, ESig, EVf, and Adj, provide
the verifiably encrypted signature capability. The algorithms are described below. We refer to the
trusted third party as the adjudicator.

VES.Kg, VES.Sig, VES.Vf. As in standard signature schemes.

VES.AKg. Generate a public-private key pair (apk, ask) for the adjudicator.

VES.ESig(sk, apk,M) Given a private key sk, an adjudicator’s public key apk, and a message M ,
compute (probabilistically) a verifiably encrypted signature η on M .

VES.EVf(pk, apk,M, η). Given a public key pk, an adjudicator’s public key apk, a message M ,
and a verifiably encrypted signature η, verify that η is a valid verifiably encrypted signature
on M under key pk.

VES.Adj(ask, pk,M, η). Given an adjudicator’s private key ask, a certified public key pk, and a
verifiably encrypted signature η on some message M , extract and output σ, an ordinary
signature on M under key pk.

Besides the ordinary notions of signature security in the signature component, we require three
security properties of verifiably encrypted signatures: validity, unforgeability, and opacity. We
describe these properties below, in the single-user setting.

Validity requires that verifiably encrypted signatures verify, and that adjudicated verifiably en-
crypted signatures verify as ordinary signatures, i.e., that EVf(M,ESig(M)) and Vf(M,Adj(M,ESig(M)))
accept for all M and for all properly-generated keypairs and adjudicator keypairs. (The keys pro-
vided to the algorithms are here elided for brevity.)

34

Unforgeability requires that it be difficult to forge a valid verifiably encrypted signature. The
advantage in existentially forging a verifiably encrypted signature of an algorithm F is

Advves-forge
VES,F

def= Pr

EVf(pk, apk,M, η) = valid :

(pk, sk) R← Kg,

(apk, ask) R← AKg,

(M,η) R← FS,A(pk, apk)

 .

The probability is taken over the coin tosses of the key-generation algorithms, of the oracles,
and of the forger. The forger is given access to a verifiably-encrypted–signature creation oracle
S = ESig(sk, apk, ·) and an adjudication oracle A = Adj(ask,pk, ·, ·), along with a hash oracle.
The forger F is additionally constrained in that its forgery on M must be nontrivial: F must not
previously have queried either oracle at M . Note that an ordinary signing oracle is not provided;
it can be simulated by a call to S followed by a call to A.

Definition 4.5.1. A verifiably encrypted signature forger F (t, qH , qS, qA, ε)-forges a verifiably
encrypted signature if: Algorithm F runs in time at most t; F makes at most qH queries to the
hash function, at most qS queries to the verifiably-encrypted–signature creation oracle S, at most qA
queries to the adjudication oracle A; and Advves-forge

VES,F is at least ε. A verifiably encrypted signature
scheme is (t, qH , qS, qA, ε)-secure against existential forgery if no forger (t, qH , qS, qA, ε)-breaks it.

Opacity requires that it be difficult, given a verifiably encrypted signature, to extract an ordinary
signature on the same message. The advantage in extracting a verifiably encrypted signature of
an algorithm E , again given access to a verifiably-encrypted–signature creation oracle S and an
adjudication oracle A, along with a hash oracle, is

Advves-extr
VES, E

def= Pr

Vf(pk,M, σ) = valid :

(pk, sk) R← Kg,

(apk, ask) R← AKg,

(M,σ) R← ES,A(pk, apk)

 .

The probability is taken over the coin tosses of the key-generation algorithms, of the oracles, and of
the forger. The extraction must be nontrivial: the adversary must not have queried the adjudication
oracle A at M . (It is allowed, however, to query S at M .) Verifiably encrypted signature extraction
is clearly no more difficult than forgery in the underlying signature scheme.

Definition 4.5.2. An algorithm E (t, qH , qS, qA, ε)-extracts a verifiably encrypted signature if E
runs in time at most t, makes at most qH queries to the hash function, at most qS queries to the
verifiably-encrypted–signature creation oracle S, at most qA queries to the adjudication oracle, and
Advves-extr

VES, E is at least ε. A verifiably encrypted signature scheme is (t, qH , qS, qA, ε)-secure against
extraction if no algorithm (t, qH , qS, qA, ε)-extracts it.

4.5.2 Aggregate Extraction

Our verifiably encrypted signature scheme depends on the assumption that given an aggregate
signature of k signatures it is difficult to extract the individual signatures.

35

Consider the bilinear aggregate signature scheme on a group pair (G1, G2). We posit that it is
difficult to recover the individual signatures σi given their aggregate σ, the public keys, and the
message hashes. In fact, we posit that it is difficult to recover an aggregate σ′ of any proper subset
of the signatures. This we term the k-element aggregate extraction problem.

We formalize this assumption as follows. Let (G1, G2) be a bilinear group pair for co-Diffie-
Hellman, each of order p, with respective generators g1 and g2, a computable isomorphism ψ :
G2 → G1 such that g1 = ψ(g2), and a computable bilinear map e : G1 ×G2 → GT .

Consider a k-user aggregate in this setting. Each user has a private key xi ∈ Zp and a public
key vi = gxi2 ∈ G2. Each user selects a distinct message Mi ∈ {0, 1}∗ whose hash is hi ∈ G1 and
creates a signature σi = hxii ∈ G1. Finally, the signatures are aggregated, yielding σ =

∏
i σi ∈ G1.

Let I be the set {1, . . . , k}. Each public key vi can be expressed as gxi2 , each hash hi as gyi1 , each
signature σi as gxiyi1 , and the aggregate signature σ as gz1 , where z =

∑
i∈I xiyi. The advantage of

an algorithm E in extracting a sub-aggregate from a k-element aggregate is

Advaggr-extr
E (k) def= Pr

 (∅ 6= I ′ (I) ∧ (σ′ = g
(
P
i∈I′ xiyi)

1) :

x1, . . . , xk, y1, . . . , yk
R← Zp, σ ← g

(
P
i∈I xiyi)

1 ,

(σ′, I ′) R← E
(
gx1

2 , . . . , gxk2 , gy11 , . . . , g
yk
1 , σ

)
 .

The probability is taken over the choices of all xi and yi, and the coin tosses of E .

Definition 4.5.3. An algorithm E (t, k, ε)-extracts a sub-aggregate from an k-element BGLS ag-
gregate signature if E runs in time at most t and Advaggr-extr

E (k) is at least ε. An instantiation of
the BGLS aggregate signature scheme is (t, k, ε)-secure against aggregate extraction if no algorithm
(t, k, ε)-extracts it.

Coron and Naccache have shown that the k-element aggregate extraction assumption is equiv-
alent to co-CDH [42].

4.5.3 Verifiably Encrypted Signatures via Aggregation

We motivate our construction for verifiably encrypted signatures by considering aggregate signa-
tures as a launching point. An aggregate signature scheme can give rise to a verifiably encrypted
signature scheme if it is difficult to extract individual signatures from an aggregate, but easy to
forge existentially under the adjudicator’s key. Consider the following:

1. Alice wishes to create a verifiably encrypted signature, which Bob will verify; Carol is the ad-
judicator. Alice and Carol’s keys are both generated under the underlying signature scheme’s
key-generation algorithm.

2. Alice creates a signature σ on M under her public key. She forges a signature σ′ on some
random message M ′ under Carol’s public key. She then combines σ and σ′, obtaining an
aggregate η. The verifiably encrypted signature is the pair (η,M ′).

3. Bob validates Alice’s verifiably encrypted signature (η,M ′) on M by checking that η is a valid
aggregate signature by Alice on M and by Carol on M ′.

4. Carol adjudicates, given a verifiably encrypted signature (η,M ′) on M by Alice, by computing
a signature σ′ on M ′ under her key, and removing σ′ from the aggregate; what remains is
Alice’s ordinary signature σ.

36

In the BGLS aggregate signature scheme, it is difficult to extract individual signatures, under
the aggregate extraction assumption. Moreover, existential forgery is easy when the random oracle
hash function is set aside: Given a public key v ∈ G2 and r ∈ Zp, ψ(v)r is a valid signature on a
message whose hash is ψ(g2)r = gr1. Below, we describe formally and give a security proof for the
verifiably encrypted signature scheme obtained in this way.

4.5.4 Verifiably-Encrypted Signatures from Bilinear Maps

The BGLS2 verifiably encrypted signature scheme is built on the BGLS aggregate signature scheme
described in Section 4.4.2. It shares the key-generation algorithm with the underlying aggregate
scheme. Moreover, the adjudicator’s public and private information is simply an aggregate-signature
keypair. The scheme comprises the seven algorithms described below:

BGLS2.Kg, BGLS2.AKg. Kg and AKg are both the same as BLS.Kg, the key generation algorithm
of the BLS signature scheme (and thus also the same as BGLS.Kg).

BGLS2.Sig, BGLS2.Vf. Sig and Vf are the same as BLS.Sig and BLS.Vf, respectively.

BGLS2.ESig(sk, apk,M) Parse the user’s private key sk as x ∈ Zp and the adjudicator’s public
key apk as v′ ∈ G2. To sign the message M ∈ {0, 1}∗, compute h← H(M) ∈ G1 and σ ← hx.
Select r at random from Zp and set µ ← ψ(g2)r and σ′ ← ψ(v′)r. Aggregate σ and σ′ as
ω ← σσ′ ∈ G1. The verifiably encrypted signature η is the pair (ω, µ). (It can also be viewed
as an ElGamal encryption of σ under the adjudicator’s key.)

BGLS2.EVf(pk, apk,M, η). Parse the user’s public key pk as v ∈ G2, the adjudicator’s public
key apk as v′ ∈ G2, and the verifiably encrypted signature η as (ω, µ) ∈ G2

1. Set h← H(M);
accept if e(ω, g2) = e(h, v) · e(µ, v′) holds.

BGLS2.Adj(ask,pk,M, η). Parse the adjudicator’s private key ask as x′ ∈ Zp. Parse the user’s
public key pk as v ∈ G2, and check that it has been certified. Verify (using EVf) that
the verifiably encrypted signature η is valid, and parse it as (ω, µ) ∈ G2

1. Finally, output
σ = ω/µx

′ ∈ G1.

Potential Attacks. If the adjudicator does not first validate a purported verifiably encrypted
signature, a malicious user can trick him into signing arbitrary messages under his adjudication
key.

Similarly, the adjudicator should only adjudicate for certified public keys pk; we assume that
the CA, in issuing a certificate on pk, verifies that the user knows the corresponding private key.
Certification is necessary to prevent an attack devised by Hess [68] that arises if the adjudicator
is willing to open signatures encrypted under keys generated by the attacker. In this attack, the
adversary obtains from the signing oracle a verifiably encrypted signature (ω, µ) under the challenge
key v. He computes from it (ωr, µr) for some r, which is a verifiably encrypted signature on the
same message under the related key vr. He then queries the adjudication oracle and obtains the
underlying signature σr, from which he can compute σ. Note that the adversary does not know the
private key corresponding to vr, and that the adjudication oracle must be willing to answer queries
for keys other than the challenge key v.

Another countermeasure, suggested by Hess, is for users to tie the verifiably encrypted signatures
to their identity by computing the hash h as H(M,v) rather than H(M).

37

4.5.5 Proofs of Security

It is easy to see that the BGLS2 scheme is valid. A verifiably encrypted signature correctly validates
under EVf, which is simply the aggregate signature verification algorithm. Moreover, for any valid
verifiably encrypted signature, e(ω/µx

′
, g2) = e(ω, g2) · e(µ, g2)−x

′
= e(h, v) · e(µ, v′) · e(µ, v′)−1 =

e(h, v), so the output of Adj is a valid signature on message M under the key v.
The next two theorems prove the unforgeability and opacity of the scheme.

Theorem 4.5.4. Let G1 and G2 be cyclic groups of prime order p, with respective generators g1 and
g2, with a computable bilinear map e : G1 ×G2 → GT . Suppose that the BLS signature scheme is
(t′, q′H , q

′
S, ε
′)-secure against existential forgery on (G1, G2). Then BGLS2 is (t, qH , qS, qA, ε)-secure

against existential forgery on (G1, G2), for all qH ≤ q′H, qS ≤ q′S, ε ≥ ε′, and all t satisfying
t ≤ t′ − 2cG1

(qS + qA + 1) , where exponentiation and inversion on G1 take time cG1
.

Proof. Given a BGLS2 forger algorithm V, we construct a forger algorithm F for the underlying
BLS signature scheme.

We assume that V is well-behaved in the sense that it always requests the hash of a message M
before it requests a verifiably encrypted signature or an adjudication involving M , and that it
never requests adjudication on a message M on which it had not previously asked for a verifiably
encrypted signature. It is trivial to modify any forger algorithm V to have the first property. The
second property is reasonable since the input to the adjudication oracle in this case would be a
nontrivial verifiably encrypted signature forgery; V can be modified simply to output it and halt.

The BLS forger F is given a public key v, and has access to a signing oracle for v and a hash
oracle. It simulates the challenger and runs interacts with V as follows.

Setup. Algorithm F generates a key, (x′, v′) R← Kg, which serves as the adjudicator’s key. Now F
runs V, providing as input the public keys v and v′.

Hash Queries. Algorithm V requests a hash on some string M . Algorithm F makes a query on M
to its own hash oracle, receiving some value h ∈ G1, with which it responds to V’s query.

VerSig Creation Queries. Algorithm V requests a signature on some string M . (It will have
already queried the hash oracle at M .) F queries its signing oracle (for v) at M , obtaining
σ ∈ G1. It then selects r at random from Zp, and returns to V the pair (σ · ψ(v′)r, ψ(g2)r).

Adjudication Queries. Algorithm V requests adjudication for (ω, µ), a verifiably encrypted sig-
nature on a message M under key v and adjudicator key v′. Algorithm F checks that the
verifiably encrypted signature is valid, then returns ω/µx

′
.

Output. Finally, V halts, either declaring failure, in which case F , too, declares failure and halts,
or providing a valid and nontrivial verifiably encrypted signature (ω∗, µ∗) on a message M∗.
F sets σ∗ ← ω∗/(µ∗)x

′
. We thus have

e(σ∗, g2) = e(ω∗/(µ∗)x
′
, g2) = e(ω∗, g2)

/
e(µ∗, gx

′
2)

= e(H(M∗), v) · e(µ∗, v′)
/
e(µ∗, v′) = e(H(M∗), v) ,

so σ∗ is a valid BLS signature on M∗ under key v. (In the second line, we use the fact
that (ω∗, µ∗) is a valid verifiably encrypted signature, so the verification equation e(ω∗, g2) =

38

e(H(M∗), v) · e(µ∗, v′) holds.) Since the forgery is nontrivial, V must not have queried the
verifiably encrypted signature oracle at M∗, from which it follows that F did not query its
signing oracle at M∗. Thus (M∗, σ∗) is a nontrivial BLS forgery; algorithm F outputs it and
halts.

It remains only to analyze the success probability and running time of F . Algorithm F succeeds
whenever V does, that is, with probability at least ε.

Algorithm F ’s running time is the same as V’s running time plus the time it takes to respond
to qH hash queries, qS verifiably-encrypted signature queries, and qA adjudication queries, and the
time to transform V’s final verifiably-encrypted signature forgery into a BLS signature forgery.
Hash queries impose no overhead. Each verifiably-encrypted signature query requires F to perform
two exponentiations in G1. Each adjudication query requires F to perform an exponentiation and
an inversion in G1. The output phase also requires an exponentiation and an inversion. We assume
that exponentiation and inversion in G1 take time cG1

. Hence, the total running time is at most
t+ 2cG1

(qS + qA + 1).
F queries its hash oracle whenever V queries its hash oracle, and its signing oracle whenever V

queries its verifiably encrypted signature oracle.
Combining all this, we see that if V (t, qH , qS, qA, ε)-forges a bilinear verifiably encrypted sig-

nature on (G1, G2), then F (t + 2cG1
(qS + qA + 1), qH , qS, ε)-breaks the BLS signature scheme

on (G1, G2). Conversely, if the BLS signature scheme is (t′, q′H , q
′
S, ε
′)-secure, then BGLS2 is

(t′ − 2cG1
(qS + qA + 1), q′H , q

′
S, qA, ε

′)-secure against existential forgery.

Note that the proof above treats the underlying signature scheme as a black box, except for two
properties: (1) that it is possible to encrypt a signature to obtain a verifiably encrypted signature,
and (2) that the adjudication procedure transforms all valid verifiably encrypted signatures into
valid (unencrypted) signatures — not just those that ESig would output, as required by the validity
property.

Theorem 4.5.5. Let G1 and G2 be cyclic groups of prime order p, with respective generators g1 and
g2, with a computable isomorphism ψ : G2 → G1 such that ψ(g2) = g1 and a computable bilinear
map e : G1×G2 → GT . Suppose that the bilinear aggregate signature scheme on (G1, G2) is (t′, 2, ε′)-
secure against aggregate extraction. Then BGLS2 is (t, qH , qS, qA, ε)-secure against extraction on
(G1, G2) for all t and ε satisfying

ε ≥ e(qA + 1) · ε′ and t ≤ t′ − cG1
(qH + 4qS + 2qA + 3) ,

where e is the base of natural logarithms, and exponentiation and inversion on G1 take time cG1
.

Proof. Given a verifiably-encrypted–signature extractor algorithm V, we construct an aggregate
extractor algorithm A. The extractor A is given values gα2 and gβ2 in G2, gγ1 , gδ1, and gαγ+βδ

1 in G1.
It runs V, answering its oracle calls, and uses V’s verifiably encrypted signature extraction to
calculate gαγ1 , the answer to its own extraction challenge.

Let g1 be a generator ofG1, and g2 ofG2, such that ψ(g2) = g1. AlgorithmA is given gα2 , g
β
2 ∈ G2

and gγ1 , g
δ
1, g

αγ+βδ
1 ∈ G1. Its goal is to output gαγ1 ∈ G1. Algorithm A simulates the challenger and

interacts with verifiably-encrypted–signature extractor V as follows.

Setup. Algorithm A sets v ← gα2 , the signer’s public key, and v′ ← gβ2 , the adjudicator’s public
key. It gives v and v′ to V.

39

Hash Queries. At any time algorithm V can query the random oracle H. To respond to these
queries, A maintains a list of tuples 〈M (i), w(i), b(i), c(i)〉 as explained below. We refer to
this list as the H-list. The list is initially empty. When V queries the oracle H at a point
M ∈ {0, 1}∗, algorithm A responds as follows:

1. If the query M already appears on the H-list in some tuple 〈M,w, b, c〉 then algorithm A
responds with H(M) = w ∈ G1.

2. Otherwise, A generates a random coin c ∈ {0, 1} so that Pr[c = 0] = 1/(qA + 1).

3. Algorithm A picks a random b ∈ Zp. If c = 0 holds, A computes w ← gγ1 · gb1 ∈ G1. If
c = 1 holds, A computes w ← gb1 ∈ G1.

4. Algorithm A adds the tuple 〈M,w, b, c〉 to the H-list and responds to V as H(M) = w.

VerSig Creation Queries. V requests a verifiably-encrypted signature on some string M under
challenge key v and adjudicator key v′. Algorithm A responds to this query as follows:

1. Algorithm A runs the above algorithm for responding to H-queries on M , obtaining the
corresponding tuple 〈M,w, b, c〉 on the H-list.

2. A selects x at random from Zp. If c equals 0, A computes and returns (ω, µ) = (ψ(gα2)b ·
gαγ+βδ

1 · ψ(gβ2)x, gδ1 · gx1). If c equals 1, A computes and returns (ω, µ) = (ψ(gα2)b ·
ψ(gβ2)x, gx2). It is easy to verify that (ε, µ) is in either case a correct verifiably encrypted
signature on the message with hash w.

Adjudication Queries. Algorithm V requests adjudication for (ω, µ), a verifiably encrypted sig-
nature on a message M under key v and adjudicator key v′. Algorithm A responds to this
query as follows:

1. Algorithm A runs the above algorithm for responding to H-queries on M , obtaining the
corresponding tuple 〈M,w, b, c〉 on the H-list.

2. Algorithm A checks that the verifiably encrypted signature is valid. If it is not, A
returns ?, a placeholder value.

3. If c equals 0, A declares failure and halts. Otherwise, it computes and returns σ ←
ψ(gα2)b. It is easy to verify that σ is the correct BLS signature under key v on the
message with hash w.

Output. Finally, V halts. It either concedes failure, in which case so does A, or returns a nontrivial
extracted signature σ∗ on some message M∗. For the extraction to be nontrivial, V must not
have asked for adjudication on a verifiably encrypted signature of M∗. Algorithm A runs its
hash algorithm at M∗, obtaining the k corresponding tuples 〈M∗, w∗, b∗, c∗〉 on the H-list.

A now proceeds only if c∗ = 0; otherwise it declares failure and halts. Since c∗ = 0, it follows
that w∗ = gγ1 · gb

∗
1 . The extracted signature σ∗ must satisfy the BLS verification equation,

e(σ∗, g2) = e(h∗, v). A sets σ ← σ∗/ψ(v)b
∗
. Then

e(σ, g2) = e(σ∗, g2) · e(ψ(v), g2)−b
∗

= e(w∗, v) · e(ψ(g2), v)−b
∗

= e(gγ1 , v) · e(g1, v)b
∗ · e(g1, v)−b

∗
= e(gγ1 , g

α
2).

40

Where in the last equality we substitute v = gα2 . Thus (g2, g
α
2 , g

γ
1 , σ) is a valid co-Diffie-

Hellman tuple, so σ equals gαγ2 , the answer to the aggregate extraction problem; algorithm A
outputs it and halts.

This completes the description of algorithm A. It remains to show that A solves the given instance
of the aggregate extraction problem on (G1, G2) with probability at least ε′. To do so, we analyze
the three events needed for A to succeed:

E1: A does not abort as a result of any of V’s adjudication queries.

E2: V generates a valid and nontrivial verifiably-encrypted signature extraction (M∗, σ∗).

E3: Event E2 occurs, and c∗ = 0 holds, where c∗ is the c-component of the tuple containing M∗ on
the H-list.

A succeeds if all of these events happen. The probability Pr[E1 ∧ E3] decomposes as

Pr[E1 ∧ E3] = Pr[E1] · Pr[E2 | E1] · Pr[E3 | E1 ∧ E2]. (4.2)

The following claims give a lower bound for each of these terms.

Claim 7. The probability that algorithm A does not abort as a result of V’s adjudication queries
is at least 1/e. Hence, Pr[E1] ≥ 1/e.

Proof. Without loss of generality we assume that V does not ask for adjudication of the same
message twice. We prove by induction that after V makes l signature queries the probability
that A does not abort is at least (1 − 1/(qA + 1))l. The claim is trivially true for l = 0. Let V’s
l’th adjudication query be for verifiably encrypted signature (ω(l), µ(l)), on message M (l) under the
challenge key v, and let 〈M (l), w(l), b(l), c(l)〉 be the corresponding tuple on the H-list. Then prior to
issuing the query, the bit c(l) is independent of V’s view — the only values that could be given to V
that depend on c(l) are H(M (l)) and verifiably-encrypted signatures on M (l), but the distributions
on these values are the same whether c(l) = 0 or c(l) = 1. Therefore, the probability that this query
causes A to abort is at most 1/(qA + 1). Using the inductive hypothesis and the independence of
c(l), the probability that A does not abort after this query is at least (1− 1/(qA + 1))l. This proves
the inductive claim. Since V makes at most qA adjudication queries the probability that A does
not abort as a result of all signature queries is at least (1− 1/(qA + 1))qA ≥ 1/e.

Claim 8. If algorithm A does not abort as a result of V’s adjudication queries then V’s view is
identical to its view in the real attack. Hence, Pr[E2 | E1] ≥ ε.

Proof. The challenge public key v given to V is from the same distribution as public keys produced
by Kg; the adjudicator’s public key v′ given to V is from the same distribution as the adjudicator
keys produces by AKg. Responses to hash queries are as in the real attack since each response
is uniformly and independently distributed in G1. Responses to verifiably-encrypted signature
queries are also as in the real attack: They are valid, and their µ components are uniformly and
independently distributed in G1. Since A did not abort as a result of V’s adjudication queries, all
its responses to those queries are valid. Therefore V will produce a valid and nontrivial verifiably-
encrypted signature extraction with probability at least ε. Hence Pr[E2 | E1] ≥ ε.

41

Claim 9. The probability that algorithm A does not abort after V outputs a valid and nontrivial
verifiably-encrypted signature extraction is at least 1/(qA + 1) Hence, Pr[E3 | E1 ∧ E2] ≥ 1/(qA + 1).

Proof. Given that events E1 and E2 happened, algorithm A will abort only if V generates a forgery
(M∗, σ∗) for which the tuple 〈M∗, w∗, b∗, c∗〉 on the H-list has c = 1. Since its extraction is nontrivial,
V could not have requested adjudication on any verifiably encrypted signature on M∗, and c∗ must
be independent of V’s current view. Therefore Pr[c∗ = 0 | E1 ∧ E2] ≥ 1/(qA + 1) as required.

Using the bounds from the claims above in equation (4.2) shows that A produces the correct
answer with probability at least ε/e(qA + 1) ≥ ε′ as required.

Algorithm A’s running time is the same as V’s running time plus the time is takes to respond to
A’s oracle queries and to transform V’s verifiably-encrypted signature extraction into an aggregate
extraction. Each verifiably-encrypted signature query, each adjudication query, and the output
phase requiresA to run its H-algorithm. It must therefore run this algorithm (qH+qS+qA+1) times.
Each run requires an exponentiation in G1. Algorithm A must run its verifiably-encrypted signing
algorithm qS times, and each run requires at most three exponentiation in G1. Finally, A’s output
phase requires at most one exponentiation and one inversion in G1. We assume that exponentiation
and inversion in G1 take time cG1

. Hence, the total running time is at most t + cG1
(qH + 4qS +

2qA + 3) ≤ t′ as required.

4.5.6 Observations on Verifiably Encrypted Signatures

We note some extensions of the BGLS2 verifiably encrypted signature scheme discussed above.

• Anyone can convert an ordinary unencrypted signature to a verifiably encrypted signature.
The same applies to unencrypted aggregate signatures.

• An adjudicator’s private key can be shared amongst n parties using k-of-n threshold cryp-
tography [62, 60], so that k parties are needed to adjudicate a verifiably encrypted signature.

• A message-signature pair in the BLS signature scheme is of the same form as an identity–
private-key pair in Boneh-Franklin Identity-Based Encryption (IBE) [25]. Thus the verifiably
encrypted signature scheme can potentially be modified to yield a verifiable encryption scheme
for IBE private keys. Verifiably encrypted private keys have many applications [104].

4.6 Conclusions and Open Problems

In this chapter, we have some variants and extensions of which the BLS signature scheme is capable.
We first showed how BLS has been extended to construct many of the standard signature

variants in the literature, including threshold signatures and multisignatures.
We then introduced the concept of aggregate signatures and constructed an efficient aggregate

signature scheme, BGLS, based on bilinear maps. Key generation, aggregation, and verification
require no interaction. We proved security of the system in a model that gives the adversary his
choice of public keys and messages to forge.

Finally, we introduced verifiably encrypted signatures, and showed that our BGLS aggregate
signature scheme gives rise to a simple verifiably encrypted signature scheme.

42

Unlike most previous signature constructions using bilinear maps [79, 48, 22], which only
required a gap Diffie-Hellman group (i.e., DDH easy, CDH hard), the aggregate and verifiably
encrypted signature constructions described in Sections 4.4.2 and 4.5.4 require the extra structure
provided by the bilinear map. These constructions are an example where a bilinear map provides
more power than a generic gap Diffie-Hellman group.

It is an open problem to construct aggregate signatures that work in any gap Diffie-Hellman
group.

43

Chapter 5

Sequential Aggregate Signatures from
Trapdoor Permutations

5.1 Introduction

Aggregate signatures, as introduced in Section 4.4, allow a single short aggregate to replace n sig-
natures by n users on n messages. The BGLS aggregate signature scheme, like the other schemes
in this thesis, requires a computable bilinear map. In this section we propose a variant — sequen-
tial aggregate signatures — with the advantage that it can be constructed based on a more general
assumption: the existence of trapdoor permutations.

There is a trade-off. Sequential aggregate signatures do not have the property that an untrusted
aggregating party can combine, after the fact, signatures that were generated independently. In-
stead, signing and aggregation are a single operation, and each signer folds her signature into the
aggregate-so-far, which she obtains from the previous signer. More precisely, User i is given an ag-
gregate on messages M1, . . . ,Mi−1 under keys pk1, . . . ,pki−1 and outputs an aggregate on messages
M1, . . . ,Mi−1,Mi under keys pk1, . . . ,pki−1, pki.

For some applications of aggregate signatures — in particular, certificate chains — the ability
to combine preexisting individual signatures into an aggregate is unnecessary. Each CA, when
producing a signature, has already obtained the signatures of CAs above it in the chain. Thus
aggregation for certificate chains can be performed incrementally and sequentially.

In this chapter, we show how to realize sequential aggregate signatures using any family of
certified1 trapdoor permutations over a single domain, provided that the domain is a group under
some operation. We prove security (with an exact security analysis) of our construction in the
random oracle model; we give a tighter security guarantee for the special cases of homomorphic
and claw-free trapdoor permutations.

Again, compared to the BGLS aggregate signature scheme considered in Section 4.4, the scheme
presented here places more restrictions on the signers (because of the sequentiality requirement),
but relies on a more general assumption.

We also show how to instantiate our construction with the RSA trapdoor permutation. This
instantiation turns out to be more difficult than may be expected, because of the possibility of
maliciously generated RSA keys: We need to provide security for User i regardless of whether other

1A trapdoor permutation is certified [19] if one can verify from its public description that it is actually a permu-
tation.

44

users are honest. There are essentially four problems. The first is that our scheme assumes multiple
trapdoor permutations over the same domain, which RSA does not provide. The second is that
RSA is not a certified trapdoor permutation: for a maliciously generated public-key, it can indeed
be very far from a permutation. The third is that the domain of RSA is not the convenient ZN ,
but rather Z∗N , which can be much smaller for maliciously generated N . Finally, the natural group
operation on Z∗N (multiplication) is not a group operation on ZN . We overcome these problems
with techniques that may be of independent interest. In particular, we turn RSA into a certified
trapdoor permutation over all of ZN .

Other Related Work. Aggregate signatures are related to multisignatures, which we considered
in Section 4.3. In particular, our LMRS aggregate signature scheme has similarities with the
multisignature scheme of Okamoto [97] (though the latter has no security proof and, indeed, is
missing important details that would make the security proof possible, as shown by Micali et
al. [86]).

5.2 Preliminaries

We recall the definitions of trapdoor permutations and the full-domain hash signatures based upon
them. We also define certified trapdoor permutations, which are needed for building sequential
aggregate signatures. Finally, we define claw-free permutations and homomorphic trapdoor per-
mutations, whose properties we will use to achieve a better security reduction.

5.2.1 Trapdoor One-Way Permutations

Let D be a group over some operation �. For simplicity, we assume that choosing an element of D
at random, computing �, and inverting � each take unit time.

A trapdoor permutation family T DP over D is defined as a triple of algorithms, Gen, Ev,
and Inv. The randomized generation algorithm Gen outputs the description s of a permutation
along with the corresponding trapdoor t. The evaluation algorithm Ev, given the permutation
description s and a value x ∈ D, outputs a ∈ D, the image of x under the permutation. The
inversion algorithm Inv, given the permutation description s, the trapdoor t, and a value a ∈ D,
outputs the preimage of a under the permutation.

We require that Ev(s, ·) be a permutation of D for all (s, t) R← Gen, and that x = Inv(s, t,Ev(s, x))
hold for all (s, t) R← Gen and for all x ∈ D. The algorithms Gen, Ev, and Inv are also assumed to
take unit time for simplicity.

Definition 5.2.1. The advantage of an algorithm A in inverting a trapdoor permutation fam-
ily T DP is

Advtdp-inv
T DP,A

def= Pr
[
x = A(s,Ev(s, x)) : (s, t) R← Gen, x

R← D
]
.

The probability is taken over the coin tosses of Gen and of A. An algorithm A (t, ε)-inverts a
trapdoor permutation family if A runs in time at most t and Advtdp-inv

T DP,A is at least ε. A trapdoor
permutation family is (t, ε)-one-way if no algorithm (t, ε)-inverts the trapdoor permutation family.

Note that this definition of a trapdoor permutation family requires that all permutations in the
trapdoor permutation family operate on the same domain D.

45

When it engenders no ambiguity, we consider the output of the generation algorithm Gen as
a probability distribution Π on permutations, and write (π, π−1) R← Π; here π is the permuta-
tion Ev(s, ·), and π−1 is the inverse permutation Inv(s, t, ·).

5.2.2 Certified Trapdoor Permutations

The trapdoor permutation families used in sequential aggregation must be certified trapdoor per-
mutation families [19]. A certified trapdoor permutation family is one such that, for any string s,
it is easy to determine whether s can have been output by Gen, and thereby ensure that Ev(s, ·) is
a permutation. This is important when permutation descriptions s can be generated by malicious
parties.

Applying the definitions above to the RSA permutation family requires some care. RSA gives
permutations over domains Z∗N , where each user has a distinct modulus N . Moreover, given just a
public key (N, e), certifying that the key actually describes a permutation is nontrivial. We consider
this further in Section 5.5.

5.2.3 Claw-Free Permutations, Homomorphic Trapdoor Permutations

We now describe two variants of trapdoor permutations: claw-free permutations and homomorphic
trapdoor permutations. The features these variants provide are not needed in the description of
the sequential aggregate signature scheme, but allow a more efficient security reduction in Theo-
rem 5.4.3.

A claw-free permutation family CFP [66] is a trapdoor permutation family where each key
(s, t) describes not only a permutation π : D → D as before but also an additional permutation
g : D → D, evaluated using the algorithm EvG(s, ·). (More generally, g can map any domain E
onto D as long as the uniform distribution on E induces the uniform distribution on g(E).) We
assume that algorithm EvG runs in unit time and that choosing an element of E at random also
takes unit time, just as above.

Definition 5.2.2. The advantage of an algorithm A in finding a claw in a claw-free permutation
family is

Advclaw
CFP,A

def= Pr

[
Ev(s, x) = EvG(s, y) :

(s, t) R← Gen, (x, y) R← A(s)

]
.

The probability is taken over the coin tosses of Gen and of A. An algorithm A (t, ε)-breaks a claw-
free permutation family if A runs in time at most t and Advclaw

CFP,A is at least ε. A permutation
family is (t, ε)-claw-free if no algorithm (t, ε)-breaks the claw-free permutation family.

Again, when it engenders no ambiguity, we abbreviate EvG(s, ·) as g(·), and write (π, π−1, g) R←
Π. In this compact notation, a claw is a pair (x, y) such that π(x) = g(y).

One can obtain from every claw-free permutation family a trapdoor permutation family, simply
by ignoring EvG [66]. The proof is straightforward. Suppose there exists an algorithm A that
inverts π with nonnegligible probability. One selects y R← D, and provides A with z = g(y), which
is uniformly distributed in D. If A outputs x such that x = π−1(z), then it has uncovered a claw
π(x) = g(y).

A trapdoor permutation family is homomorphic if D is a group with some operation ∗ and if,
for all (s, t) generated by Gen, the permutation π : D → D induced by Ev(s, ·) is an automorphism

46

on D with ∗. That is, if a = π(x) and b = π(y), then a ∗ b = π(x ∗ y). The group action ∗ is
assumed to be computable in unit time. The operation ∗ can be different from the operation �
given above; nor do we require any particular relationship (e.g., distributivity) between � and ∗.

One can obtain from every homomorphic trapdoor permutation family a claw-free permutation
family [49]. Pick some z 6= 1 ∈ D, and define g(x) = z ∗ π(x). In this case, E = D. Then a claw
π(x) = g(y) = z ∗ π(y) reveals π−1(z) = x ∗ (1/y) (where the inverse is with respect to ∗).

5.2.4 Full-Domain Signatures

We review the full-domain hash signature scheme; this scheme underlies our sequential aggregate
signature scheme, just as the BLS signature scheme of Section 3.3 underlies the BGLS aggregate
signature scheme of Sect 4.4.2.

The full-domain hash signature scheme, introduced by Bellare and Rogaway [16], can be in-
stantiated using any trapdoor one-way permutation family. The more efficient security reduction
given by Coron [39] additionally requires that the permutation family be homomorphic. Dodis and
Reyzin show that Coron’s analysis can be applied for any claw-free permutation family [49]. The
scheme makes use of a hash function H : {0, 1}∗ → D, which is modeled as a random oracle. The
signature scheme is a three-tuple of algorithms FDHS = (Kg, Sig,Vf). These behave as follows.

FDHS.Kg. For a particular user, pick random (s, t) R← TDP.Gen. The user’s public key pk is s.
The user’s private key sk is (s, t).

FDHS.Sig(sk,M). Parse the user’s private key sk as (s, t). Compute h ← H(M), where h ∈ D,
and σ ← TDP.Inv(s, t, h). The signature is σ ∈ D.

FDHS.Vf(pk,M, σ). Parse the user’s public key pk as s. Compute h ← H(M); accept if h =
TDP.Ev(s, σ) holds.

The following theorem, due to Coron, shows the security of full-domain signatures under the
adaptive chosen message attack in the random oracle model. The terms given in the exact analysis
of ε and t have been adapted to agree with the accounting employed elsewhere in this thesis. A
theorem with similar bounds can be given assuming claw-free permutations. (The comparable
theorem for general trapdoor permutations has a security loss proportional to qH rather than qS.)

Theorem 5.2.3. Let Π be a (t′, ε′)-one-way homomorphic trapdoor permutation family. Then the
full-domain hash signature scheme on Π is (t, qH , qS, ε)-secure against existential forgery under an
adaptive chosen-message attack (in the random oracle model) for all t and ε satisfying

ε ≥ e(qS + 1) · ε′ and t ≤ t′ − 2(qH + 2qS) .

Here e is the base of the natural logarithm.

5.3 Sequential Aggregate Signatures

In an aggregate signature scheme, as presented in Section 4.4, signatures are first individually
generated and then combined into an aggregate. Sequential aggregate signatures are different.
Each would-be signer transforms a sequential aggregate into another that includes a signature on a

47

message of his choice. Signing and aggregation are a single operation; sequential aggregates are built
in layers, like an onion; the first signature in the aggregate is the inmost. As with non-sequential
aggregate signatures, the resulting sequential aggregate is the same length as an ordinary signature.
This behavior closely mirrors the sequential nature of certificate chains in a PKI.

Let us restate the intuition given above more formally. A sequential aggregate signature scheme
is a three-tuple of algorithms SAS = (Kg,ASig,AVf), which behave as follows.

SAS.Kg. As usual, a randomized algorithm that outputs a public-private keypair (pk, sk).

SAS.ASig(sk,M, σ′, {pki,Mi}k−1
i=1). Aggregation and signing is a combined operation. The sequen-

tial aggregate signing algorithm takes as input a private key sk, a message M in some message
space to be signed, and a sequential aggregate σ′ on messages M1, . . . ,Mk−1 under respec-
tive public keys pk1, . . . ,pkk−1, where M1 is the inmost message. If k is 1, the aggregate σ is
taken to be empty. The algorithm adds an outmost signature on M under sk to the aggregate.
outputting a sequential aggregate σ on all k messages under all k keys.

SAS.AVf(σ, {pki,Mi}ki=1). The input is a sequential aggregate σ on messages M1, . . . ,Mk under
public keys pk1, . . . ,pkk. The algorithm verifies that σ is a valid sequential aggregate (with
M1 inmost) on the given messages under the given keys.

The notion of sequential aggregate signature security we consider is a generalization of exis-
tential unforgeability of ordinary signatures, which we recalled in Section 3.2, and a variant of
the aggregate chosen-key model of Section 4.4.1. Specifically, the adversary attempts to forge a
sequential aggregate signature, on messages of his choice, by some set of users; clearly, at least one
of the users in the set must not be under the adversary’s control.

We formalize this intuition as the sequential aggregate chosen-key security model. In this model,
the adversary A is given a single public key. His goal is the existential forgery of a sequential
aggregate signature. We give the adversary power to choose all public keys except the challenge
public key. The adversary is also given access to a sequential aggregate signing oracle on the
challenge key. His advantage, Advseqagg

SAS,A, is defined to be his probability of success in the following
game.

Setup. The challenger runs algorithm Kg to obtain a public key pk and private key sk. The
aggregate forger A is given pk.

Queries. Proceeding adaptively, A requests sequential aggregate signatures with pk on mes-
sages of his choice. For each query, he supplies a sequential aggregate signature σ on
some messages M1, . . . ,Mi−1 under distinct keys pk1, . . . ,pki−1, and an additional mes-
sage Mi to be signed by the oracle under key pk (where i is at most n, a game parameter).
The challenger responds to these queries by running ASig using private key sk. In the
random oracle model, A can also make qH queries to a hash oracle H.

Response. Finally, A outputs i distinct public keys pk1, . . . ,pki. Here i is at most n,
and need not equal the lengths (also denoted i) of A’s requests in the query phase
above. One of these keys must equal pk, the challenge key. Algorithm A also outputs
messages M1, . . . ,Mi, and a sequential aggregate signature σ by the i users, each on his
corresponding message, with pk1 inmost.

The forger wins if the sequential aggregate signature σ is a valid sequential aggregate signature
on messages M1, . . . ,Mi under keys pk1, . . . ,pki, and σ is nontrivial, i.e., A did not request

48

a sequential aggregate signature on messages M1, . . . ,Mi∗ under keys pk1, . . . ,pki∗ , where i∗

is the index of the challenge key pk in the forgery. Note that i∗ need not equal i: the forgery
can be made in the middle of σ. The probability is over the coin tosses of the key-generation
algorithm and of A.

Definition 5.3.1. A sequential aggregate forger A (t, qH , qS, n, ε)-breaks an n-user aggregate sig-
nature scheme in the sequential aggregate chosen-key model if: A runs in time at most t; A makes
at most qH queries to the hash function and at most qS queries to the aggregate signing oracle;
Advseqagg

SAS,A is at least ε; and the forged sequential aggregate signature is by at most n users. A
sequential aggregate signature scheme is (t, qH , qS, n, ε)-secure against existential forgery in the
sequential aggregate chosen-key model if no forger (t, qH , qS, n, ε)-breaks it.

5.4 Sequential Aggregates from Trapdoor Permutations

We describe a sequential aggregate signature scheme arising from any family of trapdoor permuta-
tions, and prove the security of the scheme.

We must first introduce some notation for vectors. We write a vector as x, its length as |x|, and
its elements as x1,x2, . . . ,x|x|. We denote concatenating vectors as x‖y and appending an element
to a vector as x‖z. For a vector x, x|ba is the sub-vector containing elements xa,xa+1, . . . ,xb.
(Obviously we have 1 ≤ a ≤ b ≤ |x|).

5.4.1 The Scheme

We now describe the three algorithms Kg, ASig, and AVf for our sequential aggregate signature
scheme based on certified trapdoor permutations. The scheme employs a full-domain hash function
H : {0, 1}∗ → D, viewed as a random oracle, and resembles full-domain hash described in Sec-
tion 5.2.4. The trick to aggregation is to incorporate the sequential aggregate signature of previous
users by multiplying it (via the group operation �) together with the hash of the message. As it
happens, the hash now needs to include not only the signer’s message, but also her public key and
the prior messages and keys.2

LMRS.Kg. For a particular user, pick random (s, t) R← TDP.Gen. The user’s public key pk is s.
The user’s private key sk is (s, t).

LMRS.ASig(sk,M, σ′,M,pk). The input is a private key sk, to be parsed as (s, t); a message
M ∈ {0, 1}∗ to be signed, and a sequential aggregate σ′ ∈ D on messages M under public
keys pk, to be parsed as a vector s. Verify that σ′ is a valid signature on M under s using
the verification algorithm below; if not, output ?, indicating error. Otherwise, compute
h ← H(s‖s,M‖M), where h ∈ D, and σ ← TDP.Inv(s, t, h � σ′). The sequential aggregate
signature is σ ∈ D.

LMRS.AVf(σ,M,pk). The input is a sequential aggregate σ ∈ D on messages M under public
keys pk, to be parsed as a vector s. If any key appears twice in s, if any element of s does not

2This is done not merely because we do not know how to prove the scheme secure otherwise. Micali et al. [87]
pointed out that if the signature does not include the public key, then an adversary may attack the scheme by deciding
on the public key after the signature is issued.

49

describe a valid permutation, or if |M| and |s| differ, reject. Otherwise, let i equal |M| = |s|.
Set σi ← σ. Then, for j = i, . . . , 1, set σj−1 ← TDP.Ev(sj , σj) � H(s|j1 , M|

j
1)−1. Accept if

σ0 equals 1, the unit of D with respect to �.

Written using π-notation, a sequential aggregate signature is of the form

π−1
i (hi � π−1

i−1(hi−1 � π−1
i−2(· · ·π−1

2 (h2 � π−1
1 (h1)) · · ·))) ,

where hj = H(s|j1 , M|
j
1). Verification evaluates the permutations in the forward direction, peeling

layers away until the center is reached.

5.4.2 Security

The following theorem demonstrates that our scheme is secure when instantiated on any certified
trapdoor permutation family.

Theorem 5.4.1. Let Π be a certified (t′, ε′)-trapdoor permutation family. Then our sequential ag-
gregate signature scheme on Π is (t, qH , qS, n, ε)-secure against existential forgery under an adaptive
sequential aggregate chosen-message attack (in the random oracle model) for all t and ε satisfying

ε ≥ (qH + qS + 1) · ε′ and t ≤ t′ − (4nqH + 4nqS + 7n− 1) .

Following Coron’s work [39], a better security reduction is obtained if the trapdoor permutations
are, additionally, homomorphic under some operation ∗. (The operation ∗ need not be the same as
the operation � used in the description of the signature scheme in Section 5.4.)

Theorem 5.4.2. Let Π be a certified homomorphic (t′, ε′)-trapdoor permutation family. Then our
sequential aggregate signature scheme on Π is (t, qH , qS, n, ε)-secure against existential forgery under
an adaptive sequential aggregate chosen-message attack (in the random oracle model) for all t and
ε satisfying

ε ≥ e(qS + 1) · ε′ and t ≤ t′ − ((4n+ 1)qH + (4n+ 1)qS + 7n+ 3) .

Here e is the base of the natural logarithm.

Finally, following the work of Dodis and Reyzin [49], the homomorphic property is not really
necessary, and can be replaced with the more general claw-free property:

Theorem 5.4.3. Let Π be a certified (t′, ε′)-claw-free permutation family. Then the sequential ag-
gregate signature scheme on Π is (t, qH , qS, n, ε)-secure against existential forgery under an adaptive
sequential aggregate chosen-message attack (in the random oracle model) for all t and ε satisfying

ε ≥ e(qS + 1) · ε′ and t ≤ t′ − (4nqH + 4nqS + 7n) .

Here e is the base of the natural logarithm.

The proofs of these theorems are very similar. In fact, Theorem 5.4.2 is just a corollary of
Theorem 5.4.3, because, as we already saw, homomorphic trapdoor permutations are claw-free. We
will prove all three at once.

50

Proofs. Suppose there exists a forger A that breaks the security of our sequential aggregate signa-
ture scheme. We describe three algorithms that use A to break one of the three possible security
assumptions (trapdoor one-wayness, homomorphic one-wayness, and claw-freeness). In fact, the al-
gorithms are quite similar regardless of the assumption. Therefore, we present only one of them: B
that uses A to find a claw in a (supposedly) claw-free permutation family Π. We will point out later
the changes needed to make the reduction to ordinary and homomorphic trapdoor permutations.

Suppose A is a forger algorithm that (t, qH , qS, n, ε)-breaks the sequential aggregate signature
scheme. We construct an algorithm B that finds a claw in Π.

Crucial in our construction is the following fact about our signature scheme: once the function
H is fixed on i input values (s|j1 , M|

j
1), 1 ≤ j ≤ i, there exists only one valid aggregate signature on

M using keys s. Thus, by answering hash queries properly, B can prepare for answering signature
queries and for taking advantage of the eventual forgery.

Algorithm B is given the description s of an element of Π, and must find values x ∈ D and
y ∈ E such that Ev(s, x) = EvG(s, y). Algorithm B supplies A with the public key s. It then runs A
and answers its oracle queries as follows.

Hash Queries. Algorithm B maintains a list of tuples 〈s(j),M(j), w(j), r(j), c(j)〉, to which we refer
as the H-list. The list is initially empty. When A queries the oracle H at a point (s,M),
algorithm B responds as follows.

First we consider the easy cases.

• If some tuple 〈s,M, w, r, c〉 on the H-list already contains the query (s,M), then algo-
rithm B answers the query as H(s,M) = w ∈ D.

• If |M| and |s| differ, if |s| exceeds n, if some key is repeated in s, or if any key in s does
not describe a valid permutation, then (s,M) can never be part of a sequential aggregate
signature. Algorithm B picks w R← D, and sets r ← ? and c← ?, both placeholder values.
It adds 〈s,M, w, r, c〉 to the H-list and responds to the query as H(s,M) = w ∈ D.

Now for the more complicated cases. Set i = |s| = |M|. If i is greater than 1, B runs the
hashing algorithm on input (s|i−1

1 , M|i−1
1), obtaining the corresponding entry on the H-list,

〈s|i−1
1 , M|i−1

1 , w′, r′, c′〉. If i equals 1, B sets r′ ← 1. Algorithm B must now choose elements
r,w, and c to include, along with s and M, in a new entry on the H-list. There are three
cases to consider.

• If the challenge key s does not appear at any index of s, B chooses r R← D at random,
sets c← ?, a placeholder value, and computes

w ← Ev(si, r)� (r′)−1
.

• If the challenge key s appears in s at index i∗ = i, Algorithm B generates a random
coin c ∈ {0, 1} such that Pr[c = 0] = 1/(qS + 1). If c = 1, B chooses r R← D at random
and sets

w ← Ev(s, r)� (r′)−1
.

(In this case, w is uniform in D and independent of all other queries because r has been
chosen uniformly and independently at random from D, and Ev and combining with

51

(r′)−1 are both permutations.) If c = 0, B chooses r R← E at random and sets

w ← EvG(s, r)� (r′)−1
.

(In this case, w is uniform in D and independent of all other queries because r has been
chosen uniformly and independently at random from E, EvG maps uniformly onto D,
and combining with (r′)−1 is a permutation.)

• If the challenge key s appears in s at index i∗ � i, algorithm B picks w R← D at random,
and sets r ← ? and c← ?, both placeholder values.

Finally, B adds 〈s,M, w, r, c〉 to the H-list, and responds to the query as H(s,M) = w.

In all cases, B’s response, w, is uniform in D and independent of A’s current view, as required.

Aggregate Signature Queries. Algorithm A requests a sequential aggregate signature, under
key s, on messages M under keys s.

If |s| and |M| differ, if |s| exceeds n, if any key appears more than once in s, or if any key in s
does not describe a valid permutation, (s,M) is not a valid aggregate, and B responds to A
with ?, indicating error. Let i = |s| = |M|. If si differs from s, (s,M) is not a valid query to
the aggregate signing oracle, and B again responds with ?.

Algorithm A also supplies a purported sequential aggregate signature σ′ on messages M|i−1
1

under keys s|i−1
1 . If i equals 1, B verifies that σ′ equals 1. Otherwise, B uses AVf to ensure

that σ′ is the correct sequential aggregate signature on (s|i−1
1 , M|i−1

1). If σ′ is incorrect, B
again responds with ?.

Otherwise, B runs the hash algorithm on (s,M), obtaining the corresponding entry on
the H-list, 〈s,M, w, r, c〉. Since si equals s, c must be 0 or 1. If c = 0 holds, B reports
failure and terminates. Otherwise, B responds to the query with σ ← r.

Output. Eventually algorithm A halts, outputting a message vector M, a public-key vector s, and
a corresponding sequential aggregate signature forgery σ. The forgery must be valid: No key
may occur more than once in s, each key in s must describe a valid permutation, the two
vectors s and M must have the same length i, which is at most n. The forgery must also be
nontrivial: The challenge key s must occur in s, at some location i∗, and A must not have
asked for a sequential aggregate signature on messages M|i

∗

1 under keys s|i
∗

1 . If A fails to
output a valid and nontrivial forgery, B reports failure and terminates.

Algorithm B begins by checking the hashes included in σ. For each j, 1 ≤ j ≤ i, B runs its
hash algorithm on (s|j1 , M|

j
1), obtaining a series of tuples 〈s|j1 , M|

j
1 , w

(j), r(j), c(j)〉. Note that
B always returns w as the answer to a hash query so for each j we have H(s|j1 , M|

j
1) = w(j).

Algorithm B then examines c(i∗). Since s(i∗) equals s, c(i∗) must be 0 or 1. If c(i∗) = 1 holds, B
reports failure and terminates. Then B applies the aggregate signature verification algorithm
to σ. It sets σ(i) ← σ. For j = i, . . . , 1, it sets σ(j−1) ← Ev(s(j), σ(j))� (w(j))−1.

If σ(0) does not equal 0, σ is not a valid aggregate signature, and B reports failure and
terminates. Otherwise, σ is valid and, moreover, each σ(j) computed by B is the (unique)
valid aggregate signature on messages M|j1 under keys s|j1.

Finally, B sets x← σ(i∗) and y ← r(i∗).

52

This completes the description of algorithm B.
It is easy to modify this algorithm for homomorphic trapdoor permutations. Now the algo-

rithm’s goal is not to find a claw, but to invert the permutation given by s on a given input z.
Simply replace, when answering hash queries for c = 0, invocation of EvG(s, r) with z∗Ev(s, r). The
a claw (x, y) allows B to recover the inverse of z under the permutation by computing z = x∗ (1/y),
where 1/y is the inverse of y under ∗.

Finally, it is also easy to modify this algorithm for ordinary trapdoor permutations:

• In answering hash queries where the challenge key s is outmost in s, instead of letting c = 0
with probability 1/(qS + 1), set c = 0 for exactly one query, chosen at random. There can be
at most qH + qS + 1 such queries.

• For the c = 0 query, set w ← z � (r′)−1. Then w is random given A’s view.

• If Algorithm A’s forgery is such that c(i∗) = 0, B′′ outputs x← σ(i∗).

To complete the proof, we now show that B correctly simulates A’s environment, and analyze
its running time and success probability.

Recall that we suppose that A is a forger algorithm that (t, qH , qS, n, ε)-breaks the sequential
aggregate signature scheme. Our goal is to show that algorithm B, described above, correctly
simulates A’s environment, runs in time t′, and finds a claw in Π with probability at least ε′, which
will contradict the (t′, ε′)-claw-freeness of Π (almost identical arguments work for the modifications
of B for ordinary and homomorphic trapdoor permutations).

We introduce some notation, which we will use to demonstrate that B correctly answers A’s
oracle queries. Consider public keys s and respective messages M, where i = |s| = |M|, and the
entries in s are all distinct. For each j, 1 ≤ j ≤ i, B’s hash algorithm associates with (s|j1 , M|

j
1)

a tuple 〈s|j1 , M|
j
1 , w

(j), r(j), c(j)〉. The last three elements of these tuples we view as i-element
vectors w, r, and c. Algorithm B always returns w as the answer to a hash query, so, for each j,
H(s|j1 , M|

j
1) = wj . Using the compact notation suggested above, we also abbreviate the per-

mutation evaluation Ev(sj , ·) as πj(·). For each j there is a unique correct sequential aggregate
signature σj on messages M|j1 under keys s|j1. Finally, for the challenge key s, we abbreviate the
second function of the claw-free permutation pair, EvG(s, ·), as g(·).

Note that, for the keys s and messages M output by A as its forgery, B, in its output phase,
computes and makes use of the vectors w, r, and c as defined here, along with the correct sequential
aggregate signatures σj . In our analysis, we will also consider these vectors for keys and messages
other than those forged on by A.

The proof proceeds in a series of claims. In particular, Claim 13 below shows that B answers
A’s signature queries with the correct sequential aggregate signature, and Claim 14 below shows
that B outputs a claw π(x) = g(y).

Claim 10. If the challenge key s does not equal any of the elements of s, then σj = rj for each j,
1 ≤ j ≤ i.

Proof. We proceed by induction. Since s1 6= s, w1 = π1(r1)� 1, or, equivalently, r1 = π−1
1 (w1) =

π−1
1 (H(s|11 , M|

1
1)) = σ1. Thus the claim holds for j = 1. If the claim holds for j − 1, then, since

sj 6= s, wj = πj(rj)�rj−1
−1, or, equivalently, rj = π−1

j (wj�rj−1) = π−1
1 (H(s|j1 , M|

j
1)�σj−1) = σj ,

and the claim holds for j.

53

Claim 11. If the challenge key s appears at index i∗ of s, and ci∗ = 1, then σj = rj for each j,
1 ≤ j ≤ i∗.

Proof. If ci∗ equals 1, then B computes wi∗ precisely as it would have had si∗ not been s. Thus
the proof of Claim 10 applies still.

Claim 12. If the challenge key s appears at index i∗ of s, and ci∗ = 0, then, for j < i∗, σj = rj,
and, for j = i∗, σj = π−1

i∗ (g(ri∗)).

Proof. For j < i∗, the result follows from Claim 10. We consider the case j = i∗. If i∗ equals 1, B
calculates the hash wi∗ as

w1 = g(r1)� 1−1 = g(r1) .

Thus the correct aggregate signature σ1 is

σ1 = π−1
1 (w1) = π−1

1 (g(r1)) .

If i∗ is greater than 1, B calculates the hash wi∗ as

wi∗ = g(ri∗)� (ri∗−1)−1 ,

and thus
σi∗ = π−1

i∗ (wi∗ � σi∗−1) = π−1
i∗ (wi∗ � ri∗−1) = π−1

i∗ (g(ri∗)) ,

where the first substitution follows from the first half of this claim. Thus the claim also holds for
j = i∗ > 1.

Using the claims above, we can demonstrate that B correctly answers A’s aggregate signing
queries, and that, except when it declares failure, B correctly computes a claw π(x) = g(y), the
solution to the challenge posed it.

Claim 13. If A makes a valid sequential aggregate query, supplying messages M, keys s, and
sequential aggregate signature σ′ on all but the last message, then B either declares failure and halts
or outputs the correct sequential aggregate signature σ on the messages.

Proof. If the request is valid then no key appears twice in s, |s| = |M| = i ≤ n, and si = s.
Algorithm B examines ci. If ci equals 0, B declares failure and exits; if it equals 1, B outputs ri as
the answer to the signature query. In this case, the antecedent of Claim 11 is satisfied, and σ = σi
equals ri, as required.

Claim 14. If A outputs a valid and nontrivial aggregate signature forgery σ on messages M
under keys s then B either declares failure and halts, or outputs the correct solution x to the
given challenge.

Proof. If the forgery is valid and nontrivial, then no key appears twice in s, |s| = |M| = i ≤ n,
and si∗ = s for some i∗. Algorithm B examines ci∗ . If ci∗ equals 1, B declares failure and exits. If
ci∗ equals 0, the antecedent of Claim 12 is satisfied, and

σi∗ = π−1
i∗ (g(ri∗)) .

54

That is,
π(σi∗) = g(ri∗) ,

where we note that πi∗(·) = π(·), the challenge permutation. Algorithm B outputs (in our notation)
x = σi∗ and y = ri∗ ; it therefore outputs a claw on π(·) and g(·), as required.

It remains to show that B outputs the claw with probability at least ε′. To do so, we analyze
the three events needed for B to succeed:

E1: B does not abort as a result of any of A’s sequential aggregate signature queries.

E2: A generates a valid and nontrivial sequential aggregate forgery σ on messages M under keys s.

E3: Event E2 holds, and c = 0 for the tuple containing (s|i
∗

1 , M|i
∗

1) on the H-list, where i∗ is the
index of s in s.

B succeeds if all of these events happen. The probability Pr[E1 ∧ E3] decomposes as

Pr[E1 ∧ E3] = Pr[E1] · Pr[E2 | E1] · Pr[E3 | E1 ∧ E2] . (5.1)

The following claims give a lower bound for each of these terms.

Claim 15. The probability that algorithm B does not abort as a result of A’s aggregate signature
queries is at least 1/e. Hence, Pr[E1] ≥ 1/e.

Proof. Without loss of generality we assume that A does not ask for the signature of the same
message twice. We prove by induction that after A makes k signature queries the probability
that B does not abort is at least (1 − 1/(qS + 1))k. The claim is trivially true for k = 0. Let
(s(k),M(k)) be A’s k’th signature query and let 〈s(k),M(k), w(k), r(k), c(k)〉 be the corresponding
tuple on the H-list. Then, prior to A’s issuing the query, the bit c(k) is independent of A’s view —
the only value that could be given to A that depends on c(k) is H(s(k),M(k)), but the distribution
of H(s(k),M(k)) is the same whether c(k) = 0 or c(k) = 1. Therefore, the probability that this
query causes B to abort is at most 1/(qS + 1), the probability that c(k) equals 0. Using the
inductive hypothesis and the independence of c(k), the probability that B does not abort after this
query is at least (1 − 1/(qS + 1))k. This proves the inductive claim. Since A makes at most qS
signature queries, the probability that B does not abort as a result of all signature queries is at
least (1− 1/(qS + 1))qS ≥ 1/e. Hence Pr[E1] ≥ 1/e.

Claim 16. If algorithm B does not abort as a result of A’s queries then algorithm A’s view is
identical to its view in the real attack. Hence, Pr[E2 | E1] ≥ ε.

Proof. The public key given to A is from the same distribution as public keys produced by algo-
rithm Kg. Responses to hash queries are as in the real attack since each response is uniformly and
independently distributed in D. All responses to sequential aggregate signature queries are valid.
Therefore A will produce a valid and nontrivial aggregate signature forgery with probability at
least ε. Hence Pr[E2 | E1] ≥ ε.

Claim 17. The probability that algorithm B does not abort after A, outputs a valid and nontrivial
forgery is at least 1/(qS + 1). Hence, Pr[E3 | E1 ∧ E2] ≥ 1/(qS + 1).

55

Proof. Given that events E1 and E2 occurred, B will abort only if A generates a forgery (s,M, σ)
for which the tuple 〈s|i

∗

1 , M|i
∗

1 , w(i∗), r(i∗), c(i∗)〉 on the H-list has c(i∗) = 1, where i∗ is the index
of s in s. At the time A generates its output, it knows the value of c for those vector pairs (s′,M′)
on which it issued a sequential aggregate signature query (and in which s is necessarily the last
key). All the remaining c’s are independent of A’s view. Indeed, if A did not issue a signature
query for (s|i

∗

1 , M|i
∗

1), then the only value given to A that depends on c(i∗) is H(s|i
∗

1 , M|i
∗

1), but
the distribution on H(s|i

∗

1 , M|i
∗

1) is the same whether c(i∗) = 0 or c(i∗) = 1. Since the forgery is
nontrivial, A could not have issued a signature query at (s|i

∗

1 , M|i
∗

1), so c(i∗) is independent of A’s
current view and therefore Pr[c = 0 | E1 ∧ E2] ≥ 1/(qS + 1) as required.

Using the bounds from the claims above in equation (5.1) shows that B produces the correct
answer with probability at least 1/e · ε · 1/(qS + 1), as required.

Algorithm B’s running time is the same as A’s running time plus the time is takes to respond
to up to qH hash queries and qS aggregate signature queries. Each hash query may require as many
as n levels of recursion, and each level requires (at most) choosing a random value from D or E,
a call to Ev or EvG, an inversion in D, and a evaluation of the group operation � in D. Any of
these operations is computable in unit time, so each hash query requires at most 4n time units to
answer. Each signature query involves a corresponding hash computation, and so requires at most
4n time units to answer (σ′ can be verified at no cost by comparing it to ri−1). Transforming a
forgery into a claw (x, y) requires a hash query and a signature verification. As before, the hash
query takes at most 4n time units to process. The signature verification requires at most n steps,
each of which requires a call to Ev, an inversion in D, and a evaluation of the group operation �
in D, and thus takes at most n time units to process. The output step thus takes at most 7n time
units in total. Hence B’s total running time is at most t+ (4nqH + 4nqS + 7n) ≤ t′ as required.

In the case when case B is modified for homomorphic trapdoor permutations, the running-
time accounting requires some care, since it needs now two time units to compute EvG, not one.
Answering a hash oracle query (s,M) may involve up to n nested computations, but only one entry
in s can contain the challenge key s and require a call to EvG. The same is true of the hashing
required to answer signature oracle queries and in the output phase of B. In addition, B′ takes
2 time units to compute π−1(z). Hence the total running time of B′ is at most t + ((4n + 1)qH +
(4n+ 1)qS + 7n+ 3) ≤ t′ as required.

Finally, when B is modified for plain trapdoor permutations, we analyze the running time and
the success probability as follows. The challenge z is embedded in only one hash response (s,M).
If A asks for a signature on (s,M), it cannot later forge on it — the forgery would be trivial —
and so B can then never succeed in inverting z, and its not being able to answer A’s query is of
no consequence. Algorithm B′′ succeeds if A succeeds in creating a forgery, which happens with
probability ε, and if that forgery includes the challenge (s,M), which happens with probability at
least 1/(qH + qS + 1). These two probabilities are independent since the placement of the challenge
is independent of A’s view. The running time of B does not change. (The only difference is that, for
the single hash query for which c = 0, B need not compute EvG, saving one time unit overall).

5.5 Aggregating with RSA

Here we consider the details of instantiating the sequential aggregate signature scheme presented
in Section 5.4 using the RSA permutation family.

56

The RSA function was introduced by Rivest, Shamir, and Adleman [105]. If N = pq is the
product of two large primes and ed = 1 mod φ(N), then π(x) = xe mod N is a permutation on Z∗N ,
and π−1(x) = xd mod N is its inverse. Setting s = (N, e) and t = (d) gives a one-way trapdoor
permutation that is multiplicatively homomorphic.

A few difficulties arise when we try to instantiate the above scheme with RSA. We tackle them
individually.

The first problem is that RSA is not a certified trapdoor permutation. Raising to the power e
may not be a permutation over Z∗N if e is not relatively prime with φ(N). Moreover, even if it
is a permutation of Z∗N , it may not be a permutation of all of ZN if N is maliciously generated
(in particular, if N is not square-free). Note that, for maliciously generated N , the difference
between Z∗N and ZN may be considerable. The traditional argument used to dismiss this issue
(that if one finds x outside Z∗N , one factors N) has no relevance here: N may be generated by
the adversary, and our ability to factor it has no positive impact on the security of the scheme
for the honest signer who is using a different modulus. Our security proof substantially relied
on the fact that even the adversarial public keys define permutations for uniqueness of signatures
and proper distribution of hash query answers. Indeed, this is not just a “proof problem,” but a
demonstrable security concern: If the adversary is able to precede the honest user’s key (Ni, ei)
with multiple keys (N1, e1), . . . , (Ni−1, ei−1), each of which defines a collision-prone function rather
than a permutation, then it is quite possible that no matter value one takes for σi, it will be likely
to verify correctly: for example, there will be two valid σ1 values, four valid σ2 values, eight valid
σ3 values, . . . , and 2i valid σi values.

One way to resolve this problem is to make sure that every key participating in an aggregate
signature has been verified to be of correct form. This could be accomplished by having a trusted
certification authority check thatN is a product of two large primes and e is relatively prime to φ(N)
before issuing a certificate. This check, however, requires one to place more trust in the authority
than usual: the authority must be trusted not just to verify the identity of a key’s purported owner,
but also to perform verification of some complicated properties of the key. Moreover, the security of
an honest signer can be compromised without the signer’s knowledge or participation by dishonest
signers whose keys are of incorrect form, when the dishonest signers form an aggregate signature
that verifies with the honest signer’s public key. The only way to prevent this is to trust that the
verifier of the aggregate signature only accepts certificates from certification authorities who verify
the correctness of the key.

In the case when it is best to avoid assuming such complex trust relationships, we propose
to tackle this problem in the same way as Micali et al. [86], though at the expense of longer
verification time. First, we require e to be a prime larger than N (this idea also appeared in a
paper by Cachin et al. [31]). Then e is guaranteed to be relatively prime with φ(N), and thus to
provide a permutation over Z∗N . To extend to a permutation over ZN , we define Ev((N, e), x) as
follows: if gcd(x,N) = 1, output xe mod N ; else output x.

The second problem is that the natural choice for the group operation �, multiplication, is not
actually a group operation over ZN . Thus, signature verification, which requires computation of an
inverse under �, may be unable to proceed. Further, our security proof will no longer hold, since it
relies on the fact that � is a group operation for uniqueness of signatures and proper distribution
of hash query answers. This difficulty is simple to overcome: Use addition modulo N as the group
operation �. Recall that no properties were required of � beyond being a group operation on the
domain.

57

The third problem is that two users cannot share the same modulus N . Thus the domains
of the one-way permutations belonging to the aggregating users differ, making it difficult to treat
RSA as a family of trapdoor permutations. Below, we give three approaches that allow us to create
sequential aggregates from RSA nonetheless.

Our first approach is to require the users’ moduli to be arranged in increasing order: N1 <
N2 · · · < Nn. At verification, it is important to check that the i-th signature σi is actually less
than Ni, to ensure that correct signatures are unique if H is fixed. As long as logN1 − logNn is
constant, and the range of H is a subset of ZN1 whose size is a constant fraction of N1, the scheme
will be secure. The same security proof still goes through, with the following minor modification
for answering hash queries. Whenever a hash query answer w is computed by first choosing a
random r in ZNi , there is a chance that w will be outside of the range of H. In this case, simply
repeat with a fresh random r until w falls in the right range (the expected number of repetitions is
constant). Note that because we insisted on Ev being a permutation and � being a group operation,
the resulting distribution of w is uniform on the range of H. Therefore, the distribution of answers
to hash queries is uniform. Since signatures are uniquely determined by answers to hash queries,
the adversary’s whole view is correct, and the proof works without other modifications. (This
technique is related to Coron’s partial-domain hash analysis [41], though Coron deals with the
more complicated case when the partial domain is exponentially smaller than the full domain.)

Our second approach allows for more general moduli: We do not require them to be in increasing
order. However, we do require them to be of the same length l (constant differences in the lengths
will also work, but we do not address them here for simplicity of exposition). The signature will
expand by n bits b1 . . . bn, where n is the total number of users. Namely, during signing, if σi ≥ Ni+1,
let bi = 1; else, let bi = 0. During verification, if bi = 1, add Ni+1 to σi before proceeding with
the verification of σi. Always check that σi is in the correct range 0 ≤ σi < Ni (to ensure, again,
uniqueness of signatures). The security proof requires no major modifications.3

A third approach is to construct from RSA a family of trapdoor permutations with a common
domain. Hayashi et al. [67] describe one such construction. If all the moduli Ni are such that
2l−1 < Ni < 2l then, under the transformation proposed by Hayashi et al., each modulus describes
an “RSACD” trapdoor permutation on the range [0, 2l− 1]. Using these RSACD permutations, we
obtain a sequential aggregate signature scheme — based on the security of the RSA problem — in
which moduli need not be placed in increasing order and in which the aggregates do not expand as
more signatures are added. The downside is that each RSACD evaluation requires two evaluations
of the underlying RSA permutation, so signing and verification take twice as long as in the other
approaches. Note that, in the underlying RSA evaluations, one must still apply the rule laid out
above in the case that gcd(x,N) is not 1.

5.5.1 Concrete Proposals for Sequential Aggregates with RSA

We now present the RSA-based aggregate signature schemes that are obtained using the suggestions
above. In each case, we consider n users, all with moduli of length l bits. Let H : {0, 1}∗ → {0, 1}l−1

be a hash function.
3 We need to argue that correct signatures are unique given the hash answers. At first glance it may seem that

the adversary may have choice on whether to use bi = 0 or bi = 1. However, this will result in two values σi−1 that
are guaranteed to be different: one will be less than Ni and the other at least Ni. Hence uniqueness of σi−1 implies
uniqueness of bi and, therefore, σi. Thus, by induction, signatures are still unique. In particular, there is no need to
include bi in the hash function input.

58

When the moduli are ordered by size, the scheme works as follows.

Key Generation. Each user i generates an RSA public key (Ni, ei) and secret key (Ni, di), en-
suring that 2l−1(1 + (i− 1)/n) ≤ Ni < 2l−1(1 + i/n) and that ei > Ni is a prime.

Signing. User i is given an aggregate signature σ′, the messages M1, . . . ,Mi−1, and the corre-
sponding keys (N1, e1), . . . , (Ni−1, ei−1). User i first verifies σ′, using the verification proce-
dure below. If this succeeds, user i computes hi = H

(
(M1, . . . ,Mi), ((N1, e1), . . . , (Ni, ei))

)
,

y = hi + σ′ and outputs σ = ydi mod Ni. The user may first check that gcd(y,N) = 1 and,
if not, output y; however, the chances that the check will fail are negligible, because the user
is honest.

Verifying. The verifier is given as input an aggregate signature σ, the messages M1, . . . ,Mi, and
the corresponding keys (N1, e1), . . . , (Ni, ei), and proceeds as follows. Check that no key
appears twice, that ei > Ni is a prime and that Ni is of length l bits (this needs to be checked
only once per key, and need not be done with every signature verification) and that 0 ≤ σ <
Ni. If gcd(σ,Ni) = 1, let y ← σei mod Ni. Else let y ← σ (this check is crucial, because we
do not know if user i is honest). Compute hi ← H

(
(M1, . . . ,Mi), ((N1, e1), . . . , (Ni, ei))

)
and

σ′ ← y− hi mod Ni. Verify σ′ recursively. The base case for recursion is i = 0, in which case
simply check that σ = 0.

In the second scheme, the moduli are unordered, but the aggregates are allowed to grow with
additional signatures. The scheme functions like the previous one, but with the following modi-
fications. First, the moduli Ni should now satisfy 2l−1 < Ni < 2l. Second, when signing, when
verifying the aggregate-so-far σ′, check if σ′ ≥ Ni. If so, replace σ′ with σ′−Ni and set bi = 1; else,
set bi = 0. Finally, to verify, replace σ′ with σ′ + biNi before proceeding with the recursive step.

Finally, in the scheme based on RSACD, the moduli Ni must again satisfy 2l−1 < Ni < 2l.
Aggregate signatures are integers in the range [0, 2l−1]. One must still check that each key describes
a permutation and that the aggregate-so-far σ′ is a valid aggregate signature. The RSACD trapdoor
permutation can then be applied to h � σ′ without further preprocessing. Here �can be taken to
be exclusive-or on l-bit strings.

5.5.2 Security

Because RSA over Z∗N is homomorphic with respect to multiplication, it is claw-free (not just
over Z∗N , but over entire ZN , because finding a claw outside of Z∗N implies factoring N and hence
being able to invert RSA). Therefore, the conclusions of Theorem 5.4.3 apply to the RSA-specific
aggregate signature schemes described above.

59

Chapter 6

Group Signatures

6.1 Introduction

Group signatures, introduced by Chaum and van Heyst [36], provide anonymity for signers. Any
member of the group can sign messages, but the resulting signature keeps the identity of the signer
secret. Often there is a third party that can undo the signature anonymity (trace) using a special
trapdoor [36, 6]. Some systems support revocation [32, 8, 116, 47], where group membership can be
disabled without affecting the signing ability of unrevoked members. Currently, the most efficient
constructions are based on the Strong-RSA assumption introduced by Baric and Pfitzman [10].
These signatures are usually much longer than RSA signatures of comparable security.

A number of recent projects require properties provided by group signatures. One such project
is the Trusted Computing effort [115] that, among other things, enables a desktop PC to prove to
a remote party what software it is running via a process called attestation. Group signatures are
needed for privacy-preserving attestation [30] [58, Section 2.2]. To enable attestation, each computer
ships with an embedded TCG tamper-resistant chip that signs certain system components using
a secret key embedded in the chip. During attestation to a remote party (e.g., a bank) these
signatures are sent to the remote party. To maintain user privacy it is desirable that the signatures
not reveal the identity of the chip that issued them. To do so, each tamper resistant chip issues a
group signature (rather than a standard signature) on system components that it signs. Here the
group is the set of all TCG-enabled machines. The group signature proves that the attestation was
issued by a valid tamper-resistant chip, but hides which machine it comes from.

Another is the Vehicle Safety Communications project (VSC), a collaboration of major car-
makers and the U.S. Department of Transportation [34], which has attracted a great deal of other
research [21]. The system embeds short-range transmitters in cars; these transmit status informa-
tion to other cars in close proximity. For example, if a car executes an emergency brake, all cars in
its vicinity are alerted. To prevent message spoofing, all messages are signed by a tamper-resistant
chip in each car. (MACs were ruled out for this many-to-many broadcast environment.) Since VSC
messages reveal the speed and location of the car, there is a strong desire to provide user privacy
so that the full identity of the car sending each message is kept private. Using group signatures —
where the group is the set of all cars — we can maintain privacy while still being able to revoke a
signing key in case the tamper resistant chip in a car is compromised. Due to the number of cars
transmitting concurrently there is a hard requirement that the length of each signature be under
250 bytes.

60

The two examples above illustrate the need for efficient group signatures. The second example
also shows the need for short group signatures. Currently, group signatures based on Strong-RSA
are too long for this application.

We construct short group signatures whose length is under 200 bytes that offer approximately
the same level of security as a regular RSA signature of the same length. The security of our scheme
is based on the SDH and Linear assumptions (Sects. 2.2.2 and 2.2.3). While SDH is similar to the
Strong-RSA assumption, our results suggest that systems based on SDH are simpler and shorter
than their Strong-RSA counterparts.

Our system is based on a new Zero-Knowledge Proof of Knowledge (ZKPK) of the solution to
an SDH problem. We convert this ZKPK to a group signature via the Fiat-Shamir heuristic [51]
and prove security in the random oracle model. Our security proofs use a variant of the security
model for group signatures proposed by Bellare, Micciancio, and Warinschi [15].

Recently, Camenisch and Lysyanskaya [33] proposed a signature scheme with efficient protocols
for obtaining and proving knowledge of signatures on committed values. They derive a group
signature scheme using these protocols as building blocks. Their signature scheme is based on
the LRSW assumption [81], which, like SDH, is a discrete-logarithm–type assumption. Their
methodology can also be applied to the SDH assumption, yielding a different SDH-based group
signature.

6.2 A Zero-Knowledge Protocol for SDH

We begin by presenting a protocol for proving possession of a solution to an SDH problem. The
public values are g1, u, v, h ∈ G1 and g2, w ∈ G2. Here u, v, h are random in G1, g2 is a random
generator of G2, g1 equals ψ(g2), and w equals gγ2 for some (secret) γ ∈ Zp. The protocol proves
possession of a pair (A, x) ∈ G1×Zp such that Ax+γ = g1. Such a pair satisfies e(A,wgx2) = e(g1, g2).
We use a standard generalization of Schnorr’s protocol for proving knowledge of discrete logarithm
in a group of prime order [108].

Protocol 1. Alice, the prover, selects exponents α, β R← Zp, and computes a Linear encryption
of A:

T1 ← uα T2 ← vβ T3 ← Ahα+β . (6.1)

She also computes two helper values δ1 ← xα and δ2 ← xβ ∈ Zp.
Alice and Bob then undertake a proof of knowledge of values (α, β, x, δ1, δ2) satisfying the

following five relations:

uα = T1 vβ = T2

e(T3, g2)x · e(h,w)−α−β · e(h, g2)−δ1−δ2 = e(g1, g2)/e(T3, w)

T x1 u
−δ1 = 1 T x2 v

−δ2 = 1 .

This proof of knowledge of (α, β, x, δ1, δ2) proceeds as follows. Alice picks blinding values rα,
rβ, rx, rδ1 , and rδ2 at random from Zp. She computes five values based on all these:

R1 ← urα R2 ← vrβ

R3 ← e(T3, g2)rx · e(h,w)−rα−rβ · e(h, g2)−rδ1−rδ2 (6.2)
R4 ← T rx1 · u

−rδ1 R5 ← T rx2 · v
−rδ2 .

61

She then sends (T1, T2, T3, R1, R2, R3, R4, R5) to the verifier. Bob, the verifier, sends a challenge
value c chosen uniformly at random from Zp. Alice computes and sends back the values

sα ← rα + cα sβ ← rβ + cβ sx ← rx + cx sδ1 ← rδ1 + cδ1 sδ2 ← rδ2 + cδ2 . (6.3)

Finally, Bob verifies the following five equations:

usα
?= T c1 ·R1 (6.4)

vsβ
?= T c2 ·R2 (6.5)

e(T3, g2)sx · e(h,w)−sα−sβ · e(h, g2)−sδ1−sδ2 ?=
(
e(g1, g2)/e(T3, w)

)c ·R3 (6.6)

T sx1 · u
−sδ1 ?= R4 (6.7)

T sx2 · v
−sδ2 ?= R5 . (6.8)

Bob accepts if all five hold.

Theorem 6.2.1. Protocol 1 is a public-coin honest-verifier zero-knowledge proof of knowledge of
an SDH pair under the Decision Linear assumption.

The proof of the theorem follows from the following lemmas that show that the protocol is (1)
complete (the verifier always accepts an interaction with an honest prover), (2) zero-knowledge
(can be simulated), and (3) a proof of knowledge (has an extractor).

Lemma 6.2.2. Protocol 1 is complete.

Proof. If Alice is an honest prover in possession of an SDH pair (A, x) she follows the computations
specified for her in the protocol. In this case,

usα = urα+cα = (uα)c · urα = T c1 ·R1 ,

so (6.4) holds. For analogous reasons (6.5) holds. Further,

T sx1 u−sδ1 = (uα)rx+cxu−rδ1−cxα = (uα)rxu−rδ1 = T rx1 u−rδ1 = R4 ,

so (6.7) holds. For analogous reasons (6.8) holds. Finally,

e(T3, g2)sx · e(h,w)−sα−sβ · e(h, g2)−sδ1−sδ2

= e(T3, g2)rx+cx · e(h,w)−rα−rβ−cα−cβ · e(h, g2)−rδ1−rδ2−cxα−cxβ

= e(T3, g
x
2)c · e(h−α−β, wgx2)c ·

(
e(T3, g2)rx · e(h,w)−rα−rβ · e(h, g2)−rδ1−rδ2

)
= e(T3h

−α−β, wgx2)c · e(T3, w)−c · (R3)

=
(
e(A,wgx2)/e(T3, w)

)c ·R3

=
(
e(g1, g2)/e(T3, w)

)c ·R3 .

so (6.6) holds.

Lemma 6.2.3. For an honest verifier, transcripts of Protocol 1 can be simulated, under the Decision
Linear assumption.

62

Proof. We describe a simulator that outputs transcripts of Protocol 1. The simulator begins by
picking A

R← G1 and α, β
R← Zp. It sets T1 ← uα, T2 ← vβ, and T3 ← Ahα+β. Assuming the

Decision Linear assumption holds on G1, the tuples (T1, T2, T3) generated by the simulator are
drawn from a distribution that is indistinguishable from the distribution output by any particular
prover.

The remainder of this simulation does not assume knowledge of A, x, α, or β, so it can also
be used when T1, T2, and T3 are pre-specified. When the pre-specified (T1, T2, T3) are a random
Linear encryption of some A, the remainder of the transcript is simulated perfectly, as in a standard
simulation of a Schnorr proof of knowledge.

The simulator chooses a challenge c
R← Zp and values sα, sβ, sx, sδ1 , sδ2

R← Zp. It computes
R1, R2, R3, R4, R5 as:

R1 ← usα · T−c1 R2 ← vsβ · T−c2 R4 ← T sx1 · u
−sδ1 R5 ← T sx2 · v

−sδ2

R3 ← e(T3, g2)sx · e(h,w)−sα−sβ · e(h, g2)−sδ1−sδ2 ·
(
e(T3, w)/e(g1, g2)

)c
.

It is easy to see that the resulting values R1, R2, R3, R4, R5 satisfy Equations (6.4)–(6.8) and are
distributed as in a real transcript.

The simulator outputs the transcript (T1, T2, T3, R1, R2, R3, R4, R5, c, sα, sβ, sx, sδ1 , sδ2). As dis-
cussed above, this transcript is indistinguishable from transcripts of Protocol 1, assuming the
Decision Linear assumption holds.

Lemma 6.2.4. There exists an extractor for Protocol 1.

Proof. Suppose that an extractor can rewind a prover in the protocol above to the point just before
the prover is given a challenge c. At the first step of the protocol, the prover sends T1, T2, T3 and
R1, R2, R3, R4, R5. Then, to challenge value c, the prover responds with sα, sβ, sx, sδ1 , and sδ2 . To
challenge value c′ 6= c, the prover responds with s′α, s′β, s′x, s′δ1 , and s′δ2 . If the prover is convincing,
all five verification equations (6.4)–(6.8) hold for each set of values.

For brevity, let ∆c = c− c′, ∆sα = sα − s′α, and similarly for ∆sβ, ∆sx, ∆sδ1 , and ∆sδ2 .
Now consider (6.4) above. Dividing the two instances of this equation (one instance using c and

the other using c′), we obtain u∆sα = T∆c
1 . The exponents are in a group of known prime order, so

we can take roots; let α̃ = ∆sα/∆c. Then uα̃ = T1. Similarly, from (6.5), we obtain β̃ = ∆sβ/∆c
such that vβ̃ = T2.

Consider (6.7) above. Dividing the two instances gives T∆sx
1 = u∆sδ1 . Substituting T1 = uα̃

gives uα̃∆sx = u∆sδ1 , or ∆sδ1 = α̃∆sx. Similarly, from (6.8) we deduce that ∆sδ2 = β̃∆sx.
Finally, dividing the two instances of (6.6), we obtain(

e(g1, g2)/e(T3, w)
)∆c = e(T3, g2)∆sx · e(h,w)−∆sα−∆sβ · e(h, g2)−∆sδ1−∆sδ2

= e(T3, g2)∆sx · e(h,w)−∆sα−∆sβ · e(h, g2)−α̃∆sx−β̃∆sx .

Taking ∆c-th roots, and letting x̃ = ∆sx/∆c, we obtain

e(g1, g2)/e(T3, w) = e(T3, g2)x̃ · e(h,w)−α̃−β̃ · e(h, g2)−x̃(α̃+β̃) .

This can be rearranged as
e(g1, g2) = e(T3h

−α̃−β̃, wgx̃2) ,

63

or, letting Ã = T3h
−α̃−β̃,

e(Ã, wgx̃2) = e(g1, g2) .

Thus the extractor obtains an SDH tuple (Ã, x̃). Moreover, the Ã in this SDH tuple is, perforce,
the same as that in the Linear encryption (T1, T2, T3).

6.3 Short Group Signatures from SDH

Armed with Theorem 6.2.1, we obtain from Protocol 1 a regular signature scheme secure in the
random oracle model by applying the Fiat-Shamir heuristic [51, 1]. Signatures obtained from a
proof of knowledge via the Fiat-Shamir heuristic are often called signatures of knowledge.

The resulting signature scheme is, in fact, also a group signature scheme, and we describe it
as such. In our construction we use a variant of the Fiat-Shamir heuristic, used also by Ateniese
et al. [6], where the challenge c rather than the values R1, . . . , R5 is transmitted in the signature;
the output of the random oracle acts as a checksum for those values not transmitted.

In describing the group signature, we use the terminology of Bellare et al. [15]. Consider a
bilinear group pair (G1, G2) with a computable isomorphism ψ, as in Section 2.1. Suppose further
that the SDH assumption holds on (G1, G2), and the Linear assumption holds on G1. The scheme
employs a hash function H : {0, 1}∗ → Zp, treated as a random oracle in the proof of security.

BBS.Kg(n). This randomized algorithm takes as input a parameter n, the number of members of
the group, and proceeds as follows. Select a generator g2 in G2 uniformly at random, and set
g1 ← ψ(g2). Select h R← G1\{1G1} and ξ1, ξ2

R← Z∗p, and set u, v ∈ G1 such that uξ1 = vξ2 = h.

Select γ R← Z∗p, and set w ← gγ2 .

Using γ, generate for each user i, 1 ≤ i ≤ n, an SDH tuple (Ai, xi): select xi
R← Z∗p, and set

Ai ← g
1/(γ+xi)
1 ∈ G1.

The group public key is gpk = (g1, g2, h, u, v, w). The private key of the group manager
(the party able to trace signatures) is gmsk = (ξ1, ξ2). Each user’s private key is her tuple
gsk[i] = (Ai, xi). No party is allowed to possess γ; it is only known to the private-key issuer.

BBS.Sig(gpk,gsk[i],M). Given a group public key gpk = (g1, g2, h, u, v, w), a user’s private signing
key gsk[i] = (Ai, xi), and a message M ∈ {0, 1}∗, compute the signature as follows:

1. Compute the values T1, T2, T3, R1, R2, R3, R4, R5 as specified in the first round of Proto-
col 1 (Equations (6.1) and (6.2)).

2. Compute a challenge c using the hash function as:

c← H(M,T1, T2, T3, R1, R2, R3, R4, R5) ∈ Zp . (6.9)

3. Using c construct the values sα, sβ, sx, sδ1 , sδ2 as in the third round of Protocol 1 (Equa-
tion (6.3)).

4. Output the signature σ, computed as σ ← (T1, T2, T3, c, sα, sβ, sx, sδ1 , sδ2).

BBS.Vf(gpk,M, σ). Given a group public key gpk = (g1, g2, h, u, v, w), a message M , and a group
signature σ, verify that σ is a valid signature as follows:

64

1. Use Equations (6.4)–(6.8) to re-derive R1, R2, R3, R4, and R5 as follows:

R̃1 ← usα · T−c1 R̃2 ← vsβ · T−c2 R̃4 ← T sx1 · u
−sδ1 R̃5 ← T sx2 · v

−sδ2 (6.10)

R̃3 ← e(T3, g2)sx · e(h,w)−sα−sβ · e(h, g2)−sδ1−sδ2 ·
(
e(T3, w)/e(g1, g2)

)c
.

2. Check that these, along with the other first-round values included in σ, give the chal-
lenge c, i.e., that

c
?= H(M,T1, T2, T3, R̃1, R̃2, R̃3, R̃4, R̃5) . (6.11)

Accepts if this check succeeds and reject otherwise.

BBS.Open(gpk, gmsk,M, σ). This algorithm is used for tracing a signature to a signer. It takes
as input a group public key gpk = (g1, g2, h, u, v, w) and the corresponding group manager’s
private key gmsk = (ξ1, ξ2), together with a message M and a signature σ = (T1, T2, T3, c,
sα, sβ, sx, sδ1 , sδ2) to trace, and proceeds as follows. First, verify that σ is a valid signature
onM . Second, consider the first three elements (T1, T2, T3) as a Linear encryption, and recover
the user’s A as A ← T3/(T

ξ1
1 · T

ξ2
2), following the decryption algorithm given at the end of

Section 2.2.3. If the group manager is given the elements {Ai} of the users’ private keys, he
can look up the user index corresponding to the identity A recovered from the signature.

Signature Length. A group signature in the system above comprises three elements ofG1 and six
elements of Zp. Using either the supersingular or MNT family of curves described in Section 2.3.5,
one can take p to be a 170-bit prime and use a group G1 where each element is 171 bits. Thus,
the total group signature length is 1533 bits or 192 bytes. With these parameters, security is
approximately the same as a standard 1024-bit RSA signature, which is 128 bytes. Using the
Barreto Naehrig curves of Section 2.3.5, we can instead take p to be a 160-bit prime. This gives
1443-bit group signatures with the same security level.

Performance. The pairings e(h,w), e(h, g2), and e(g1, g2) can be precomputed and their value
cached by signers and by verifiers. The signer can cache e(A, g2), and, when signing, compute
e(T3, g2) without evaluating a pairing. Accordingly, creating a group signature requires eight ex-
ponentiations (or multi-exponentiations) and no pairing computations. The verifier can derive R̃3

efficiently by collapsing the e(T3, g2)sx and e(T3, w)c pairings into a single e(T3, w
cgsx2) term. Thus

verifying a group signature requires six multi-exponentiations and one pairing computation. With
parameters selected as above, the exponents are in every case 170-bit numbers. For the signer, all
bases for exponentiation are fixed, which allows substantial further speedups by precomputation.

6.4 BBS Group Signature Security

We now turn to proving security of the BBS scheme. Bellare, Micciancio, and Warinschi [15] give
three properties that a group signature scheme must satisfy:

• correctness, which ensures that honestly-generated signatures verify and trace correctly;

• full-anonymity, which ensures that signatures do not reveal their signer’s identity; and

65

• full-traceability, which ensures that all signatures, even those created by the collusion of
multiple users and the group manager, trace to a member of the forging coalition.

For the details, see Bellare et al. [15]. A notable feature of the BMW definitions is that all keys
are generated and distributed by a trusted dealer. In many earlier schemes (e.g., that of Ateniese
et al. [6]), the key-generator is not fully trusted, and users engage in an interactive protocol with
him to derive their keys. We consider this further in Section 7.2.

We prove the security of our scheme using a variation of these properties. Specifically, we relax
the full-anonymity requirement. As presented [15, Section 2], the full-anonymity experiment allows
the adversary to query the opening (tracing) oracle before and after receiving the challenge σ. In
this respect, the experiment mirrors the indistinguishability experiment against an adaptive CCA2
adversary. If we term this experiment CCA2-full-anonymity, we can analogously define another
experiment, CPA-full-anonymity, in which the adversary cannot query the opening oracle. We
prove privacy in the weakened model that comprises the full-traceability and CPA-full-anonymity
experiments.

Access to the tracing functionality will likely be carefully controlled when group signatures are
deployed, so CPA-full-anonymity is a reasonable model to consider. In any case, anonymity and un-
linkability, the two traditional group signature security requirements implied by full anonymity [15,
Section 3], also follow from CPA-full-anonymity. Thus a fully-traceable and CPA-fully-anonymous
group signature scheme is still secure in the traditional sense.

In the statements of the theorem, we use big-O notation to elide the specifics of additive terms in
time bounds, noting that, for given groups G1 and G2, operations such as sampling, exponentiation,
and bilinear map evaluation are all constant-time.1

Theorem 6.4.1. The BBS group signature scheme is correct.

Proof. For any group public key gpk = (g1, g2, h, u, v, w), and for any user with key gsk[i] = (Ai, xi),
the key generation algorithm guarantees that Aγ+xi

i = g1, so (Ai, xi) is an SDH tuple for w = gγ2 .
A correct group signature σ is a proof of knowledge, which is itself a transcript of the SDH protocol
given in Section 6.2. Verifying the signature entails verifying that the transcript is correct; thus
Lemma 6.2.2 shows that σ will always be accepted by the verifier.

Moreover, an honest signer outputs, as the first three components of any signature σ, values
(T1, T2, T3) = (uα, vβ, Ai · hα+β) for some α, β ∈ Zp. These values form a Linear encryption
of Ai under public key (u, v, h), which the group manager, possessing the corresponding private
key (ξ1, ξ2), can always recover. Therefore any valid signature will always be opened correctly.

Theorem 6.4.2. If Linear encryption is (t′, ε′)-semantically secure on G1 then the BBS group
signature scheme is (t, qH , ε)-CPA-fully-anonymous, where ε = ε′ and t = t′ − qHΘ(1). Here qH is
the number of hash function queries made by the adversary and n is the number of members of the
group.

Proof. Suppose A is an algorithm that (t, qH , ε)-breaks the anonymity of the group signature
scheme. We show how to construct a t + qHΘ(1)-time algorithm B that breaks the semantic
security of Linear encryption from Section 2.2.3 with advantage at least ε.

1This big-O notation can be made more precise by considering a family of bilinear map groups indexed by a
security parameter λ. The only complication that arises is that the basic operations are no longer all Θ(1) but, e.g.,
O(λ3) for pairing evaluation.

66

Algorithm B is given a Linear encryption public key (u, v, h). It generates the remaining compo-
nents of the group signature public key by following the group signature’s key generation algorithm.
It then provides to A the group public key (g1, g2, h, u, v, w), and the users’ private keys (Ai, xi).

At any time, A can query the random oracle H. Algorithm B responds with elements selected
uniformly at random from Zp, making sure to respond identically to repeated queries.

Algorithm A requests its full-anonymity challenge by providing two indices, i0 and i1, and a
message M . Algorithm B, in turn, requests its indistinguishability challenge by providing the two
user private keys Ai0 and Ai1 as the messages whose Linear encryption it must distinguish. It
is given a Linear encryption (T1, T2, T3) of Aib , where bit b is chosen by the Linear encryption
challenger.

Algorithm B generates from this Linear encryption a protocol transcript (T1, T2, T3, R1, R2, R3,
R4, R5, c, sα, sβ, sx, sδ1 , sδ2) by means of the simulator of Lemma 6.2.3. This simulator can generate
a trace given (T1, T2, T3), even though B does not know α, β, or x. Since (T1, T2, T3) is a random
Linear encryption of Aib , the remainder of the transcript is distributed exactly as in a real protocol
with a prover whose secret A is Aib .

Algorithm B then patches H at (M,T1, T2, T3, R1, R2, R3, R4, R5) to equal c. It encounters
a collision only with negligible probability. In case of a collision, B declares failure and exits.
Otherwise, it returns the valid group signature σ ← (T1, T2, T3, c, sα, sβ, sx, sδ1 , sδ2) to A.

Finally, A outputs a bit b′. Algorithm B returns b′ as the answer to its own challenge. Since the
encryption of Aib is turned by B into a group signature by user ib, B answers its challenge correctly
whenever A does.

The keys given to A, and the answers to A’s queries, are all valid and properly distributed.
Therefore A succeeds in breaking the anonymity of the group signature σ with advantage ε, and B
succeeds in distinguishing the Linear encryption (T1, T2, T3) with the same advantage.

Algorithm B’s running time exceeds A’s by the amount it takes to answer A’s queries. Each
hash query can be answered in constant time, and there are at most qH of them. Algorithm B can
also create the challenge group signature σ in constant time. If A runs in time t, B runs in time
t+ qHΘ(1).

The following theorem proves full traceability of our system. The proof is based on the Forking
Lemma [103].

Theorem 6.4.3. If SDH is (q, t′, ε′)-hard on (G1, G2), then the BBS group signature scheme is
(t, qH , qS, n, ε)-fully-traceable, where n = q − 1, ε = 4n

√
2ε′qH + n/p, and t = Θ(1) · t′. Here qH is

the number of hash function queries made by the adversary, qS is the number of signing queries
made by the adversary, and n is the number of members of the group.

Proof. Our proof proceeds in three parts. First, we describe a framework for interacting with an
algorithm that wins a full-traceability game. Second, we show how to instantiate this framework
appropriately for different types of such breaker algorithms. Third, we show how to apply the
Forking Lemma [103] to the framework instances, obtaining SDH solutions.

Suppose we are given an algorithm A that breaks the full-traceability of the group signature
scheme. We describe a framework for interacting with A.

Setup. We are given groups (G1, G2) as above. We are given generators g1 and g2 such that
g1 = ψ(g2). We are also given w = gγ2 ∈ G2, and a list of pairs (Ai, xi) for i = 1, . . . , n. For
each i, either xi = ?, indicating that the xi corresponding to Ai is not known, or else (Ai, xi)

67

is an SDH pair, and e(Ai, wgxi2) = e(g1, g2). We pick a generator h R← G1 \ {1G1} and values

ξ1, ξ2
R← Z∗p, and compute u, v ∈ G1 such that uξ1 = vξ2 = h. We then run A, giving it the

group public key (g1, g2, h, u, v, w) and the group manager’s private key (ξ1, ξ2). We answer
its oracle queries as follows.

Hash Queries. When A asks for the hash of (M,T1, T2, T3, R1, R2, R3, R4, R5), we respond with
a random element of G1, memoizing the answer in case the same query is made again.

Signature Queries. Algorithm A asks for a signature on message M by a key at index i. If
xi 6= ?, we follow the group signing procedure with key (Ai, xi) to obtain a signature σ

on M , and return σ to A. If xi = ?, we pick α, β
R← Zp, set T1 ← uα, T2 = vβ, and

T3 ← Agα+β
1 and run the Protocol 1 simulator with values T1, T2, T3. The simulator returns

a transcript (T1, T2, T3, R1, R2, R3, R4, R5, c, sα, sβ, sx, sδ1 , sδ2), from which we derive a group
signature σ = (T1, T2, T3, c, sα, sβ, sx, sδ1 , sδ2). In addition, we must patch the hash oracle at
(M,T1, T2, T3, R1, R2, R3, R4, R5) to equal c. If this causes a collision, i.e., if we previously set
the oracle at this point to some other c′, we declare failure and exit. Otherwise, we return σ
to A. A signature query can trigger a hash query, which we charge against A’s hash query
limit to simplify the accounting.

Private Key Queries. Algorithm A asks for the private key of the user at some index i. If xi 6= ?,
we return (Ai, xi) to A. Otherwise, we declare failure and exit.

Output. Finally, if algorithm A is successful, it outputs a forged group signature σ = (T1, T2, T3,
c, sα, sβ, sx, sδ1 , sδ2) on a message M . We use the group manager’s key (ξ1, ξ2) to trace σ,
obtaining some A∗. If A∗ 6= Ai for all i, we output σ. Otherwise, A∗ = Ai∗ for some i∗. If
si∗ = ?, we output σ. If, however, si∗ 6= ?, we declare failure and exit.

As implied by the output phase of the framework above, there are two types of forger algorithm.
Type I forgers output a forgery σ on a message M that traces to some identity A∗ /∈ {A1, . . . , An}.
Type II forgers output a forgery that traces to an identity A∗ such that A∗ = Ai∗ for some i∗,
and the forger did not make a private-key oracle query at i∗. We treat these two types of forger
differently.

Given a q-SDH instance (g′1, g
′
2, (g

′
2)γ , (g′2)γ

2
, . . . , (g′2)γ

q
), we apply the technique of Boneh and

Boyen’s Lemma 3.2 [23] that we recalled in Section 3.4.1, obtaining generators g1 ∈ G1, g2 ∈ G2,
w = gγ2 , and q − 1 SDH pairs (Ai, xi) such that e(Ai, wgxi2) = e(g1, g2) for each i. Any SDH
pair (A, x) besides these q − 1 pairs can be transformed into a solution to the original q-SDH
instance, again using Boneh and Boyen’s Lemma 3.2.

Type I Forger. Against a (t, qH , qS, n, ε)-Type I forger A, we turn an instance of (n + 1)-SDH
into values (g1, g2, w), and n SDH pairs (Ai, xi). We then apply the framework to A with these
values. Algorithm A’s environment is perfectly simulated, and the framework succeeds whenever
A succeeds, so we obtain a Type I forgery with probability ε.

Type II Forger. Against a (t, qH , qS, n, ε)-Type II forger A, we turn an instance of n-SDH into
values (g1, g2, w), and n − 1 SDH pairs. These pairs we distribute amongst n pairs (Ai, xi). The
unfilled entry at random index i∗ we fill as follows. Pick Ai∗

R← G1, and set xi∗ ← ?, a placeholder

68

value. Now we run A under the framework. The framework declares success only if A never queries
the private key oracle at i∗, but forges a group signature that traces to Ai∗ . It is easy to see that the
framework simulation is perfect unless A queries the private key oracle at i∗. Because the protocol
simulator invoked by the signing oracle produces group signatures that are indistinguishable from
those of a user whose SDH tuple includes Ai∗ , the value of i∗ is independent of A’s view unless and
until it queries the private key oracle at i∗. (Since the hash oracle takes as input nine elements
of G1 or G2 besides the message M , the probability of collision in simulated signing queries is
bounded above by (qHqS + q2

S)/p9. Assuming qS � qH � p = |G1|, this probability is negligible,
and we ignore it in the analysis.) Finally, when A outputs its forgery σ, implicating some user i
whose private key A has not requested, the value of i∗ (amongst the users whose keys it has not
requested) remains independent of A’s view. It is easy to see, then, that A outputs a forged group
signature that traces to user i∗ with probability at least ε/n.

Now we show how to use the application of our framework to a Type I or Type II adversary A to
obtain another SDH pair, contradicting the SDH assumption. The remainder of this proof follows
closely the methodology and notation of the Forking Lemma [103].

Let A be a forger (of either type) for which the framework succeeds with probability ε′. From
here on, we abbreviate signatures as (M,σ0, c, σ1), where σ0 = (T1, T2, T3, R1, R2, R3, R4, R5), the
values given, along with M , to the random oracle H, and from which c is derived, and where
σ1 = (sα, sβ, sx, sδ1 , sδ2). Those values normally omitted from the signature can be recovered as in
Equation (6.10).

A run of the framework on A is completely described by the randomness string ω used by the
framework andA, and by the vector f of responses made by the hash oracle. Let S be the set of pairs
(ω, h) such that the framework, invoked on A, completes successfully with forgery (M,σ0, c, σ1),
and A queried the hash oracle on (M,σ0). In this case, let Ind(ω, f) be the index of f at which A
queried (M,σ0). We define ν = Pr[S] = ε′ − 1/p, where the 1/p term accounts for the possibility
that A guessed the hash of (M,σ0) without the hash oracle’s help. For each j, 1 ≤ j ≤ qH , let
Sj be the set of pairs (ω, h) as above, and such that Ind(ω, f) = j. Let J be the set of auspicious
indices j such that Pr[Sj | S] ≥ 1/(2qH). Then Pr[Ind(ω, f) ∈ J | S] ≥ 1/2.

Let f |ba be the restriction of f to its elements at indices a, a + 1, . . . , b. For each j ∈ J , we
consider the heavy-rows lemma [103, Lemma 1] with rows X = (ω, f |j−1

1) and columns Y = (f |qHj).
Clearly Pr(x,y)[(x, y) ∈ Sj] ≥ ν/(2qH). Let the heavy rows Ωj be those rows such that, ∀(x, y) ∈
Ωj : Pry′ [(x, y′) ∈ Sj] ≥ ν/(4qH). Then, by the heavy-rows lemma, Pr[Ωj | Sj] ≥ 1/2. A simple
argument then shows that Pr[∃j ∈ J : Ωj ∩ Sj | S] ≥ 1/4.

Thus, with probability ν/4, the framework, invoked on A, succeeds and obtains a forgery
(M,σ0, c, σ1) that derives from a heavy row (x, y) ∈ Ωj for some j ∈ J , i.e., an execution (ω, f)
such Prf ′

[
(ω, f ′) ∈ Sj

∣∣ f ′|j−1
1 = f |j−1

1

]
≥ ν/(4qH).

If we now rewind the framework and A to the jth query, and proceed with an oracle vector f ′

that differs from f from the jth entry on, we obtain, with probability at least ν/(4qH), a successful
framework completion and a second forgery (M,σ0, c

′, σ′1), with (M,σ0) still queried at A’s jth
hash query.

By using the extractor of Lemma 6.2.4, we obtain from (σ0, c, σ1) and (σ0, c
′, σ′1) an SDH tuple

(A, x). The extracted A is the same as the A in the Linear encryption (T1, T2, T3) in σ0. The
framework declares success only when the A encrypted in (T1, T2, T3) is not amongst those whose x
it knows. Therefore, the extracted SDH tuple (A, x) is not amongst those that we ourselves created,
and can be transformed, again following the technique of Boneh and Boyen’s Lemma 3.2 [23], to

69

an answer to the posed q-SDH problem.
Putting everything together, we have proved the following claims.

Claim 18. Using a (t, qH , qS, n, ε)-Type I forger A, we solve an instance of (n + 1)-SDH with
probability (ε− 1/p)2/(16qH) in time Θ(1) · t.

Claim 19. Using a (t, qH , qS, n, ε)-Type II forger A, we solve an instance of n-SDH with probability
(ε/n− 1/p)2/(16qH) in time Θ(1) · t.

We can guess which of the two forger types a particular forger is with probability 1/2; then
assuming the more pessimistic scenario of Claim 2 proves the theorem.

6.5 Conclusions

We presented a group signature scheme based on the Strong Diffie-Hellman (SDH) and Linear
assumptions. The signature makes use of a bilinear map e : G1 × G2 → GT . Instantiated over
appropriate curves are used, the group G1 has a short representation and consequently we get a
group signature whose length is under 200 bytes — less than twice the length of an ordinary RSA
signature (128 bytes) with comparable security. Signature generation requires no bilinear pairing
computations, and verification requires a single pairing; both also require a few exponentiations
with short exponents.

70

Chapter 7

Group Signature Variants and
Extensions

7.1 Introduction

The BBS group signature scheme presented in Chapter 6 is very flexible. In this chapter, we show
how to add a number of features to it.

We first consider a modification to key issuing intended to achieve a stronger exculpability
guarantee. In many group signature schemes, users obtain their private keys by engaging in a JOIN
protocol with a key issuer. At the conclusion of this protocol, the user obtains the private key she
will use to sign, but the key issuer does not. As a result, the key issuer cannot frame the user using
her key, a property known as strong exculpability. (In the Bellare-Micciancio-Warinschi model [15],
the key issuer is fully trusted.)

For the remainder of the chapter, we consider on revocation mechanisms for group signatures.
Group signature research has focused more on key issuing than revocation. However, in the recent
applications described in Section 6.1, whereas it seems reasonable to trust the device manufacturers
that issue the signing keys, revocation is critical: If, for example, the private key in a TCG chip
is exposed, all signatures from that chip must be invalidated since otherwise attestation becomes
meaningless.

Consider three natural communication models for revoking a user’s signing capabilities, without
affecting other group members:

1. The simplest method revokes user i by issuing a new signature verification key and giving
each signer, except user i, a new signing key. This requires an individual secret message to
each signer (e.g., TCG chip) and a public broadcast message to all verifiers.

2. A better revocation mechanism sends a single short public broadcast message to all sign-
ers and verifiers. A recent system by Camenisch and Lysyanskaya [32], based on dynamic
accumulators, provides such a mechanism.

3. Brickell [30] proposes a simpler mechanism where revocation messages are only sent to sig-
nature verifiers, so that there is no need ever to communicate with an end-user machine. A
similar mechanism was considered by Ateniese et al. [8] and Kiayias et al. [73]. We refer to
this as Verifier-Local Revocation (VLR) group signatures.

71

Of these models, the first can trivially be applied to any group signature scheme.
The second model can also be applied to BBS group signatures, as we show in Section 7.3. In

particular, we adapt the accumulator-based revocation mechanism of Camenisch and Lysyanskaya
to the BBS scheme and its underlying SDH problem.

Finally, we construct VLR group signatures based on BBS. Signatures in our VLR system
are about the same length as standard RSA signatures of comparable security. For our proof of
security, we give a precise security definition, which is modeled on the Bellare-Micciancio-Warinschi
framework [15].

7.2 Strong Exculpability for BBS

Exculpability, a group signature security property introduced by Ateniese and Tsudik [7], is infor-
mally defined by Bellare, Micciancio, and Warinschi [15] as follows: No member of the group and
not even the group manager — the entity that is given the tracing key — can produce signatures on
behalf of other users. Thus, no user can be framed for producing a signature he did not produce.
Bellare et al. argue that a group signature secure in the sense of full-traceability also has the excul-
pability property. Thus, in the terminology of Bellare et al. [15], our BBS group signature scheme
has the exculpability property.

A stronger notion of exculpability is considered in much of the group signature literature — e.g.,
in Ateniese et al. [6]. In this stronger version, it is required that even the entity that issues user
keys cannot forge signatures under users’ keys. Formalizations of strong exculpability have recently
been proposed by Kiayias and Yung [74, 75] and by Bellare, Shi, and Zhang [18].

To achieve this stronger property the system of Ateniese et al. [6] uses a protocol (called JOIN)
to issue a key to a new user. At the end of the protocol, the key issuer does not know the full
private key given to the user and therefore cannot forge signatures under the user’s key.

The BBS group signature scheme can be extended to provide strong exculpability using a similar
mechanism. Instead of simply giving user i the private key (g1/(γ+xi)

1 , xi), the user and key issuer
engage in a JOIN protocol where at the end of the protocol user i has a triple (Ai, xi, yi) such that
Aγ+xi
i hyi1 = g1 for some public parameter h1. The value yi is chosen by the user and is kept secret

from the key issuer. The ZKPK of Section 6.2 can be modified to prove knowledge of such a triple.
The resulting system is a short group signature with strong exculpability.

The JOIN protocol envisaged above would mean that the key generator no longer knows users’
private keys, though it could still generate different keys and ascribe them to the users. In the
Girault hierarchy [64], this is a move from level 1 to level 2. To ensure that the authority will be
caught if it attempts to frame users with self-generated keys — level 3 in the hierarchy — requires
that the users sign their (public) group membership certificate, and that the the tracing authority
produce a proof of correct tracing.

7.3 Revocation for BBS using Accumulators

We now discuss how to revoke users in the BBS group signature scheme of Section 6.3. A number of
revocation mechanisms for group signatures have been proposed [8, 32]. In this section, we describe
a revocation mechanism along the lines of Camenisch and Lysyanskaya’s [32], based on dynamic
accumulators.

72

Recall that the group’s public key in our scheme is (g1, g2, h, u, v, w) where w = gγ2 ∈ G2 for
random γ ∈ Z∗p and random h, u, v ∈ G1. User i’s private key is a pair (Ai, xi) where Ai =

g
1/(γ+xi)
1 ∈ G1.

Now, suppose we wish to revoke users 1, . . . , r without affecting the signing capability of other
users. To do so, the revocation authority publishes a revocation list containing the private keys of
all revoked users. More precisely, rl = {(A∗1, x1), . . . , (A∗r, xr)}, where A∗i = g

1/(γ+xi)
2 ∈ G2. Note

that Ai = ψ(A∗i). Here the SDH secret γ is needed to compute the A∗i ’s. In the case that G1 and G2

are the same group we have Ai = A∗i and consequently the revocation list can be derived directly
from the private keys of revoked users without having to use γ.

The list rl is given to all signers and verifiers in the system. It is used to update the group public
key used to verify signatures. Let y =

∏r
i=1(γ + xi) ∈ Z∗p. The new public key is (ḡ1, ḡ2, h, u, v, w̄)

where ḡ1 = g
1/y
1 , ḡ2 = g

1/y
2 , and w̄ = (ḡ2)γ . We show that, given rl, anyone can compute this new

public key, and any unrevoked user can update her private key locally so that it is well formed with
respect to this new public key. Revoked users are unable to do so.

We show how to revoke one private key at a time. By repeating the process r times (as the
revocation list grows over time) we can revoke all private keys on the Revocation List. We first show
how given the public key (g1, g2, h, u, v, w) and one revoked private key (A∗1, x1) ∈ rl anyone can
construct the new public key (ĝ1, ĝ2, h, u, v, ŵ) where ĝ1 = g

1/(γ+x1)
1 , ĝ2 = g

1/(γ+x1)
2 , and ŵ = (ĝ2)γ .

This new public key is constructed simply as:

ĝ1 ← ψ(A∗1) ĝ2 ← A∗1 and ŵ ← g2 · (A∗1)−x1 ;

then ĝ1 = ψ(A1)∗ = g
1/(γ+x1)
1 and ŵ = g2 · (A∗1)−x1 = g

1− x1
γ+x1

2 = (A∗1)γ = (ĝ2)γ , as required.
Next, we show how unrevoked users update their own private keys. Consider an unrevoked

user whose private key is (A, x). Given a revoked private key, (A∗1, x1) the user computes Â ←
ψ(A∗1)1/(x−x1)/A1/(x−x1) and sets his new private key to be (Â, x). Then, indeed,

(Â)γ+x = ψ(A∗1)
γ+x
x−x1

/
A

γ+x
x−x1 = ψ(A∗1)

(γ+x1)+(x−x1)
x−x1

/
g

1
x−x1
1 = ψ(A∗1) = ĝ1 ,

as required. Hence, (Â, x) is a valid private key with respect to (ĝ1, ĝ2, h, u, v, ŵ).
By repeating this process r times (once for each revoked key in rl) anyone can compute the

updated public key (ḡ1, ḡ2, h, u, v, w̄) defined above. Similarly, an unrevoked user with private key
(A, x) can compute his updated private key (Ā, x) where Ā = (ḡ1)1/(γ+x). We note that it is possible
to process the entire rl at once (as opposed to one element at a time) and compute (ḡ1, ḡ2, h, u, v, w̄)
directly; however this is less efficient when keys are added to rl incrementally.

A revoked user cannot construct a private key for the new public key (ḡ1, ḡ2, h, u, v, w̄). In fact,
the proof of Theorem 6.4.3 shows that, if a revoked user can generate signatures for the new public
key (ḡ1, ḡ2, h, u, v, w̄), then that user can be used to break the SDH assumption. Very briefly, the
reason is that given an SDH challenge one can easily generate a public key tuple (ḡ1, ḡ2, h, u, v, w̄)
along with the private key for a revoked user (g1/(x+γ)

1 , x). Then an algorithm that can forge
signatures given these two tuples can be used to solve the SDH challenge.

In the revocation mechanism above a user is revoked by the publication of a value that exposes
that user’s private key. Consequently, it is crucial that updates to the revocation list be sent
simultaneously to all verifiers. Otherwise, someone who obtains a new entry on the revocation
list can fool a verifier who has not yet updated his copy of the revocation list. The verifier-local
revocation method described in the next section addresses this limitation.

73

7.4 Verifier-Local Revocation

In a group signature with verifier-local revocation, signers are stateless, and revocation messages
are processed by the verifiers alone [30, 8, 73]. Distributing revocation information only to the
signers simplifies revocation when verifiers are fewer than signers and, when signing functionality is
implemented in a tamper-resistant module, allowing signers to be stateless gives added robustness
and security. Therefore, verifier-local revocation is advantageous for privacy-preserving attestation
in the trusted computing environment.

We implement verifier-Local group signatures by providing to the signature verification algo-
rithm the Revocation List (rl) as additional argument. The rl contains a token for each revoked
user. The verification algorithm accepts all signatures issued by unrevoked users and reveals no
information about which unrevoked user issued the signature. However, if a user is ever revoked
(by having his revocation token added to the rl), signatures from that user are no longer accepted.
It follows that signatures from a revoked user become linkable: To test that two signatures were
issued by the same revoked user, verify the signatures once using the rl before the user is revoked
and once using the rl after. In the case of trusted computing, for example, users who break the
tamper resistance of their TCG chip and are revoked would lose their privacy by design.

Our specific VLR group signatures have an additional useful property: given a user’s private
key it is easy to derive that user’s revocation token — the revocation token is the left half of the
private key. Hence, any private key that is published on the web can be trivially added to the
rl and revoked. This potentially eliminates the need for a trusted revocation authority. Instead,
revocation could be done by just scanning the web and newsgroups for exposed private keys and
telling all signature verifiers to add these keys to their rl. We discuss this in more detail in the
next section.

7.4.1 Definitions

Formally, a VLR group signature scheme comprises three algorithms, Kg, Sig, and Vf, which behave
as follows:

VLR.Kg(n). This randomized algorithm takes as input a parameter n, the number of members
of the group. It outputs a group public key gpk, an n-element vector of user keys gsk =
(gsk[1],gsk[2], . . . ,gsk[n]), and an n-element vector of user revocation tokens grt, similarly
indexed.

VLR.Sig(gpk,gsk[i],M). The (randomized) signing algorithm takes as input the group public
key gpk, a private key gsk[i], and a message M ∈ {0, 1}∗, and returns a signature σ.

VLR.Vf(gpk, rl, σ,M). The verification algorithm takes as input the group public key gpk, a set of
revocation tokens rl (whose elements form a subset of the elements of grt), and a purported
signature σ on a message M . It returns either valid or invalid. The latter response can
mean either that σ is not a valid signature, or that the user who generated it has been revoked.

Implicit Tracing Algorithm Any VLR group signature scheme has an associated implicit trac-
ing algorithm that, using a secret tracing key, can trace a signature to at least one group member
who generated it. The vector of revocation tokens, grt, functions as this secret tracing key. Given a

74

valid message-signature pair (M,σ), a party possessing all the revocation tokens grt can determine
which user issued the signature using the following algorithm:

1. For each i = 1, . . . , n run the verification algorithm on M,σ with revocation list rl = {grt[i]}.

2. Output the index of the first user for which the verification algorithm says invalid. Out-
put fail if the signature verifies properly for all n users.

Our security definitions below explain why this is a correct tracing algorithm. The algorithm above
demonstrates that the grt vector can function as a secret tracing key, if so desired. Note that grt
in the BS scheme can be derived from just one value so that there is no need to store a large vector
as a tracing key.

In the constructions we have in mind, a user can derive her revocation token from her private
key, and can therefore determine whether her key was used to generate a particular signature. We
refer to this as selfless-anonymity : a group member can tell whether she generated a particular
signature σ, but if she didn’t she learns nothing else about the origin of σ. We describe a new
security model that captures this notion. We use the framework of Bellare et al. [15].

A secure VLR group signature scheme must satisfy three requirements: correctness, traceability,
and selfless-anonymity. We describe each in turn.

Correctness This requires that, for all (gpk,gsk,grt) generated by the generation algorithm,
every signature generated by a user verify as valid, except when the user is revoked; or, formally,
that

Vf(gpk, rl, Sig(gpk,gsk[i],M),M) = valid ⇐⇒ grt[i] /∈ rl .

Traceability We say that a VLR group signature scheme is traceable if no adversary can win the
traceability game. In the traceability game, the adversary’s goal is to forge a signature that cannot
be traced to one of the users in his coalition using the implicit tracing algorithm above. Let n be
a given group size. The traceability game, between a challenger and an adversary A, is defined as
follows.

Setup. The challenger runs algorithm Kg(n), obtaining group parameters gpk, gsk, and grt.
He provides the adversary A with gpk and grt, and sets U ← ∅.

Queries Algorithm A can make queries of the challenger, as follows.

Signing. Algorithm A requests a signature on an arbitrary message M for the user at
index i, where 1 ≤ i ≤ n. The challenger computes σ ← Sig(gpk,gsk[i],M) and
returns the signature σ to A.

Corruption. Algorithm A requests the private key of the user at index i, 1 ≤ i ≤ n.
The challenger appends i to U , the adversary’s coalition, and responds with gsk[i].

Response. Finally, forger A outputs a message M∗, a set rl∗ of revocation tokens, and a
signature σ∗.

The forger wins if: (1) σ∗ is accepted by the verification algorithm as a valid signature on M∗

with revocation-token set rl∗; (2) σ∗ traces (using the implicit tracing algorithm above) to
some user outside of the coalition U\rl∗, or the tracing algorithm fails; and (3) σ∗ is nontrivial,
i.e., A did not obtain σ∗ by making a signing query at M∗.

75

We denote by Advvlr-trace
VLR,A the probability that A wins the game. The probability is taken over the

coin tosses of A and the randomized key generation and signing algorithms.
The security proof for our system is set in the random oracle model [16] and therefore we include

in our security definitions an extra parameter qH denoting the number of random oracle queries
that the adversary issues.

Definition 7.4.1. An aggregate forger A (t, qH , qS, n, ε)-breaks traceability in an n-user VLR group
signature scheme if: A runs in time at most t; A makes at most qH hash oracle queries and at most
qS signing queries; and Advvlr-trace

VLR,A is at least ε.

Selfless-anonymity In the selfless-anonymity game, the adversary’s goal is to determine which
of two keys generated a signature. He is not given access to either key. The game is defined as
follows.

Setup. The challenger runs the Kg algorithm, obtaining group parameters gpk, gsk, and
grt. It provides the adversary A with gpk.

Queries. Algorithm A can make queries of the challenger, as follows.

Signing. Algorithm A requests a signature on an arbitrary message M for the user at
index i, where 1 ≤ i ≤ n. The challenger computes σ ← Sig(gpk,gsk[i],M) and
returns the signature σ to A.

Corruption. Algorithm A request the private key of the user at index i, 1 ≤ i ≤ n.
The challenger responds with gsk[i].

Revocation. Algorithm A can request the revocation token of the user at index i,
1 ≤ i ≤ n. The challenger responds with grt[i].

Challenge. Algorithm A outputs a message M and two indices i0 and i1. It must have made
neither a corruption nor a revocation query at either index. The challenger chooses a
bit b R← {0, 1} uniformly at random, computes a signature on M by user ib as σ∗ ←
Sig(gpk,gsk[ib],M), and provides σ∗ to A.

Restricted Queries. After obtaining the challenge, algorithm A is allowed to make addi-
tional queries of the challenger, restricted as follows.

Signing. Algorithm A can make signing queries as before.
Corruption. As before, but A cannot make corruption queries at i0 and i1.
Revocation. As before, but A cannot make revocation queries at i0 and i1.

Output. Finally, A outputs a bit b′, its guess of b. The adversary wins if b′ = b.

We define A’s advantage in winning the game as Advvlr-sanon
VLR,A as |Pr[b = b′]−1/2|. The probability

is taken over the coin tosses of A, of the randomized key generation and signing algorithms, and
the choice of b. Note that A can make no more than n− 2 corruption and revocation queries.

Definition 7.4.2. An aggregate adversary A (t, qH , qS, n, ε)-breaks selfless-anonymity in an n-user
VLR group signature scheme if: A runs in time at most t; A makes at most qH queries to the hash
function and at most qS signing queries; and Advvlr-sanon

VLR,A is at least ε.

Definition 7.4.3. A group signature scheme with verifier-local revocation is (t, qH , qS, n, ε) secure
in the VLR security model if: it is correct; no algorithm (t, qH , qS, n, ε)-breaks its traceability; and
no algorithm (t, qH , qS, n, ε)-breaks its selfless-anonymity.

76

We note that a signature scheme that satisfies the VLR security model above is existentially
unforgeable under a chosen message attack. This follows immediately from the traceability game.

7.4.2 Short VLR Group Signatures from SDH

In this subsection, we describe in detail the BS VLR group signature scheme. (In the next subsec-
tion, we give intuition for how the scheme is derived.) As with the BBS group signature scheme of
Section 6.3, we base security on the SDH and Linear assumptions.

Consider bilinear groups (G1, G2) with isomorphism ψ and respective generators g1 and g2, as
in Section 2.1. The scheme employs hash functions H0 and H, with respective ranges G2

2 and Zp,
treated as random oracles.

BS.Kg(n). The key generation algorithm takes as input n, the number of user keys to generate. It
proceeds as follows:

1. Select a generator g2 in G2 uniformly at random, and set g1 ← ψ(g2). (In the unlikely
case that e(ψ(g2), g2) = 1, repeat this step; see Section 2.1.2.)

2. Select γ R← Z∗p and set w = gγ2 .

3. Using γ, generate for each user an SDH tuple (Ai, xi) by selecting xi
R← Z∗p such that

γ + xi 6= 0, and setting Ai ← g
1/(γ+xi)
1 .

The group public key is gpk = (g1, g2, w). Each user’s private key is her tuple gsk[i] = (Ai, xi).
The revocation token corresponding to a user’s key (Ai, xi) is grt[i] = Ai. The algorithm
outputs (gpk,gsk,grt). No party is allowed to possess γ; it is only known to the private-key
issuer.

BS.Sig(gpk,gsk[i],M). The signing algorithm takes as input a group public key gpk = (g1, g2, w),
a user private key gsk[i] = (Ai, xi), and a message M ∈ {0, 1}∗, and proceeds as follows.

1. Pick a random nonce r R← Zp. Obtain generators (û, v̂) in G2 from H0 as

(û, v̂)← H0(gpk,M, r) ∈ G2
2 , (7.1)

and compute their images in G1:

u← ψ(û) , v ← ψ(v̂) .

2. Select an exponent α R← Zp and compute:

T1 ← uα and T2 ← Aiv
α . (7.2)

3. Set δ ← xiα ∈ Zp. Pick blinding values rα, rx, and rδ
R← Zp.

4. Compute helper values R1, R2, and R3:

R1 ← urα R3 ← T rx1 · u
−rδ

R2 ← e(T2, g2)rx · e(v, w)−rα · e(v, g2)−rδ .
(7.3)

77

5. Compute a challenge value c ∈ Zp using H:

c← H(gpk,M, r, T1, T2, R1, R2, R3) ∈ Zp . (7.4)

6. Compute sα = rα + cα, sx = rx + cxi, and sδ = rδ + cδ ∈ Zp.

Output the signature σ ← (r, T1, T2, c, sα, sx, sδ).

BS.Vf(gpk, rl, σ,M). The verification algorithm takes as input a group public key gpk = (g1, g2, w),
a set rl of revocation tokens (each an element of G1), a purported signature σ = (r, T1, T2, c,
sα, sx, sδ), and a message M ∈ {0, 1}∗, and proceeds in two phases. First, it ensures that the
signature σ is valid; then it ensures that σ was not generated by a revoked user. It accepts
only if both conditions hold.

1. Signature Check. Check that σ is a valid signature, as follows.

1. Compute û and v̂ using equation (7.1), and their images u and v in G1:

u← ψ(û) , v ← ψ(v̂) .

2. Re-derive R1, R2, and R3 as:

R̃1 ← usα/T c1 R̃3 ← T sx1 u−sδ

R̃2 ← e(T2, g2)sxe(v, w)−sαe(v, g2)−sδ ·
(
e(T2, w)/e(g1, g2)

)c
.

(7.5)

3. Check that the challenge c is correct:

c
?= H(gpk,M, r, T1, T2, R̃1, R̃2, R̃3) . (7.6)

If it is, accept. Otherwise, reject.

2. Revocation Check. For each element A ∈ rl, check whether A is encoded in (T1, T2) by
checking if

e(T2/A, û) ?= e(T1, v̂) .

If no element of rl is encoded in (T1, T2), the signer of σ has not been revoked.

The algorithm outputs valid if both phases accept, invalid otherwise.

Signature Length A group signature in the system above comprises two elements of G1 and five
elements of Zp. Using either the supersingular or MNT family of curves described in Section 2.3.5,
one can take p to be a 170-bit prime and use a group G1 where each element is 171 bits. Thus,
the total group signature length is 1192 bits or 149 bytes. With these parameters, security is
approximately the same as a standard 1024-bit RSA signature, which is 128 bytes. Using the
Barreto Naehrig curves of Section 2.3.5, we can instead take p to be a 160-bit prime. This gives
1122-bit group signatures with the same security level.

78

Performance Signature generation requires two applications of the isomorphism ψ. Computing
the isomorphism takes roughly the same time as an exponentiation in G1 (using fast computa-
tions of the trace map). Thus, signature generation requires about 8 exponentiations (or multi-
exponentiations) and 2 bilinear map computations. Signature verification takes 6 exponentiations
and 3 + 2|rl| computations of the bilinear map. A far more efficient revocation check algorithm,
whose running time is independent of |rl|, is described in Section 7.4.5.

We now prove the correctness of the BS scheme. The proofs of the selfless-anonymity and
traceability are given in Section 7.4.4.

Theorem 7.4.4. The BS VLR signature scheme is correct, as defined in equation (7.4.1).

Proof. Consider public parameters gpk = (g1, g2, w); secret-key vector gsk where, for each i,
gsk[i] = (Ai, xi), an SDH tuple, i.e., a tuple satisfying e(Ai, wgxi2) = e(g1, g2); and revocation-
token list grt where grt[i] = Ai, as output by the key generation algorithm.

An honest signer with private key (Ai, xi) generates a signature (r, T1, T2, c, sα, sx, sδ) by follow-
ing the signing algorithm described above. In particular, the signer computes the generators û and
v̂ according to equation (7.1), so the verifier uses the same generators. Now, the first phase of the
signature verification algorithm accepts a signature if the output of H equals the challenge c. This
will only be true (except with negligible probability) when all inputs to H are exactly the same for
the verifier as for the signer. An honest signer’s signature includes all these inputs except R1, R2,
and R3, which are re-derived by the verifier. We must therefore show that the values re-derived by
the verifier using equations (7.5) equal those derived by the signer using equations (7.3). First,

R̃1 = usα/T c1 = urα+cα/(uα)c = urα = R1 ,

so R̃1 = R1. Further,

R̃3 = T sx1 u−sδ = (uα)rx+cxi · u−rδ−cxiα = (uα)rx · u−rδ = T rx1 · u
−rδ = R3 ,

so R̃3 = R3. Finally,

R̃2 = e(T2, g2)sx · e(v, w)−sα · e(v, g2)−sδ ·
(
e(T2, w)
e(g1, g2)

)c
=
(
e(T2, g2)rx · e(v, w)−rα · e(v, g2)−rδ

)
×
(
e(T2, g2)xi · e(v, w)−α · e(v, g2)−xiα · e(T2, w)

e(g1, g2)

)c
= R2 ·

(e(T2v
−α, wgxi2)

e(g1, g2)

)c
= R2 ·

(e(Ai, wgxi2)
e(g1, g2)

)c
= R2 ,

so R̃2 = R2. The last equality follows from the SDH equation. Thus (7.6) will be satisfied.
In a signature generated by the signing algorithm, we have T1 = ψ(û)α and T2 = Aiψ(v̂)α for

some α. The revocation check algorithm will reject a signature as originating from a revoked user
with token A exactly when (û, v̂, T1, T2/A) is a co-Diffie-Hellman tuple, i.e., when A equals Ai.
Thus the group signature verification algorithm will accept a signature as valid exactly when Ai is
not included in its input rl, as required.

79

7.4.3 Intuition

The BS scheme presented in Section 7.4.2 above is derived, via a variant of the Fiat-Shamir heuris-
tic [51], from a new protocol for proving possession of an SDH tuple. We present this protocol
below to give intuition into the construction of the BS scheme.

The protocol is a proof of knowledge, which means that by rewinding a prover it is possible to
extract an SDH pair. The protocol is intentionally not zero-knowledge; a verifier in possession of a
revocation token can determine whether he is interacting with a revoked prover.

The public values are g1 ∈ G1 and g2, w ∈ G2. Here g2 is a random generator of G2,
g1 equals ψ(g2), and w equals gγ2 for some (secret) γ ∈ Zp. The prover wishes to demonstrate
possession of a pair (A, x), where A ∈ G1 and x ∈ Zp, such that Ax+γ = g1. Such a pair satis-
fies e(A,wgx2) = e(g1, g2). We use a generalization of Schnorr’s protocol for proving knowledge of
discrete logarithm [108] in a group of prime order.

Protocol 2. Bob, the verifier, selects elements û and v̂ uniformly at random from G2 and sends
them to Alice, the prover. Alice sets u ← ψ(û) and v ← ψ(v̂). She selects exponent α R← Zp, and
computes

T1 ← uα and T2 ← Avα .

Alice and Bob then undertake a proof of knowledge of values (α, x, δ) satisfying the following three
relations:

uα = T1 , T x1 = uδ , e(T2v
−α, wgx2) = e(g1, g2) .

This proof of knowledge proceeds as follows. Alice computes a helper value δ = xα. She then
picks blinding values rα, rx, and rδ at random from Zp. She computes three values based on all
these:

R1 ← urα R3 ← T rx1 · u
−rδ

R2 ← e(T2, g2)rx · e(v, w)−rα · e(v, g2)−rδ .

She then sends (T1, T2, R1, R2, R3) to Bob. Bob sends a challenge value c chosen uniformly at
random from Zp. Alice computes and sends back sα = rα + cα, sx = rx + cx, and sδ = rδ + cδ.
Finally, Bob verifies the following three equations:

usα
?= T c1 ·R1 (7.7)

e(T2, g2)sx · e(v, w)−sα · e(v, g2)−sδ ?=
(
e(g1, g2)/e(T2, w)

)c ·R2 (7.8)

T sx1 u−sδ
?= R3 . (7.9)

Bob accepts if all three hold. Applying a standard variant of the Fiat-Shamir heuristic to this
protocol produces the signature scheme of the previous section.

The protocol above is (by design) not a zero-knowledge protocol. Given (T1, T2) and a can-
didate A, anyone can check whether A is ElGamal-encrypted in (T1, T2) by checking whether
e(T2/A, û) ?= e(T1, v̂) holds. Below, however, we show that the protocol has an extractor and, given
a (T1, T2) pair, can be simulated. The correctness of the protocol follows from Theorem 7.4.4.

Lemma 7.4.5. For any (û, v̂, T1, T2), Transcripts of Protocol 2 can be simulated.

80

Proof. Choose challenge c R← Zp. Select sα
R← Zp, and set R1 ← usα/T c1 . Then equation (7.7)

is satisfied. With α and c fixed, a choice for either of rα or sα determines the other, and a
uniform random choice of one gives a uniform random choice of the other. Therefore sα and R1

are distributed as in a real transcript.
Select sx

R← Zp. Now, A and α are fixed by T1 and T2, x is implicitly fixed by the SDH equation

for A, rx is fixed by x and sx, and δ is fixed as xα. Select sδ
R← Zp; a uniform distribution on

this gives a uniform distribution on rδ. Set R3 ← T sx1 u−sδ . Again, all the computed values are
distributed as in a real transcript. Finally, set

R2 ← e(T2, g2)sx · e(v, w)−sα · e(v, g2)−sδ ·
(e(T2, w)
e(g1, g2)

)c
.

This R2 satisfies (7.8), so it, too, is properly distributed.
Finally, the simulator outputs the transcript (û, v̂, T1, T2, R1, R2, R3, c, sα, sβ, sx, sδ). As argued

above, this transcript is distributed identically to transcripts of actual Protocol 2 interactions for
the given (û, v̂, T1, T2).

Lemma 7.4.6. There exists an extractor for Protocol 2 that extracts an SDH pair from a convincing
prover.

Proof. Suppose that an extractor can rewind a prover in the protocol above. The verifier sends
û, v̂ to the prover. Let u = ψ(û) and v = ψ(v̂). The prover then sends T1, T2 and R1, R2, R3. To
challenge value c, the prover responds with sα, sx, and sδ. To challenge value c′ 6= c, the prover
responds with s′α, s′x, and s′δ. If the prover is convincing, all three verification equations hold for
each set of values.

For brevity, let ∆c = c− c′, ∆sα = sα − s′α, and similarly for ∆sx, and ∆sδ.
Consider (7.7) above. Dividing the two instances of this equation, we obtain u∆sα = T∆c

1 . The
exponents are in a group of known prime order, so we can take roots; let α̃ = ∆sα/∆c. Then
uα̃ = T1.

Now consider (7.9) above. Dividing the two instances gives T∆sx
1 = u∆sδ . Substituting T1 = uα̃

gives uα̃∆sx = u∆sδ , or ∆sδ = α̃∆sx.
Finally, dividing the two instances of (7.8), we obtain(

e(g1, g2)/e(T2, w)
)∆c = e(T2, g2)∆sx · e(v, w)−∆sα · e(v, g2)−α̃∆sx .

Taking ∆c-th roots, and letting x̃ = ∆sx/∆c, we obtain

e(g1, g2)/e(T2, w) = e(T2, g2)x̃ · e(v, w)−α̃ · e(v, g2)−x̃α̃ .

This can be rearranged as
e(g1, g2) = e(T2v

−α̃, wgx̃2) ,

or, letting Ã = T2v
−α̃,

e(Ã, wgx̃2) = e(g1, g2) .

Thus the extractor obtains an SDH tuple (Ã, x̃). Moreover, the Ã in this SDH tuple is, perforce,
the same as that in the ElGamal encryption (T1, T2). In other words, the extractor recovers the
same A that a revocation-checker matches.

81

7.4.4 Proof of Security

We show that the BS scheme described in Section 7.4.2 is a VLR group signature scheme. Correct-
ness was demonstrated in Theorem 7.4.4, above. Below we give proofs of selfless-anonymity and
traceability, as defined in Section 7.4.1.

Selfless-Anonymity

Lemma 7.4.7. The BS VLR group signature scheme in (G1, G2) has (t, qH , qS, n, ε) selfless anonymity
in the random oracle model assuming the (t, ε′) Decision Linear assumption holds in the group G2

for ε′ = ε
2

(
1
n2 − qSqH

p

)
≈ ε/2n2.

Proof. Suppose algorithm A (t, qH , qS, n, ε)-breaks the selfless anonymity of the BS VLR group
signature scheme. We build an algorithm B that breaks the Decision Linear assumption in G2.
Algorithm B is given as input a 6-tuple (u0, u1, v, h0 = ua0, h1 = ub1, Z) ∈ G6

2 where u0, u1, v
R←

G2, a, b
R← Z∗p and either Z = va+b ∈ G2 or Z is random in G2. Algorithm B decides which Z it

was given by interacting with A as follows:

Setup. Recall that g1, g2 are the fixed generators of G1, G2 respectively. Algorithm B does the
following:

1. Algorithm B picks a random γ
R← Zp and sets w = gγ2 . It gives A the gpk = (g1, g2, w).

2. B picks two random users i0, i1
R← {1, . . . , n} and keeps i0, i1 secret. For all users

j 6= i0, i1 it generates private keys gsk[j] = (Aj , xj) using γ and the standard key
generation algorithm.

3. B picks a random W
R← G2.

To give some intuition for the rest of the simulation we define Ai0 = ZW/va and Ai1 = Wvb.
In what follows, B will behave as if user i0’s private key is (Ai0 , xi0) and user i1’s private key
is (Ai1 , xi1) for some xi0 , xi1 ∈ Zp. We emphasize that B does not know either Ai0 or Ai1
since it doesn’t know a or b. Observe that if Z = va+b then

Ai0 = ZW/va = va+bW/va = Wvb = Ai1

Hence, if Z = va+b users i0 and i1 have the same private key. But if Z is random in G2 then
i0, i1 have independent private keys.

Hash queries. At any time, A can query the hash functions H and H0. Algorithm B responds
with random values while ensuring consistency.

Phase 1. Algorithm A can issue signing queries, corruption queries, and revocation queries. If a
query is for user i 6= i0, i1 then B uses the private key gsk[i] to respond to the query. For
queries for users i0 or i1 algorithm B responds as follows:

• Signing queries: given a message M ∈ {0, 1}∗ and a user i ∈ {i0, i1} algorithm B must
generate a signature for M using user i’s private key.

82

– To generate a signature for user i = i0, B picks random s, t, l
R← Z∗p and makes the

following assignments:

T1 ← h0u
s
0 T2 ← ZWvsht0u

st
0 û← ul0 v̂ ← (vut0)l .

Let α = (a+ s)/l ∈ Zp. Then T1 = ûα and T2 = Ai0 · v̂α.

– To generate a signature for user i = i1, B picks random s, t, l
R← Z∗p and makes the

following assignments:

T1 ← h1u
s
1 T2 ←Wht1u

st
1 /v

s û← ul1 v̂ ← (ut1/v)l .

Let α = (b+ s)/l ∈ Zp. Then T1 = ûα and T2 = Ai1 · v̂α.

Either way, T1 = ûα and T2 = Aiv̂
α for some random α ∈ Zp and random and indepen-

dent û, v̂ ∈ G2. Algorithm B next picks random r, c, sα, sx, sδ
R← Zp and computes the

corresponding R1, R2, R3 using equations (7.5). In the unlikely event that A has already
issued a hash query either for H(gpk,M, r, ψ(T1), ψ(T2), R1, R2, R3) or for H0(gpk,M, r),
B reports failure and terminates. Since r is random in Zp this happens with probability
at most qH/p. Otherwise, B defines

H(gpk,M, r, ψ(T1), ψ(T2), R1, R2, R3) = c

H0(gpk,M, r) = (û, v̂) .

Algorithm B then computes the signature σ as σ ← (r, ψ(T1), ψ(T2), c, sα, sx, sδ), and
gives σ to A. Note that by Lemma 7.4.5, σ is a properly distributed signature under
user i’s private key.

• Corruption queries and revocation queries: if A ever issues a corruption of revocation
query for users i0 or i1 then B reports failure and aborts.

Challenge Algorithm A outputs a message M and two users i∗0 and i∗1 where it wishes to be
challenged. if {i∗0, i∗1} 6= {i0, i1} then B reports failure and aborts. Otherwise, we assume

i∗0 = i0 and i∗1 = i1. Algorithm B picks a random b
R← {0, 1} and generates a signature

σ∗ under user ib’s key for M using the same method used to respond to signing queries in
Phase 1. It gives σ∗ as the challenge to A.

Phase 2. Algorithm A issues restricted queries. B responds as in Phase 1.

Output. Eventually, A outputs its guess b′ ∈ {0, 1} for b. If b = b′ then B outputs 0 (indicating
that Z is random in G2); otherwise B outputs 1 (indicating that Z = va+b).

Suppose B does not abort during the simulation. Then, when Z is random in G2 algorithm B
emulates the selfless-anonymity game perfectly. Hence, Pr[b = b′] > 1

2 +ε. When Z = va+b then the
private keys for users i0 and i1 are identical and therefore the challenge signature σ∗ is independent
of b. It follows that Pr[b = b′] = 1/2. Therefore, assuming B does not abort, it has advantage at
least ε/2 in solving the given linear challenge (u0, u1, v, h0, h1, Z) ∈ G6

2.
Algorithm B does not abort if it correctly guesses the values i∗0 and i∗1 during the setup phase

and none of the signature queries cause it to abort. The probability that a given signature query
causes B to abort is at most qH/p and therefore the probability that B aborts as a result of A’s

83

signature queries is at most qSqH/p. As long as B does not abort during phase 1, algorithm A gets
no information about the choice of i0, i1. Therefore, the probability that the query pattern during
phase 1 and the choice of challenge do not cause B to abort is at least 1/n2. It now follows that B
solves the given linear challenge with advantage at least ε

2

(
1
n2 − qSqH

p

)
, as required.

Traceability

Theorem 7.4.8. If SDH is (q, t′, ε′)-hard on (G1, G2), then the BS VLR group signature scheme
is (t, qH , qS, n, ε)-traceable, where n = q − 1, ε = 4n

√
2ε′qH + n/p, and t = Θ(1) · t′.

Proof. Our proof proceeds in three parts. First, we describe a framework for interacting with
an algorithm that wins a traceability game. Second, we show how to instantiate this framework
appropriately for different types of such breaker algorithms. Third, we show how to apply the
forking lemma [103] to the framework instances, obtaining SDH solutions.

Interaction Framework Suppose we are given an algorithm A that breaks the traceability of
the BS scheme. We describe a framework for interacting with A.

Setup. We are given groups (G1, G2) as above, with respective generators g1 and g2. We are also
given w = gγ2 ∈ G2, and a list of pairs (Ai, xi) for i = 1, . . . , n. For each i, either xi = ?,
indicating that the xi corresponding to Ai is not known, or else (Ai, xi) is an SDH pair, and
e(Ai, wgxi2) = e(g1, g2). We then run A, giving it the group public key (g1, g2, w) and the
users’ revocation tokens {Ai}. We answer its oracle queries as follows.

Hash Queries. At any time, A can query the hash functions to obtain generators (û, v̂) or chal-
lenge c. We respond with random values while maintaining consistency. made again.

Signature Queries. Algorithm A asks for a signature on message M by a key at index i. If
si 6= ?, we follow the group signing procedure with key (Ai, xi) to obtain a signature σ on M ,
and return σ to A.

Otherwise si = ?. We pick a nonce r
R← Zp, obtain generators (û, v̂) ← H0(gpk,M, r),

and set u ← ψ(û) and v ← ψ(v̂). We then pick α
R← Zp, set T1 ← uα, and T2 ← Agα1

and run the Protocol 2 simulator with values (û, v̂, T1, T2). The simulator returns a tran-
script (û, v̂, T1, T2, R1, R2, R3, c, sα, sx, sδ), from which we derive a VLR group signature σ =
(r, T1, T2, c, sα, sx, sδ). In addition, we must patch the hash oracle at (M, r, T1, T2, R1, R2, R3)
to equal c. If this causes a collision, i.e., if we previously set the oracle at this point to some
other c′, we declare failure and exit. Otherwise, we return σ to A. A signature query can
trigger a hash query, which we charge against A’s hash query limit to simplify the accounting.

Private Key Queries. Algorithm A asks for the private key of the user at some index i. If xi 6= ?,
we return (Ai, xi) to A. Otherwise, we declare failure and exit.

Output. Finally, if algorithm A is successful, it outputs a forged VLR group signature σ =
(r, T1, T2, c, sα, sx, sδ) on a message M with nonce r, along with a revocation list rl∗. We
apply the implicit revocation algorithm, with revocation tokens {Ai} to determine which A∗

is encoded in (T1, T2). This A∗ cannot be on rl∗; if it were, the signature would have been

84

rejected as invalid. Thus for the forgery to be nontrivial, A∗ must also be outside the adver-
sary’s coalition U . If A∗ does not equal Ai for any i, we output σ. Otherwise, A∗ = Ai∗ for
some i∗. If si∗ = ?, we output σ. If, however, si∗ 6= ?, we declare failure and exit.

As implied by the output phase of the framework above, there are two types of forger algorithm.
Type I forgers output a forgery σ on a message M that encodes some identity A∗ /∈ {A1, . . . , An}.
Type II forgers output a forgery that encodes an identity A∗ such that A∗ = Ai∗ for some i∗,
and the forger did not make a private-key oracle query at i∗. We treat these two types of forger
differently.

Given a q-SDH instance (g′1, g
′
2, (g

′
2)γ , (g′2)γ

2
, . . . , (g′2)γ

q
), we apply the technique of Boneh and

Boyen’s Lemma 3.2 [23] that we recalled in Section 3.4.1, obtaining generators g1 ∈ G1, g2 ∈ G2,
w = gγ2 , along with q − 1 SDH pairs (Ai, xi) such that e(Ai, wgxi2) = e(g1, g2) for each i. Any
SDH pair (A, x) besides these q− 1 pairs can be transformed into a solution to the original q-SDH
instance, again using Boneh and Boyen’s Lemma 3.2.

Type I Forger Against a (t, qH , qS, n, ε)-Type I forger A, we turn an instance of (n + 1)-SDH
into values (g1, g2, w), and n SDH pairs (Ai, xi). We then apply the framework to A with these
values. Algorithm A’s environment is perfectly simulated, and the framework succeeds whenever
A succeeds, so we obtain a Type I forgery with probability ε.

Type II Forger Against a (t, qH , qS, n, ε)-Type II forger A, we turn an instance of n-SDH into
values (g1, g2, w), and n − 1 SDH pairs. These pairs we distribute amongst n pairs (Ai, xi). The
unfilled entry at random index i∗ we fill as follows. Pick Ai∗

R← G1, and set xi∗ ← ?, a placeholder
value. Now we run A under the framework. The framework declares success only if A never queries
the private key oracle at i∗, but forges a group signature that traces to Ai∗ . It is easy to see that the
framework simulation is perfect unless A queries the private key oracle at i∗. Because the protocol
simulator invoked by the signing oracle produces group signatures that are indistinguishable from
those of a user whose SDH tuple includes Ai∗ , the value of i∗ is independent of A’s view unless
and until it queries the private key oracle at i∗. (Since the hash oracle takes as input five elements
of G1 or G2 besides the message M , the probability of collision in simulated signing queries is
bounded above by (qHqS + q2

S)/p9. Assuming qS � qH � p = |G1|, this probability is negligible,
and we ignore it in the analysis.) Finally, when A outputs its forgery σ, implicating some user i
whose private key A has not requested, the value of i∗ (amongst the users whose keys it has not
requested) remains independent of A’s view. It is easy to see, then, that A outputs a forged group
signature that traces to user i∗ with probability at least ε/n.

Application of Forger Now we show how to use the application of our framework to a Type I
or Type II adversary A to obtain another SDH pair, contradicting the SDH assumption. The
remainder of this proof follows closely the methodology and notation of the forking lemma [103].

Let A be a forger (of either type) for which the framework succeeds with probability ε′. From
here on, we abbreviate signatures as (M,σ0, c, σ1), where σ0 = (r, û, v̂, T1, T2, R1, R2, R3), the values
given, along with M , to the random oracle H, and from which c is derived, and where σ1 =
(sα, sx, sδ). (Those values normally omitted from the signature can be recovered as the verification
algorithm in Section 7.4.2 does.)

We require that A always query H0 at (M, r) before querying H at (M, r, . . .). Any adversary
can be modified mechanically into satisfying this condition. This technical requirement means that,

85

even if in rewinding we change the value of H(M, r, . . .), the value of H0(M, r), and therefore of
the u and v used implicitly in the arguments of the H call, remains unchanged.

For any fixed f0 vector of H0 responses, a run of the framework on A is completely described
by the randomness string ω used by the framework and A, by the vector f0 of responses made
by the H0 hash oracle, and by the vector f of responses made by the H hash oracle. Let S be
the set of tuples (ω, f0, f) such that the framework, invoked on A, completes successfully with
forgery (M,σ0, c, σ1), and A queried the hash oracle H on (M,σ0). In this case, let Ind(ω, f0, f)
be the index of f at which A queried (M,σ0). We define ν = Pr[S] = ε′ − 1/p, where the 1/p term
accounts for the possibility that A guessed the hash of (M,σ0) without the hash oracle’s help. For
each j, 1 ≤ j ≤ qH , let Sj be the set of tuples (ω, f0, f) as above and such that Ind(ω, f0, f) = j.
Let J be the set of auspicious indices j such that Pr[Sj | S] ≥ 1/(2qH). Then

Pr
[
Ind(ω, f) ∈ J | S

]
≥ 1/2 .

Let f |ba be the restriction of f to its elements at indices a, a + 1, . . . , b. For each j ∈ J ,
we consider the heavy-rows lemma [103, Lemma 1] with rows X = (ω, f0, f |j−1

1) and columns
Y = (f |qHj). Clearly Pr(x,y)[(x, y) ∈ Sj] ≥ ν/(2qH). Let the heavy rows Ωj be those rows such that,
∀(x, y) ∈ Ωj : Pry′ [(x, y′) ∈ Sj] ≥ ν/(4qH). Then, by the heavy-rows lemma, Pr[Ωj | Sj] ≥ 1/2. A
simple argument then shows that Pr[∃j ∈ J : Ωj ∩ Sj | S] ≥ 1/4.

Thus, with probability ν/4, the framework, invoked on A, succeeds and obtains a forgery
(M,σ0, c, σ1) that derives from a heavy row (x, y) ∈ Ωj for some j ∈ J , i.e., an execution (ω, f0, f)
such that

Pr
f ′

[
(ω, f0, f

′) ∈ Sj
∣∣ f ′∣∣j−1

1
= f |j−1

1

]
≥ ν/(4qH) .

If we now rewind the framework and A to the jth query and proceed with an oracle vector f ′

that differs from f from the jth entry on, we obtain, with probability at least ν/(4qH), a successful
framework completion and a second forgery (M,σ0, c

′, σ′1), with (M,σ0) still queried at A’s jth
hash query. Since the adversary queried H0 at (M, r) (where r is the first element of σ0) before he
made his jth H oracle query, the values of û and v̂ in these two forgeries will be the same.

By using the extractor of Lemma 7.4.6, we obtain from the forgeries (σ0, c, σ1) and (σ0, c
′, σ′1)

an SDH tuple (A, x). The extracted A is the same as the A encoded in (T1, T2) in σ0. The
framework declares success only when the A encoded in (T1, T2) is not amongst those whose x it
knows. Therefore, the extracted SDH tuple (A, x) is not amongst those that we ourselves created,
and can be transformed, again following the technique of Boneh and Boyen’s Lemma 3.2 [23], to
an answer to the posed q-SDH problem.

Putting everything together, we have proved the following claims.

Claim 20. Using a (t, qH , qS, n, ε) Type I forger, we solve an instance of (n+1)-SDH with probability
(ε− 1/p)2/(16qH) in time Θ(1) · t.

Claim 21. Using a (t, qH , qS, n, ε) Type II forger, we solve an instance of n-SDH with probability
(ε/n− 1/p)2/(16qH) in time Θ(1) · t.

We can guess which of the two forger types a particular forger is with probability 1/2; then
assuming the more pessimistic scenario of Claim 2 proves the theorem.

86

7.4.5 Efficient Revocation for BS Signatures

In the BS scheme (Section 7.4.2), signature verification time grows linearly in the number of revoked
users. It is desirable to have a Verifier-Local Revocation system where verification time is constant.
In this section we describe a simple modification to the signing and verification algorithms that
achieves this at the cost of slightly reduced anonymity.

Consider how our system is used for privacy-preserving attestation: Users connect to various
web sites and at each site they perform a private attestation using the group signature issued by
the tamper-resistant chip in their machine. For an efficient revocation check, when the chip issues
a signature for attesting to a site S it uses the signing algorithm from Section 7.4.2 with the small
modification that the parameters u and v are generated as:

(u, v) R← H0(gpk, S, r)

where r is random in the range {1, . . . , k} and k is a security parameter (e.g., k = 128). Note that,
unlike Section 7.4.2, here (u, v) do not depend on the message being signed. Hence, at a given site
S there are only k possible values for the pair (u, v).

Now, suppose site S has been supplied with a revocation list rl = {A1, . . . , Ab}. To verify
that a signature σ = (r, T1, T2, c, sα, sx, sδ) was not issued by a revoked user the site uses the same
procedure as in Section 7.4.2:

1. Compute (u, v) R← H0(gpk, S, r), and

2. For i = 1, . . . , b check that e(T1, v)e(Ai, u) 6= e(T2, u).

Since at site S there are only k possible values for u, the value e(Ai, u) can be precomputed for
the entire rl for all possible u’s. Thus, site S stores a |rl| × k table of values, e(Ai, uj). To check
revocation, it simply does a table-lookup to see if the value e(T2, u)/e(T1, v) is in the r’th row of
the table. If not, then the signature was not issued by a revoked user. Hence, the revocation check
takes time independent of the size of rl.

The downside is that the scheme is now only partially anonymous. If the user issues two
signatures at site S using the same random value r ∈ {1, . . . , k} then the site can test that these
two signatures came from the same user. However, signatures issued at different sites are still
completely unlinkable. Similarly, signatures issued at the same site using different r’s are unlinkable
(e.g., with k = 100 only 1% of signatures at S are linkable). For some applications, this trade-off
between partial linkability and efficient revocation might be acceptable.

7.4.6 Backward Unlinkability

When a user is revoked in the BS scheme, all her signatures can be traced, including any issued
before her key was compromised. It might be preferable keep these older signatures unlinkable,
a property called backward unlinkability [7, 113]. This property is typically achieved by dividing
time into intervals. signatures are tied to the interval in which they were issued, and revocation is
effective only from the current interval onwards.

Nakanishi and Funabiki have proposed a variant of BS signatures with backward unlinkability
using time intervals [94]. They prove the security of their construction under security definitions
adapted from those in Section 7.4.1.

87

7.4.7 Strong Exculpability for BS

In the BS VLR scheme, as in the BBS scheme of Section 6.3, keys are issued by a trusted key
generator. This is in keeping with the security definitions given in Section 7.4.1, which themselves
are modeled after the Bellare-Micciancio-Warinschi definitions for ordinary group signatures [15].

It is possible to achieve strong exculpability — where even the entity that issues user keys
cannot forge signatures under users’ keys — for BS signatures as well. The necessary modifications
are essentially those suggested for BBS in Section 7.2.

An appropriate model for proving the modified BS signatures secure would closely resemble the
definitions for traceable signatures proposed by Kiayias and Yung [73]. (“Claiming” a signature,
in the Kiayias-Yung terminology, would simply require proving knowledge of a value Ai such that
(û, v̂, T1, T2/Ai) is a co-Diffie-Hellman tuple.)

7.5 Conclusions and Open Problems

We have described extensions to the BBS group signature scheme to achieve strong exculpability
and (traditional) revocation. In addition, we have described a short group signature scheme where
user revocation only requires sending revocation information to signature verifiers, a setup we call
verifier-local revocation. Our signatures are short: only 141 bytes for a standard security level.
They are shorter than group signatures built from the Strong-RSA assumption and are shorter
even than BBS short group signatures.

There are still a number of open problems related to VLR signatures. Most importantly, is
there an efficient VLR group signature scheme where signature verification time is sub-linear in the
number of revoked users, without compromising user privacy?

88

Bibliography

[1] M. Abdalla, J. An, M. Bellare, and C. Namprempre. From identification to signatures via
the Fiat-Shamir transform: Minimizing assumptions for security and forward-security. In
L. Knudsen, editor, Proceedings of Eurocrypt 2002, volume 2332 of LNCS, pages 418–33.
Springer-Verlag, May 2002.

[2] J. H. An, Y. Dodis, and T. Rabin. On the security of joint signature and encryption. In
L. Knudsen, editor, Proceedings of Eurocrypt 2002, volume 2332 of LNCS, pages 83–107.
Springer-Verlag, May 2002.

[3] ANSI X9 Committee. DSTU X9.59-2000: Electronic commerce for the financial services
industry: Account-based secure payment objects. Online: http://www.x9.org/.

[4] ANSI X9.62 and FIPS 186-2. Elliptic curve digital signature algorithm, 1998.

[5] N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital signatures. IEEE
J. Selected Areas in Comm., 18(4):593–610, Apr. 2000.

[6] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably secure coalition-
resistant group signature scheme. In M. Bellare, editor, Proceedings of Crypto 2000, volume
1880 of LNCS, pages 255–70. Springer-Verlag, Aug. 2000.

[7] G. Ateniese and G. Tsudik. Some open issues and directions in group signatures. In
M. Franklin, editor, Proceedings of Financial Cryptography 1999, volume 1648 of LNCS,
pages 196–211. Springer-Verlag, Feb. 1999.

[8] G. Ateniese, G. Tsudik, and D. Song. Quasi-efficient revocation of group signatures. In
M. Blaze, editor, Proceedings of Financial Cryptography 2002, volume 2357 of LNCS, pages
183–97. Springer-Verlag, 2003.

[9] F. Bao, R. Deng, and W. Mao. Efficient and practical fair exchange protocols with offline
TTP. In P. Karger and L. Gong, editors, Proceedings of IEEE Security & Privacy, pages
77–85, May 1998.

[10] N. Baric and B. Pfitzmann. Collision-free accumulators and fail-stop signature schemes with-
out trees. In W. Fumy, editor, Proceedings of Eurocrypt 1997, volume 1233 of LNCS, pages
480–494. Springer-Verlag, May 1997.

[11] P. Barreto, S. Galbraith, C. Ó hÉigeartaigh, and M. Scott. Efficient pairing computation on
supersingular abelian varieties. Cryptology ePrint Archive, Report 2004/375, 2004. http:
//eprint.iacr.org/.

89

http://www.x9.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

[12] P. Barreto, H. Kim, B. Lynn, and M. Scott. Efficient implementation of pairing-based cryp-
tosystems. J. Cryptology, 17(4):321–34, Sept. 2004.

[13] P. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order. In B. Preneel
and S. Tavares, editors, Proceedings of SAC 2005, volume 3897 of LNCS, pages 319–31.
Springer-Verlag, 2006.

[14] M. Bellare, J. Garay, and T. Rabin. Fast batch verification for modular exponentiation and
digital signatures. In K. Nyberg, editor, Proceedings of Eurocrypt 1998, volume 1403 of LNCS,
pages 236–50. Springer-Verlag, May–Jun. 1998.

[15] M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures: Formal defini-
tions, simplified requirements, and a construction based on general assumptions. In E. Biham,
editor, Proceedings of Eurocrypt 2003, volume 2656 of LNCS, pages 614–29. Springer-Verlag,
May 2003.

[16] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In D. Denning, R. Pyle, R. Ganesan, R. Sandhu, and V. Ashby, editors, Proceedings
of CCS 1993, pages 62–73. ACM Press, Nov. 1993.

[17] M. Bellare and P. Rogaway. The exact security of digital signatures: How to sign with RSA
and Rabin. In U. Maurer, editor, Proceedings of Eurocrypt 1996, volume 1070 of LNCS, pages
399–416. Springer-Verlag, May 1996.

[18] M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case of dynamic
groups. In A. J. Menezes, editor, Proceedings of CT-RSA 2005, volume 3376 of LNCS, pages
136–53. Springer-Verlag, Feb. 2005.

[19] M. Bellare and M. Yung. Certifying permutations: Non-interactive zero-knowledge based on
any trapdoor permutation. J. Cryptology, 9(1):149–66, 1996.

[20] I. F. Blake, G. Seroussi, and N. Smart. Elliptic Curves in Cryptography, volume 265 of London
Mathematical Society Lecture Notes. Cambridge University Press, 1999.

[21] J. Blum. CARAVAN: A Communication Architecture for Reliable Adaptive Vehicular Ad hoc
Networks. PhD thesis, George Washington University, May 2005.

[22] A. Boldyreva. Threshold signature, multisignature and blind signature schemes based on the
gap-Diffie-Hellman-group signature scheme. In Y. Desmedt, editor, Proceedings of PKC 2003,
volume 2567 of LNCS, pages 31–46. Springer-Verlag, Jan. 2003.

[23] D. Boneh and X. Boyen. Short signatures without random oracles. In C. Cachin and J. Ca-
menisch, editors, Proceedings of Eurocrypt 2004, volume 3027 of LNCS, pages 56–73. Springer-
Verlag, May 2004.

[24] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. Franklin, editor,
Proceedings of Crypto 2004, volume 3152 of LNCS, pages 41–55. Springer-Verlag, Aug. 2004.

[25] D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. SIAM J.
Computing, 32(3):586–615, 2003. Extended abstract in Proceedings of Crypto 2001.

90

[26] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted signa-
tures from bilinear maps. In E. Biham, editor, Proceedings of Eurocrypt 2003, volume 2656
of LNCS, pages 416–32. Springer-Verlag, May 2003.

[27] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In C. Boyd,
editor, Proceedings of Asiacrypt 2001, volume 2248 of LNCS, pages 514–32. Springer-Verlag,
Dec. 2001.

[28] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. J. Cryptology,
17(4):297–319, Sept. 2004. Extended abstract in Proceedings of Asiacrypt 2001.

[29] D. Boneh and H. Shacham. Group signatures with verifier-local revocation. In B. Pfitzmann
and P. Liu, editors, Proceedings of CCS 2004, pages 168–77. ACM Press, Oct. 2004.

[30] E. Brickell. An efficient protocol for anonymously providing assurance of the container of a
private key, Apr. 2003. Submitted to the Trusted Computing Group.

[31] C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval with
polylogarithmic communication. In J. Stern, editor, Proceedings of Eurocrypt 1999, volume
1592 of LNCS, pages 402–14. Springer-Verlag, May 1999.

[32] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to efficient revo-
cation of anonymous credentials. In M. Yung, editor, Proceedings of Crypto 2002, volume
2442 of LNCS, pages 61–76. Springer-Verlag, Aug. 2002.

[33] J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials from bilin-
ear maps. In M. Franklin, editor, Proceedings of Crypto 2004, volume 3152 of LNCS, pages
56–72. Springer-Verlag, Aug. 2004.

[34] CAMP Vehicle Safety Communications Consortium. Vehicle safety communications project
task 3 final report, Mar. 2005. Online: http://www-nrd.nhtsa.dot.gov/pdf/nrd-12/
1665CAMP3web/.

[35] D. Chaum and T. Pedersen. Wallet databases with observers. In E. Brickell, editor, Proceed-
ings of Crypto 1992, volume 740 of LNCS, pages 89–105. Springer-Verlag, Aug. 1992.

[36] D. Chaum and E. van Heyst. Group signatures. In D. W. Davies, editor, Proceedings of
Eurocrypt 1991, volume 547 of LNCS, pages 257–65. Springer-Verlag, Apr. 1991.

[37] B. Chevallier-Mames. An efficient CDH-based signature scheme with a tight security reduc-
tion. In V. Shoup, editor, Proceedings of Crypto 2005, volume 3621 of LNCS, pages 511–26.
Springer-Verlag, Aug. 2005.

[38] D. Coppersmith. Fast evaluation of logarithms in fields of characteristic two. IEEE Tran.
Info. Th., 30(4):587–94, 1984.

[39] J.-S. Coron. On the exact security of full domain hash. In M. Bellare, editor, Proceedings of
Crypto 2000, volume 1880 of LNCS, pages 229–35. Springer-Verlag, Aug. 2000.

91

http://www-nrd.nhtsa.dot.gov/pdf/nrd-12/1665CAMP3web/
http://www-nrd.nhtsa.dot.gov/pdf/nrd-12/1665CAMP3web/

[40] J.-S. Coron. Optimal security proofs for PSS and other signature schemes. In L. Knudsen,
editor, Proceedings of Eurocrypt 2002, volume 2332 of LNCS, pages 272–87. Springer-Verlag,
May 2002.

[41] J.-S. Coron. Security proof for partial-domain hash signature schemes. In M. Yung, editor,
Proceedings of Crypto 2002, volume 2442 of LNCS, pages 613–26. Springer-Verlag, Aug. 2002.

[42] J.-S. Coron and D. Naccache. Boneh et al.’s k-element aggregate extraction assumption is
equivalent to the Diffie-Hellman assumption. In C. S. Laih, editor, Proceedings of Asiacrypt
2003, volume 2894 of LNCS, pages 392–7. Springer-Verlag, Dec. 2003.

[43] N. Courtois, M. Daum, and P. Felke. On the security of HFE, HFEv- and Quartz. In
Y. Desmedt, editor, Proceedings of PKC 2003, volume 2567 of LNCS, pages 337–50. Springer-
Verlag, Jan. 2003.

[44] R. Cramer and V. Shoup. A practical public key encryption system provably secure against
adaptive chosen ciphertext attack. In H. Krawczyk, editor, Proceedings of Crypto 1998,
volume 1642 of LNCS, pages 13–25. Springer-Verlag, Aug. 1998.

[45] R. Cramer and V. Shoup. Signature schemes based on the strong RSA assumption. ACM
Trans. Info. & System Security, 3(3):161–85, 2000.

[46] C. Diem. The GHS attack in odd characteristic. J. Ramanujan Math. Soc., 18(1):1–32, 2003.

[47] X. Ding, G. Tsudik, and S. Xu. Leak-free group signatures with immediate revocation. In
T. Lai and K. Okada, editors, Proceedings of ICDCS 2004, Mar. 2004.

[48] Y. Dodis. Efficient construction of (distributed) verifiable random functions. In Y. Desmedt,
editor, Proceedings of PKC 2003, volume 2567 of LNCS, pages 1–17. Springer-Verlag, Jan.
2003.

[49] Y. Dodis and L. Reyzin. On the power of claw-free permutations. In S. Cimato, C. Galdi,
and G. Persiano, editors, Proceedings of SCN 2002, volume 2576 of LNCS, pages 55–73.
Springer-Verlag, Sept. 2002.

[50] A. Fiat. Batch RSA. In G. Brassard, editor, Proceedings of Crypto 1989, volume 435 of
LNCS, pages 175–85. Springer-Verlag, Aug. 1989.

[51] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In A. M. Odlyzko, editor, Proceedings of Crypto 1986, volume 263 of
LNCS, pages 186–194. Springer-Verlag, Aug. 1986.

[52] G. Frey, M. Muller, and H. Rück. The Tate pairing and the discrete logarithm applied to
elliptic curve cryptosystems. IEEE Trans. Info. Th., 45(5):1717–9, 1999.

[53] S. Galbraith. Pairings. In I. F. Blake, G. Seroussi, and N. Smart, editors, Advances in Elliptic
Curve Cryptography, volume 317 of London Mathematical Society Lecture Notes, chapter IX,
pages 183–213. Cambridge University Press, 2005.

92

[54] S. Galbraith, K. Harrison, and D. Soldera. Implementing the Tate pairing. In C. Fieker and
D. Kohel, editors, Proceedings of ANTS V, volume 2369 of LNCS, pages 324–37. Springer-
Verlag, July 2002.

[55] S. Galbraith and V. Rotger. Easy decision-Diffie-Hellman groups. LMS J. Comput. Math,
7:201–18, aug 2004.

[56] S. Galbraith and N. Smart. A cryptographic application of Weil descent. In M. Walker,
editor, Proceedings of Cryptography and Coding 1999, volume 1746 of LNCS, pages 191–200.
Springer-Verlag, Dec. 1999.

[57] J. Garay, M. Jakobsson, and P. MacKenzie. Abuse-free optimistic contract signing. In
M. Wiener, editor, Proceedings of Crypto 1999, volume 1666 of LNCS, pages 449–66. Springer-
Verlag, Aug. 1999.

[58] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: A virtual machine-
based platform for trusted computing. In L. Peterson, editor, Proceedings of SOSP 2003,
pages 193–206. ACM Press, Oct. 2003.

[59] P. Gaudry, F. Hess, and N. Smart. Constructive and destructive facets of Weil descent on
elliptic curves. J. Cryptology, 15(1):19–46, 2002.

[60] P. Gemmel. An introduction to threshold cryptography. RSA CryptoBytes, 2(3):7–12, Winter
1997.

[61] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed key generation for
discrete-log based cryptosystems. In J. Stern, editor, Proceedings of Eurocrypt 1999, volume
1592 of LNCS, pages 295–310. Springer-Verlag, May 1999.

[62] R. Gennaro, T. Rabin, S. Jarecki, and H. Krawczyk. Robust and efficient sharing of RSA
functions. J. Cryptology, 13(2):273–300, 2000.

[63] C. Gentry. How to compress Rabin ciphertexts and signatures (and more). In M. Franklin,
editor, Proceedings of Crypto 2004, volume 3152 of LNCS, pages 179–200. Springer-Verlag,
Aug. 2004.

[64] M. Girault. Self-certified public keys. In D. W. Davies, editor, Proceedings of Eurocrypt 1991,
volume 547 of LNCS, pages 490–7. Springer-Verlag, Apr. 1991.

[65] E.-J. Goh and S. Jarecki. A signature scheme as secure as the Diffie-Hellman problem.
In E. Biham, editor, Proceedings of Eurocrypt 2003, volume 2656 of LNCS, pages 401–15.
Springer-Verlag, May 2003.

[66] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against adaptive
chosen-message attacks. SIAM J. Computing, 17(2):281–308, 1988.

[67] R. Hayashi, T. Okamoto, and K. Tanaka. An RSA family of trap-door permutations with a
common domain and its applications. In F. Bao, R. H. Deng, and J. Zhou, editors, Proceedings
of PKC 2004, volume 2947 of LNCS, pages 291–304. Springer-Verlag, Mar. 2004.

93

[68] F. Hess. On the security of the verifiably encrypted signature scheme of Boneh, Gentry, Lynn
and Shacham. Info. Processing Letters, 89(3):111–4, Feb. 2004.

[69] ISO TC86 Committee. ISO 8583: Financial transaction card originated messages — inter-
change message specifications. Online: http://www.tc68.org/.

[70] A. Joux and K. Nguyen. Separating decision Diffie-Hellman from computational Diffie-
Hellman in cryptographic groups. J. Cryptology, 16(4):239–47, Sept. 2003.

[71] J. Katz and N. Wang. Efficiency improvements for signature schemes with tight security
reductions. In V. Atluri and T. Jaeger, editors, Proceedings of CCS 2003, pages 155–64.
ACM Press, Oct. 2003.

[72] S. Kent, C. Lynn, and K. Seo. Secure border gateway protocol (Secure-BGP). IEEE J.
Selected Areas in Comm., 18(4):582–92, April 2000.

[73] A. Kiayias, Y. Tsiounis, and M. Yung. Traceable signatures. In C. Cachin and J. Camenisch,
editors, Proceedings of Eurocrypt 2004, volume 3027 of LNCS, pages 571–89. Springer-Verlag,
May 2004.

[74] A. Kiayias and M. Yung. Efficient secure group signatures with dynamic joins and keeping
anonymity against group managers. In E. Dawson and S. Vaudenay, editors, Proceedings of
Mycrypt 2005, volume 3715 of LNCS, pages 151–70. Springer-Verlag, Sept. 2005.

[75] A. Kiayias and M. Yung. Group signatures with efficient concurrent join. In R. Cramer, editor,
Proceedings of Eurocrypt 2005, volume 3494 of LNCS, pages 198–214. Springer-Verlag, May
2005.

[76] N. Koblitz. An elliptic curve implementation of the finite field digital signature algorithm.
In H. Krawczyk, editor, Proceedings of Crypto 1998, volume 1462 of LNCS, pages 327–33.
Springer-Verlag, Aug. 1998.

[77] S. Lang. Elliptic Functions. Addison-Wesley, Reading, MA, 1973.

[78] B. Laurie and N. Bohm. Signatures: an interface between law and technology, Jan. 2003.
Online: http://www.apache-ssl.org/tech-legal.pdf.

[79] A. Lysyanskaya. Unique signatures and verifiable random functions from the DH-DDH sepa-
ration. In M. Yung, editor, Proceedings of Crypto 2002, volume 2442 of LNCS, pages 597–612.
Springer-Verlag, Aug. 2002.

[80] A. Lysyanskaya, S. Micali, L. Reyzin, and H. Shacham. Sequential aggregate signatures from
trapdoor permutations. In C. Cachin and J. Camenisch, editors, Proceedings of Eurocrypt
2004, volume 3027 of LNCS, pages 74–90. Springer-Verlag, May 2004.

[81] A. Lysyanskaya, R. Rivest, A. Sahai, and S. Wolf. Pseudonym systems. In H. Heys and
C. Adams, editors, Proceedings of SAC 1999, volume 1758 of LNCS, pages 184–99. Springer-
Verlag, Aug. 1999.

94

http://www.tc68.org/
http://www.apache-ssl.org/tech-legal.pdf

[82] U. Maurer. Towards the equivalence of breaking the Diffie-Hellman protocol and computing
discrete logarithms. In Y. Desmedt, editor, Proceedings of Crypto 1994, volume 839 of LNCS,
pages 271–81. Springer-Verlag, Aug. 1994.

[83] A. Menezes, T. Okamoto, and P. Vanstone. Reducing elliptic curve logarithms to logarithms
in a finite field. IEEE Trans. Info. Th., 39(5):1639–46, 1993.

[84] A. J. Menezes, editor. Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publishers,
1993.

[85] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1997.

[86] S. Micali, K. Ohta, and L. Reyzin. Provable-subgroup signatures. Unpublished manuscript,
1999.

[87] S. Micali, K. Ohta, and L. Reyzin. Accountable-subgroup multisignatures (extended ab-
stract). In P. Samarati, editor, Proceedings of CCS 2001, pages 245–54. ACM Press, Nov.
2001.

[88] S. Micali and R. Rivest. Transitive signature schemes. In B. Preneel, editor, Proceedings of
CT-RSA 2002, volume 2271 of LNCS, pages 236–43. Springer-Verlag, Feb. 2002.

[89] V. Miller. The Weil pairing, and its efficient calculation. J. Cryptology, 17(4):235–61, Sept.
2004.

[90] I. Mironov. A short signature as secure as DSA. Unpublished manuscript, 2001.

[91] S. Mitsunari, R. Sakai, and M. Kasahara. A new traitor tracing. IEICE Trans. Fundamentals,
E85-A(2):481–4, Feb. 2002.

[92] A. Miyaji, M. Nakabayashi, and S. Takano. New explicit conditions of elliptic curve traces
for FR-reduction. IEICE Trans. Fundamentals, E84-A(5):1234–43, May 2001.

[93] D. Naccache and J. Stern. Signing on a postcard. In Y. Frankel, editor, Proceedings of
Financial Cryptography 2000, volume 1962 of LNCS, pages 121–35. Springer-Verlag, 2001.

[94] T. Nakanishi and N. Funabiki. Verifier-local revocation group signature schemes with back-
ward unlinkability from bilinear maps. In B. Roy, editor, Proceedings of Asiacrypt 2005,
volume 3788 of LNCS, pages 533–48. Springer-Verlag, Dec. 2005.

[95] K. Nyberg and R. Rueppel. Message recovery for signature schemes based on the discrete
logarithm problem. Designs, Codes and Cryptography, 7(1–2):61–81, 1996.

[96] K. Ohta and T. Okamoto. Multisignature schemes secure against active insider attacks.
IEICE Trans. Fundamentals, E82-A(1):21–31, 1999.

[97] T. Okamoto. A digital multisignature scheme using bijective public-key cryptosystems. ACM
Trans. Computer Systems, 6(4):432–41, November 1988.

95

[98] T. Okamoto and D. Pointcheval. The gap problems: A new class of problems for the security
of cryptographic primitives. In K. Kim, editor, Proceedings of PKC 2001, volume 1992 of
LNCS, pages 104–18. Springer-Verlag, Feb. 2001.

[99] J. Patarin, N. Courtois, and L. Goubin. QUARTZ, 128-bit long digital signatures. In D. Nac-
cache, editor, Proceedings of CT-RSA 2001, volume 2020 of LNCS, pages 282–97. Springer-
Verlag, Apr. 2001.

[100] K. Paterson. Cryptography from pairings. In I. F. Blake, G. Seroussi, and N. Smart, editors,
Advances in Elliptic Curve Cryptography, volume 317 of London Mathematical Society Lecture
Notes, chapter X, pages 215–51. Cambridge University Press, 2005.

[101] T. Pedersen. A threshold cryptosystem without a trusted third party. In D. W. Davies,
editor, Proceedings of Eurocrypt 1991, volume 547 of LNCS, pages 522–6. Springer-Verlag,
Apr. 1991.

[102] L. Pintsov and S. Vanstone. Postal revenue collection in the digital age. In Y. Frankel,
editor, Proceedings of Financial Cryptography 2000, volume 1962 of LNCS, pages 105–20.
Springer-Verlag, 2001.

[103] D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures.
J. Cryptology, 13(3):361–96, 2000.

[104] G. Poupard and J. Stern. Fair encryption of RSA keys. In B. Preneel, editor, Proceedings of
Eurocrypt 2000, volume 1807 of LNCS, pages 172–89. Springer-Verlag, May 2000.

[105] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public
key cryptosystems. Commun. ACM, 21(2):120–6, Feb. 1978.

[106] K. Rubin and A. Silverberg. Supersingular Abelian varieties in cryptology. In M. Yung,
editor, Proceedings of Crypto 2002, volume 2442 of LNCS, pages 336–53. Springer-Verlag,
Aug. 2002.

[107] O. Schirokauer, D. Weber, and T. Denny. Discrete logarithms: The effectiveness of the index
calculus method. In H. Cohen, editor, Proceedings of ANTS II, volume 1122 of LNCS, pages
337–61. Springer-Verlag, May 1996.

[108] C. Schnorr. Efficient signature generation by smart cards. J. Cryptology, 4(3):161–174, 1991.

[109] V. Shoup. Lower bounds for discrete logarithms and related problems. In W. Fumy, editor,
Proceedings of Eurocrypt 1997, volume 1233 of LNCS, pages 256–66. Springer-Verlag, May
1997.

[110] V. Shoup. Practical threshold signatures. In B. Preneel, editor, Proceedings of Eurocrypt
2000, volume 1807 of LNCS, pages 207–20. Springer Verlag, May 2000.

[111] J. H. Silverman. The Arithmetic of Elliptic Curves, volume 106 of Graduate Texts in Math-
ematics. Springer-Verlag, 1986.

[112] N. Smart and F. Vercauteren. On computable isomorphisms in efficient pairing based systems.
Cryptology ePrint Archive, Report 2005/116, 2005. http://eprint.iacr.org/.

96

http://eprint.iacr.org/

[113] D. Song. Practical forward secure group signature schemes. In P. Samarati, editor, Proceedings
of CCS 2001, pages 225–34. ACM Press, Nov. 2001.

[114] R. Steinfeld, L. Bull, H. Wang, , and J. Pieprzyk. Universal designated-verifier signatures.
In C. S. Laih, editor, Proceedings of Asiacrypt 2003, volume 2894 of LNCS, pages 523–42.
Springer-Verlag, Dec. 2003.

[115] Trusted Computing Group. Trusted Computing Platform Alliance (TCPA) Main Specifica-
tion, 2003. Online: www.trustedcomputinggroup.org.

[116] G. Tsudik and S. Xu. Accumulating composites and improved group signing. In C. S. Laih,
editor, Proceedings of Asiacrypt 2003, volume 2894 of LNCS, pages 269–86. Springer-Verlag,
Dec. 2003.

[117] E. R. Verheul. Self-blindable credential certificates from the Weil pairing. In C. Boyd, editor,
Proceedings of Asiacrypt 2001, volume 2248 of LNCS, pages 533–51. Springer-Verlag, Dec.
2001.

[118] W. C. Waterhouse. Abelian varieties over finite fields. Ann. Sci. École Norm. Sup., 2:521–60,
1969.

[119] B. Waters. Efficient identity-based encryption without random oracles. In R. Cramer, editor,
Proceedings of Eurocrypt 2005, volume 3494 of LNCS, pages 114–27. Springer-Verlag, May
2005.

[120] F. Zhang, R. Safavi-Naini, and W. Susilo. An efficient signature scheme from bilinear pairings
and its applications. In F. Bao, R. H. Deng, and J. Zhou, editors, Proceedings of PKC 2004,
volume 2947 of LNCS, pages 277–90. Springer-Verlag, Mar. 2004.

97

www.trustedcomputinggroup.org

	Introduction
	Previous Publication

	Mathematical Background
	Mathematical Setting
	Groups
	The Bilinear Map
	Running Times
	Hashing

	Complexity Assumptions
	Computational and Decisional co-Diffie-Hellman
	The Strong Diffie-Hellman Assumption
	The Decision Linear Diffie-Hellman Assumption
	Implications of DDH Hardness on G1

	Elliptic Curves and Bilinear Maps
	Notation and Background
	Intractability of co-CDH on (G1,G2)
	Hashing onto elliptic curves
	Suitable Curves
	The bad news

	Short Signatures
	Introduction
	Signature Security Definitions
	Short Signatures based on CDH
	Security

	Short Signatures based on SDH
	Proof of Security
	A BB Variant Secure without Random Oracles
	Performance

	Conclusions

	Signature Variants and Extensions
	Introduction
	Threshold Signatures
	Multisignatures and Batch Signature Verification
	Aggregate Signatures
	Aggregate Signature Definitions
	Aggregate Signatures from Bilinear Maps

	Verifiably Encrypted Signatures
	Verifiably Encrypted Signature Definitions
	Aggregate Extraction
	Verifiably Encrypted Signatures via Aggregation
	Verifiably-Encrypted Signatures from Bilinear Maps
	Proofs of Security
	Observations on Verifiably Encrypted Signatures

	Conclusions and Open Problems

	Sequential Aggregate Signatures from Trapdoor Permutations
	Introduction
	Preliminaries
	Trapdoor One-Way Permutations
	Certified Trapdoor Permutations
	Claw-Free Permutations, Homomorphic Trapdoor Permutations
	Full-Domain Signatures

	Sequential Aggregate Signatures
	Sequential Aggregates from Trapdoor Permutations
	The Scheme
	Security

	Aggregating with RSA
	Concrete Proposals for Sequential Aggregates with RSA
	Security

	Group Signatures
	Introduction
	A Zero-Knowledge Protocol for SDH
	Short Group Signatures from SDH
	BBS Group Signature Security
	Conclusions

	Group Signature Variants and Extensions
	Introduction
	Strong Exculpability for BBS
	Revocation for BBS using Accumulators
	Verifier-Local Revocation
	Definitions
	Short VLR Group Signatures from SDH
	Intuition
	Proof of Security
	Efficient Revocation for BS Signatures
	Backward Unlinkability
	Strong Exculpability for BS

	Conclusions and Open Problems

	Bibliography

