Group Signatures with Verifier-Local Revocation

Dan Boneh Hovav Shacham
dabo@cs.stanford.edu hovav@cs.stanford.edu

Abstract

Group signatures have recently become important for enabling privacy-preserving attestation
in projects such as Microsoft’s NGSCB effort (formerly Palladium). Revocation is critical to the
security of such systems. We construct a short group signature scheme that supports Verifier-
Local Revocation (VLR). In this model, revocation messages are only sent to signature verifiers
(as opposed to both signers and verifiers). Consequently there is no need to contact individual
signers when some user is revoked. This model is appealing for systems providing attestation
capabilities. Our signatures are as short as standard RSA signatures with comparable security.
Security of our group signature (in the random oracle model) is based on the Strong Diffie-
Hellman assumption and the Decision Linear assumption in bilinear groups. We give a precise
model for VLR group signatures and discuss its implications.

1 Introduction

Group signatures, introduced by Chaum and van Heyst [12], provide anonymity for signers. Each
group member has a private key that enables him to sign messages. However, the resulting signa-
ture keeps the identity of the signer secret. Often there is a third party that can undo the signature
anonymity (trace) using a special trapdoor [12] [I]. Some systems support revocation [11, 2], 25] 13],
where group membership can be disabled without affecting the signing ability of unrevoked mem-
bers. Currently, the most efficient constructions are based on the Strong-RSA assumption intro-
duced by Baric and Pfitzmann [3]. These signatures are usually much longer than RSA signatures
of comparable security.

A number of recent projects require properties provided by group signatures. One such project is
the Trusted Computing effort (TCG) [24] that, among other things, enables a desktop PC to prove
to a remote party what software it is running via a process called attestation. Group signatures
are needed for privacy-preserving attestation [10]. To enable attestation, each computer ships with
an embedded TCG tamper-resistant chip that signs certain system components using a secret key
embedded in the chip. During attestation to a remote party (e.g., a bank) these signatures are
sent to the remote party. To maintain user privacy it is desirable that the signatures not reveal the
identity of the chip that issued them. To do so, each tamper resistant chip issues a group signature
(rather than a standard signature) on system components that it signs. Here the group is the set
of all TCG-enabled machines. The group signature proves that the attestation was issued by a
valid tamper-resistant chip, but hides which machine it comes from. We refer to this as privacy-
preserving attestation. Revocation is critical in such systems—if the private key in a TCG chip
is exposed, all signatures from that chip must be invalidated since otherwise attestation becomes
meaningless.

dabo@cs.stanford.edu
hovav@cs.stanford.edu

In this paper we focus on a revocation model that is motivated by privacy-preserving attestation.
At a high level, one can consider three natural communication models for revoking a user’s signing
capabilities, without affecting other group members:

1. The simplest method revokes user ¢ by issuing a new signature verification key and giving
each signer, except user ¢, a new signing key. This requires an individual secret message to
each signer (e.g., TCG chip) and a public broadcast message to all verifiers.

2. A better revocation mechanism sends a single short public broadcast message to all sign-
ers and verifiers. A recent system by Camenisch and Lysyanskaya [11], based on dynamic
accumulators, provides such a mechanism.

3. Brickell [10] proposes a simpler mechanism where revocation messages are only sent to sig-
nature verifiers, so that there is no need ever to communicate with an end-user machine. A
similar mechanism was considered by Ateniese et al. [2] and Kiayias et al. [16]. We refer to
this as Verifier-Local Revocation (VLR) group signatures.

In this paper we formalize the concept of VLR group signatures. In Section we give a
precise definition of security using the framework of Bellare et al. [5]. We discuss the mechanics
of working with VLR group signatures and the features they provide. In Section [4] we present
our short VLR group signature scheme. Signatures in our system are about the same length as
standard RSA signatures of comparable security. Security is based on the Strong Diffie-Hellman
(SDH) assumption [7] in groups with a bilinear map. We also need the Decision Linear assumption,
an assumption that has proven useful for constructing short group signatures [§].

VLR group signatures are implemented by giving the signature verification algorithm an ad-
ditional argument called the Revocation List (RL). The RL contains a token for each revoked
user. The verification algorithm accepts all signatures issued by unrevoked users and reveals no
information about which unrevoked user issued the signature. However, if a user is ever revoked (by
having his revocation token added to the RL), signatures from that user are no longer accepted. It
follows that signatures from a revoked user become linkable: to test that two signatures were issued
by the same revoked user, verify the signatures once using the RL before the user is revoked and
once using the RL after. As a result, users who break the tamper resistance of their TCG chip and
are revoked deliberately lose their privacy. Our specific VLR group signatures have an additional
useful property: given a user’s private key it is easy to derive that user’s revocation token—the
revocation token is the left half of the private key. Hence, any private key that is published on
the web can be trivially added to the RL and revoked. This potentially eliminates the need for
a trusted revocation authority. Instead, revocation could be done by just scanning the web and
newsgroups for exposed private keys and telling all signature verifiers to add these keys to their
RL. We discuss this in more detail in the next section.

Notation Throughout the paper we use boldface to denote a vector of elements such as gsk. We
use gsk[i] to denote the ith element of the vector gsk.

2 Verifier-Local Revocation

In a group signature with verifier-local revocation, signers are stateless, and revocation messages
are processed by the verifiers alone [10, [2, 16]. Distributing revocation information only to the

signers simplifies revocation when verifiers are fewer than signers and, when signing functionality is
implemented in a tamper-resistant module, allowing signers to be stateless gives added robustness
and security. Therefore, verifier-local revocation is advantageous for privacy-preserving attestation
in the trusted computing environment.

We implement verifier-Local group signatures by providing to the signature verification algo-
rithm the Revocation List (RL) as additional argument. The RL contains a token for each revoked
user. The verification algorithm accepts all signatures issued by unrevoked users and reveals no
information about which unrevoked user issued the signature. However, if a user is ever revoked
(by having his revocation token added to the RL), signatures from that user are no longer accepted.
It follows that signatures from a revoked user become linkable: To test that two signatures were
issued by the same revoked user, verify the signatures once using the RL before the user is revoked
and once using the RL after. In the case of trusted computing, for example, users who break the
tamper resistance of their TCG chip and are revoked would lose their privacy by design.

Our specific VLR group signatures have an additional useful property: given a user’s private
key it is easy to derive that user’s revocation token—the revocation token is the left half of the
private key. Hence, any private key that is published on the web can be trivially added to the
RL and revoked. This potentially eliminates the need for a trusted revocation authority. Instead,
revocation could be done by just scanning the web and newsgroups for exposed private keys and
telling all signature verifiers to add these keys to their RL. We discuss this in more detail in the
next section.

2.1 Definitions

Formally, a VLR group signature scheme comprises three algorithms, KeyGen, Sign, and Verify,
which behave as follows:

KeyGen(n). This randomized algorithm takes as input a parameter n, the number of members
of the group. It outputs a group public key gpk, an n-element vector of user keys gsk =
(gsk[1], gsk[2],. .., gsk[n]), and an n-element vector of user revocation tokens grt, similarly
indexed.

Sign(gpk, gsk[i], M). The (randomized) signing algorithm takes as input the group public key gpk,
a private key gsk[i], and a message M € {0,1}", and returns a signature o.

Verify(gpk, RL,0, M). The verification algorithm takes as input the group public key gpk, a set of
revocation tokens RL (whose elements form a subset of the elements of grt), and a purported
signature o on a message M. It returns either valid or invalid. The latter response can
mean either that o is not a valid signature, or that the user who generated it has been revoked.

Implicit Tracing Algorithm Any VLR group signature scheme has an associated implicit trac-
ing algorithm that, using a secret tracing key, can trace a signature to at least one group member
who generated it. The vector of revocation tokens, grt, functions as this secret tracing key. Given a
valid message-signature pair (M, o), a party possessing all the revocation tokens grt can determine
which user issued the signature using the following algorithm:

1. Foreachi =1,...,nrun the verification algorithm on M, o with revocation list RL = {grt[i]}.

2. Output the index of the first user for which the verification algorithm says invalid. Out-
put fail if the signature verifies properly for all n users.

Our security definitions below explain why this is a correct tracing algorithm. The algorithm above
demonstrates that the grt vector can function as a secret tracing key, if so desired. Note that grt
in our system can be derived from just one value so that there is no need to store a large vector as
a tracing key.

In the constructions we have in mind, a user can derive her revocation token from her private
key, and can therefore determine whether her key was used to generate a particular signature. We
refer to this as selfless-anonymity: a group member can tell whether she generated a particular
signature o, but if she didn’t she learns nothing else about the origin of ¢. We describe a new
security model that captures this notion. We use the framework of Bellare et al. [5].

A secure VLR group signature scheme must satisfy three requirements: correctness, traceability,
and selfless-anonymity. We describe each in turn.

Correctness This requires that, for all (gpk, gsk, grt) generated by the generation algorithm,
every signature generated by a user verify as valid, except when the user is revoked; or, formally,
that

Verify(gpk, RL, Sign(gpk, gsk[i], M), M) = valid <= grt[i] ¢ RL .

Traceability We say that a VLR group signature scheme is traceable if no adversary can win the
traceability game. In the traceability game, the adversary’s goal is to forge a signature that cannot
be traced to one of the users in his coalition using the implicit tracing algorithm above. Let n be
a given group size. The traceability game, between a challenger and an adversary A, is defined as
follows.

Setup. The challenger runs algorithm KeyGen(n), obtaining group parameters gpk, gsk, and
grt. He provides the adversary A with gpk and grt, and sets U « ().

Queries Algorithm A4 can make queries of the challenger, as follows.

Signing. Algorithm A requests a signature on an arbitrary message M for the user at
index 4, where 1 < i < n. The challenger computes o < Sign(gpk, gsk[i], M) and
returns the signature o to A.

Corruption. Algorithm A requests the private key of the user at index i, 1 < i < n.
The challenger appends i to U, the adversary’s coalition, and responds with gsk][i].

Response. Finally, forger A outputs a message M™*, a set RL* of revocation tokens, and a
signature o*.

The forger wins if: (1) o* is accepted by the verification algorithm as a valid signature on M*
with revocation-token set RL*; (2) o* traces (using the implicit tracing algorithm above)
to some user outside of the coalition U \ RL*, or the tracing algorithm fails; and (3) o* is

nontrivial, i.e., A did not obtain ¢* by making a signing query at M*.

We denote by Succ PT 4 the probability that A wins the game. The probability is taken over the
coin tosses of A and the randomized key generation and signing algorithms.

The security proof for our system is set in the random oracle model [6] and therefore we include
in our security definitions an extra parameter gy denoting the number of random oracle queries
that the adversary issues.

Definition 2.1. An aggregate forger A (¢, qu, qs, n, €)-breaks traceability in an n-user VLR group
signature scheme if: A runs in time at most ¢; A makes at most g hash oracle queries and at most
¢s signing queries; and SuccPT 4 is at least e.

Selfless-anonymity In the selfless-anonymity game, the adversary’s goal is to determine which
of two keys generated a signature. He is not given access to either key. The game is defined as
follows.

Setup. The challenger runs the KeyGen algorithm, obtaining group parameters gpk, gsk,
and grt. It provides the adversary A with gpk.

Queries. Algorithm A can make queries of the challenger, as follows.

Signing. Algorithm A requests a signature on an arbitrary message M for the user at
index 4, where 1 < i < n. The challenger computes o < Sign(gpk, gsk[i], M) and
returns the signature o to A.

Corruption. Algorithm A request the private key of the user at index i, 1 < i < n.
The challenger responds with gsk[i].

Revocation. Algorithm A can request the revocation token of the user at index 4,
1 <i < n. The challenger responds with grt[i].

Challenge. Algorithm A outputs a message M and two indices ig and i7. It must have made
neither a corruption nor a revocation query at either index. The challenger chooses a
bit b & {0,1} uniformly at random, computes a signature on M by user i, as o* «
Sign(gpk, gsklip], M), and provides o* to A.

Restricted Queries. After obtaining the challenge, algorithm A is allowed to make addi-
tional queries of the challenger, restricted as follows.

Signing. Algorithm A can make signing queries as before.
Corruption. As before, but A cannot make corruption queries at iy and ;.
Revocation. As before, but A cannot make revocation queries at ig and 7.

Output. Finally, A outputs a bit ¥, its guess of b. The adversary wins if &’ = b.

We define A’s advantage in winning the game as Succ PA 4 as | Pr[b = b'] — 1/2|. The probability is
taken over the coin tosses of A, of the randomized key generation and signing algorithms, and the
choice of b. Note that A can make no more than n — 2 corruption and revocation queries.

Definition 2.2. An aggregate adversary A (¢, qy, qs, n, €)-breaks selfless-anonymity in an n-user
VLR group signature scheme if: A runs in time at most ¢; A makes at most gy queries to the hash
function and at most ¢g signing queries; and Adv PA 4 is at least e.

Definition 2.3. A group signature scheme with verifier-local revocation is (t, ¢y, g5, n, €) secure in
the VLR security model if: it is correct; no algorithm (¢, ¢y, gs, n, €)-breaks its traceability; and no
algorithm (¢, qu, gs,n, €)-breaks its selfless-anonymity.

We note that a signature scheme that satisfies the VLR security model above is existentially
unforgeable under a chosen message attack. This follows immediately from the traceability game.

3 Background

Our VLR group signature scheme makes use of bilinear groups. The security of the scheme depends
on the Strong Diffie-Hellman assumption and the Decision Linear assumption. In this section, we
review the definitions of bilinear groups and of the complexity assumptions.

3.1 Bilinear Groups

We first review a few concepts related to bilinear maps. Although many groups with a useful bilinear
map are based on elliptic curves, our definitions are abstract and do not require any familiarity
with elliptic curves. For more information, see Galbraith [I5], Paterson [19], or Shacham [22]; the
notation we employ here follows the last of these.

3.1.1 Groups

We use the following notation:
e (51 is a multiplicative cyclic group of prime order p;
e (55 is a multiplicative group of exponent p, whose order is some power of p.
e ¢ is a homomorphism from G onto G1.
e g9 is an order-p element of G2 and g; is a generator of GG1 such that 1(g2) = g;.

The elements g; and go are selected at random as part of system setup. Having selected go, one
can restrict Go to its cyclic order-p subgroup (g2). The restriction of ¢ to this subgroup gives an
isomorphism onto G1E|

One could set G; = Go, but we allow for the more general case where G; # G2 so that we
can take advantage of certain families of non-supersingular elliptic curves [18] [4]. In this paper we
only use the fact that, using such curves, G can be of size approximately 270, elements in G are
171-bit strings, and discrete log in (1 is as hard as discrete log in Z; where ¢ is a 1020-bit prime
power. We will use these groups to construct short VLR group signatures.

3.1.2 The Bilinear Map

We also employ bilinear maps. For these, we use the following notation:
e (G is a multiplicative cyclic group of order p.
e cisamap e: Gy X Gy — Gp with the following properties:

— Bilinear: for all u € Gy,v € G and a,b € Z, e(u®,v°) = e(u, v)?.

— Non-degenerate: e(¢(g2),g2) # 1 for all but at most a (2/p)-fraction of g2 € Gs.

When provided a generator g by an untrusted party, one can use the pairing to verify that
e(1(g2), g2) # 1 holds.

"When G- is not restricted in this way, it is possible to use the pairing to test whether two points g2, h € G2 are
such that h € (g2). Protocols in which messages include elements of G2 can thus leak information.

3.1.3 Running Times

In analyzing security reductions, We employ a concrete analysis in which time is measured accord-
ing to some fixed computational model —say, state transitions in a probabilistic (oracle) Turing
machine— and then normalized so that the following operations take unit time:

e computing the group operation on G; and on Go;
e evaluating the homomorphism ;
e selecting an element of G; or G9 uniformly at random; and

e evaluating the bilinear map e.

3.2 Hashing

Our VLR group signature of Section |4/ makes use of a hash function Hy: {0,1}" — G5

Some schemes in this thesis make use of two hash functions: one, H, mapping {0,1}" to Z,,
and a second, Hp, mapping {0,1}" to G2%. Instantiating a hash function of the second sort takes
some care; see the discussion by Shacham [22] Section 1.3.3].

3.3 Complexity Assumptions

The security of our VLR group signatures relies on the difficulty of two problems: the Strong
Diffie-Hellman problem and the Decision Linear problem. We describe each of these problems in
turn.

3.3.1 The Strong Diffie-Hellman Assumption

g-Strong Diffie-Hellman Problem The ¢-SDH problem in (G, G2) is defined as follows: given
2
a (¢ + 2)-tuple (gl,gg,gg,gé7), .. ,qu)) as input, output a pair (g}/(%m), r), where x € Z;. An

algorithm A has advantage € in solving ¢-SDH in (G1, Ga) if

1

5 Yte
Pr A(gth)gFan”'vggy)):(e ,.T) > € s

where the probability is over the random choice of generator go in G (with g1 <« 1(g2)), of v in
Zy, and of the random bits of A.

Definition 3.1. We say that the (¢, ¢, €)-SDH assumption holds in (G, G2) if no t-time algorithm
has advantage at least e in solving the ¢-SDH problem in (G1, Ga).

Occasionally we drop the ¢ and € and refer to the ¢-SDH assumption rather than the (g,t,€)-
SDH assumption. The ¢-SDH assumption was recently used by Boneh and Boyen [7] to construct
a short signature scheme without random oracles. To gain confidence in the assumption they prove
that it holds in generic groups [23]. The assumption has properties similar to the Strong-RSA
assumption [3] and we exploit these properties to build short VLR group signatures. Mitsunari et
al. [I7] use a related assumption (where x is part of the input given to the adversary) in a tracing
traitors system.

3.3.2 The Decision Linear Assumption

With g1 € G1 as above, along with arbitrary generators u, v, and h of Gy, consider the following
problem:

Decision Linear on Gy: Given u,v, h,u®,v®, h¢ € Gy as input, output yes if a + b = ¢ and no
otherwise.

One can easily show that an algorithm for solving Decision Linear in G; gives an algorithm
for solving DDH in ;. The converse is believed to be false. That is, it is believed that Decision
Linear is a hard problem even in bilinear groups where DDH is easy. More precisely, we define the
advantage of an algorithm A in deciding the Decision Linear problem on G as

Pr [A(u,v, h,u®, b, h“+b) =vyes : u,v,h & Gi,a,b E Zp]

. def
Adv Linear4 = R R
—Pr [A(u,v, h,u®,v* n) =yes : w,v,h,n < G1,a,b Zp]

The probability is over the uniform random choice of the parameters to A, and over the coin tosses
of A. We say that an algorithm A (¢, €)-decides Decision Linear on G if A runs in time at most ¢,
and Adv Linear 4 is at least e.

Definition 3.2. We say that the (¢, €)-Decision Linear assumption holds in G if no ¢-time algorithm
has advantage at least € in solving the Decision Linear problem in Gj.

The Decision Linear assumption was recently introduced by Boneh, Boyen, and Shacham [g].
They prove that the problem is intractable in generic bilinear groups.

4 Short VLR Group Signatures from SDH

In this section, we describe in detail our VLR group signature based on SDH. In the next section,
we give intuition for how the scheme is derived.

Consider bilinear groups (G, G2) with isomorphism 1 and respective generators g; and g, as
in Section The scheme employs hash functions Hy and H, with respective ranges G3 and Lo,
treated as random oracles.

KeyGen(n). The key generation algorithm takes as input n, the number of user keys to generate.
It proceeds as follows:

1. Select a generator g in G uniformly at random, and set g1 < ¥(g2). (In the unlikely
case that e(¢(g2), g2) = 1, repeat this step; see Section [3.1.2])

2. Select hid Z; and set w = g;.

3. Using 7, generate for each user an SDH tuple (A;, z;) by selecting x; hid Z,, such that

v+ x; # 0, and setting A; «— gi/(Wﬂi).

The group public key is gpk = (g1, g2, w). Each user’s private key is her tuple gsk[i] = (A;, ;).

The revocation token corresponding to a user’s key (A;,x;) is grt[i] = A;. The algorithm
outputs (gpk, gsk, grt). No party is allowed to possess v; it is only known to the private-key
issuer.

Sign(gpk, gsk[i], M). The signing algorithm takes as input a group public key gpk = (g1, g2, w), a
user private key gsk[i] = (A;,x;), and a message M € {0,1}", and proceeds as follows.

1. Pick a random nonce r & Zy. Obtain generators (4,?) in G from Hy as
(@,9) < Ho(gpk, M,r) € G3 (1)
and compute their images in G:
ue—p(a) , vep(0) .
2. Select an exponent « pid Z,, and compute:
T —u® and Ty — Ajv® . (2)
3. Set 6 « x;a € Zyp. Pick blinding values ry, 7, and rs & L.

4. Compute helper values R1, Rz, and Rg:

Ry —u"™ Ry —T{" -u™")
Ry — e(T5,g2)" - e(v,w)™ "™ - e(v,g2)" " .
5. Compute a challenge value ¢ € Z,, using H:
c«— H(gpk,M,r,T1,T>,R1,R2, R3) € Zy, . (4)
6. Compute so = ro + co, 55 = 75 + cx;, and s5 =15 + ¢ € Zy.
Output the signature o «— (r,T1, T3, ¢, S, Sz S5)-

Verify(gpk, RL, o, M). The verification algorithm takes as input a group public key gpk = (g1, g2, w),
a set RL of revocation tokens (each an element of G1), a purported signature o = (r, 11, T3, c,
Sy Sz, S5), and a message M € {0,1}", and proceeds in two phases. First, it ensures that the
signature o is valid; then it ensures that ¢ was not generated by a revoked user. It accepts
only if both conditions hold.

1. Signature Check. Check that o is a valid signature, as follows.

1. Compute @ and ¥ using equation , and their images u and v in G:
we—tpa) , v—p(0) .
2. Re-derive Ry, Ro, and Rj3 as:
Ry « u®/Tf Ry « Tiru™%
Ry — ¢(Ts, g2)* e(v,w) "> e(v, 92) ~* - (e(To,w)/e(91, 92))°
3. Check that the challenge c is correct:
c;H(gpk,M,r,Tl,Tg,él,ﬁg,Rg) . (6)

If it is, accept. Otherwise, reject.

2. Revocation Check. For each element A € RL, check whether A is encoded in (77, 75)
by checking if
e(Ty/A) = e(T1,) .

If no element of RL is encoded in (77,7T%), the signer of o has not been revoked.

The algorithm outputs valid if both phases accept, invalid otherwise.

Signature Length A group signature in the system above comprises two elements of G; and five
elements of Z,. Using the MNT family of curves [18], as described in [9], one can take p to be a
170-bit prime and use a group G; where each element is 171 bits. Thus, the total group signature
length is 1192 bits or 149 bytes. With these parameters, security is approximately the same as a
standard 1024-bit RSA signature, which is 128 bytes. Using Barreto Naehrig curves [4], one can
instead take p to be a 160-bit prime. This gives 1122-bit group signatures with the same security
level.

Performance Signature generation requires two applications of the isomorphism ¢. Computing
the isomorphism takes roughly the same time as an exponentiation in G (using fast computa-
tions of the trace map). Thus, signature generation requires about 8 exponentiations (or multi-
exponentiations) and 2 bilinear map computations. Signature verification takes 6 exponentiations
and 3 + 2|RL| computations of the bilinear map. A far more efficient revocation check algorithm,
whose running time is independent of |RL|, is described in Section

We now prove the correctness of the VLR group signature scheme. The proofs of the selfless-
anonymity and traceability of the scheme are given in Section [6]

Theorem 4.1. The VLR group signature scheme is correct, as defined in equation .

Proof. Consider public parameters gpk = (g1,92,w); secret-key vector gsk where, for each i,
gskli] = (A;,z;), an SDH tuple, i.e., a tuple satisfying e(A;, wgs*) = e(g1,92); and revocation-
token list grt where grt[i] = A;, as output by the key generation algorithm.

An honest signer with private key (4;, z;) generates a signature (r, 71, T», ¢, Sq, Sz, S5) by follow-
ing the signing algorithm described above. In particular, the signer computes the generators @ and
¥ according to equation , so the verifier uses the same generators. Now, the first phase of the
signature verification algorithm accepts a signature if the output of H equals the challenge c¢. This
will only be true (except with negligible probability) when all inputs to H are exactly the same for
the verifier as for the signer. An honest signer’s signature includes all these inputs except R, Ro,
and Rj3, which are re-derived by the verifier. We must therefore show that the values re-derived by
the verifier using equations equal those derived by the signer using equations . First,

Ry = u/Ty = fz/"C*JrCO‘/(uo‘)C =u"* =Ry,
SO P:l = R;. Further,

Ry =Tyou™ = (u®)oFe% g 0o = (y®) .77 =T{* .0~ = Ry,

10

SO P:3 = R3. Finally,

Ry = e(T2, 02) - e(v,w) ™™ - (v, g2) ™ - ((Tw)>

e(91, 92)
= (e(T2, g2 - e(v,w) 7 - e(v,92))

. a e €T, w)\¢

% (6(T2,92) tee(v,w) Y e(v, g2) " 6591292;>
e(Tov™*, wgy')\ ° e(4i, wgy')\¢

2 (6(91792)) (6(91792)) ?

so Ry = Rs. The last equality follows from the SDH equation. Thus @ will be satisfied.

In a signature generated by the signing algorithm, we have 77 = ¥(4)® and Ty = A;1(0)* for
some «. The revocation check algorithm will reject a signature as originating from a revoked user
with token A exactly when (a,0,77,75/A) is a co-Diffie-Hellman tuple, i.e., when A equals A;.
Thus the group signature verification algorithm will accept a signature as valid exactly when A; is
not included in its input RL, as required. O

5 Intuition

The VLR group signature scheme presented in Section {| above is derived, via a variant of the
Fiat-Shamir heuristic [I4], from a new protocol for proving possession of an SDH tuple. We present
this protocol below to give intuition into the construction of our VLR group signature scheme.

The protocol is a proof of knowledge, which means that by rewinding a prover it is possible to
extract an SDH pair. The protocol is intentionally not zero-knowledge; a verifier in possession of a
revocation token can determine whether he is interacting with a revoked prover.

The public values are g1 € G; and go,w € G3. Here go is a random generator of Go,
g1 equals ¥(g2), and w equals gy for some (secret) v € Z,. The prover wishes to demonstrate
possession of a pair (A,z), where A € Gy and = € Z,, such that A" = g;. Such a pair satis-
fies e(A,wg5) = e(g1,92). We use a generalization of Schnorr’s protocol for proving knowledge of
discrete logarithm [21] in a group of prime order.

Protocol 1. Bob, the verifier, selects elements 4 and ¢ uniformly at random from G9 and sends

them to Alice, the prover. Alice sets u < 1(u) and v < ¥ (0). She selects exponent « & Zy, and
computes
T, — u® and Ty «— Av®™ .

Alice and Bob then undertake a proof of knowledge of values («, z, §) satisfying the following three
relations:
u* =1 , ¢ =ud | e(Tov % wgs) = e(g1,92) -

This proof of knowledge proceeds as follows. Alice computes a helper value § = x«a. She then
picks blinding values r,, 1, and rs at random from Z,. She computes three values based on all
these:

Ry —u"™ Ry — Ty -u™"

Ry — e(T3,g2)™ - e(v,w) ™" - e(v,g2)" "0 .

11

She then sends (74,75, R1, R2, R3) to Bob. Bob sends a challenge value ¢ chosen uniformly at
random from 7Z,. Alice computes and sends back s, = rq + co, s, = ry + cx, and s5 = r5 + cd.
Finally, Bob verifies the following three equations:

use ; Tlc - Ry (7)
e(Ty, g2)** - e(v,w) ™ - (v, g2) ™% = (e(g1, g2)/e(To, w))* - Ry (8)
Tjru™ < Ry . 9)

Bob accepts if all three hold. Applying a standard variant of the Fiat-Shamir heuristic to this
protocol produces the signature scheme of the previous section.

The protocol above is (by design) not a zero-knowledge protocol. Given (77,7%) and a can-
didate A, anyone can check whether A is ElGamal-encrypted in (77,7%) by checking whether

e(Ta /A, 1) L e(T1,0) holds. Below, however, we show that the protocol has an extractor and, given
a (11, T») pair, can be simulated. The correctness of the protocol follows from Theorem

Lemma 5.1. For any (4,0,T1,T3), Transcripts of Protocol can be simulated.

Proof. Choose challenge ¢ hia Zy. Select s, & Zp, and set Ry « u**/T{. Then equation
is satisfied. With « and c¢ fixed, a choice for either of r, or s, determines the other, and a
uniform random choice of one gives a uniform random choice of the other. Therefore s, and Ry
are distributed as in a real transcript.

Select s, & Zyp. Now, A and o are fixed by T7 and T, « is implicitly fixed by the SDH equation

for A, r, is fixed by = and s;, and § is fixed as za. Select s4 hia Zyp; a uniform distribution on
this gives a uniform distribution on rs. Set Rz « T7*u™®. Again, all the computed values are
distributed as in a real transcript. Finally, set

e(Ts, w))C '

Ry — e(Tb, 92)%" - e(v,w) "% - e(v, go 785-(
()7 - e(v, w) (v, g2) 91.50)

This Ry satisfies , so it, too, is properly distributed.
Finally, the simulator outputs the transcript (4,9, T1,Ts, R1, Re, R3, ¢, S, 58, Sz, 55). As argued

above, this transcript is distributed identically to transcripts of actual Protocol [1| interactions for
the given (u, 0, T, T3). O

Lemma 5.2. There exists an extractor for Protocol[]] that extracts an SDH pair from a convincing
prover.

Proof. Suppose that an extractor can rewind a prover in the protocol above. The verifier sends
@, 0 to the prover. Let u = ¢(4) and v = ¢(0). The prover then sends T7,7> and Ry, R, R3. To
challenge value ¢, the prover responds with s, s;, and ss. To challenge value ¢ # ¢, the prover
responds with s/, s/, and sj. If the prover is convincing, all three verification equations hold for
each set of values.

For brevity, let Ac = ¢ — ¢, Asq = So — 5, and similarly for As,, and As;.

Consider above. Dividing the two instances of this equation, we obtain u®% = TlAC. The
exponents are in a group of known prime order, so we can take roots; let & = As,/Ac. Then
u® = Tl.

12

Now consider @ above. Dividing the two instances gives TlAsI = u®% . Substituting Ty = u®
gives u®®s = uB% or Ass = GAs,.
Finally, dividing the two instances of , we obtain

(6(91,92)/€(T2,w))Ac = €(T2,92)A5”0 . e(v,w)‘Asa . 6(1}792)_6‘A5x ‘

Taking Ac-th roots, and letting & = As,/Ac, we obtain

e(g1, 92)/e(To,w) = e(Ta, g2)" - e(v,w) ™% - e(v, ga) ~**

This can be rearranged as) i
e(g1,92) = e(Tav™ ", wg3) ,
or, letting A= Tov™?,
e(A,wgy) = e(g1,92) -

Thus the extractor obtains an SDH tuple (121,5:) Moreover, the A in this SDH tuple is, perforce,
the same as that in the ElGamal encryption (77,7%). In other words, the extractor recovers the
same A that a revocation-checker matches. O

6 Proof of Security

We show that the scheme described in Section [f]is a VLR group signature scheme. Correctness was
demonstrated in Theorem above. Below we give proofs of selfless-anonymity and traceability
, as defined in Section [2.1

6.1 Selfless-Anonymity

Lemma 6.1. The VLR group signature scheme in (G1,G2) has (t,qu,qs,n,€) selfless anonymity
in the random oracle model assuming the (t, €') Decision Linear assumption holds in the group G

r_ e 1 4S9H \ ~ 2
fO?"E —i(ﬁ—T)Ne/Zn

Proof. Suppose algorithm A (¢, gy, gs, n, €)-breaks the selfless anonymity of the VLR group signa-
ture scheme. We build an algorithm B that breaks the Decision Linear assumption in Go. Algorithm
B is given as input a 6-tuple (uo, w1, v, ho = uf, h1 = ul{, Z) € GS where ug, uy,v E Ga, a,b & Z,
and either Z = v%** € Gy or Z is random in Gy. Algorithm B decides which Z it was given by
interacting with A as follows:

Setup. Recall that g1, g2 are the fixed generators of G, Ga respectively. Algorithm B does the
following:

1. Algorithm B picks a random -~y hia Z, and sets w = g5. It gives A the gpk = (g1, g2, w).

2. B picks two random users ig, i1 & {1,...,n} and keeps igp,i; secret. For all users
J # 10,41 it generates private keys gsk[j] = (A;,x;) using v and the standard key
generation algorithm.

3. B picks a random W pid Go.

13

To give some intuition for the rest of the simulation we define 4;, = ZW/v® and A;; = Wl.
In what follows, B will behave as if user iy’s private key is (A;,, x;,) and user i;’s private key
is (A, x;,) for some x;,,x;, € Z,. We emphasize that B does not know either A;, or A;
since it doesn’t know a or b. Observe that if Z = v*t? then

Ajy = ZW /v = v*TW /vt = Wb = Ay,

Hence, if Z = v**? users ig and i; have the same private key. But if Z is random in G5 then
10,71 have independent private keys.

Hash queries. At any time, A can query the hash functions H and Hy. Algorithm B responds
with random values while ensuring consistency.

Phase 1. Algorithm A can issue signing queries, corruption queries, and revocation queries. If a
query is for user ¢ # ip,4; then B uses the private key gsk[i] to respond to the query. For
queries for users ¢g or 4 algorithm B responds as follows:

e Signing queries: given a message M € {0,1}* and a user ¢ € {ig,i;} algorithm B must
generate a signature for M using user ¢’s private key.

— To generate a signature for user i = ig, B picks random s,t,1 pia Z,, and makes the
following assignments:

Ty — houy Ty — ZWolhhudl G —ul 0 — (vup) .
Let o = (a +)/l € Z,. Then Ty = 4® and Ty = Ay, - 0.

— To generate a signature for user ¢ = ¢y, B picks random s, ¢, E Z,, and makes the
following assignments:

Ty — hjuj Ty — Whiust Jv® i ub b — (ul/v)" .

Let o = (b+s)/l € Zy. Then T} = u® and Ty = A;, - 0.
Either way, T1 = u® and Ty = A;0% for some random « € Z, and random and indepen-

dent 4,0 € Go. Algorithm B next picks random 7, ¢, S, Sz, Ss & Z,, and computes the
corresponding Rj, Re, R3 using equations . In the unlikely event that A has already
issued a hash query either for H(gpk, M, r,¥(T1), ¥ (Ts), R1, R2, R3) or for Hy(gpk, M, r),
B reports failure and terminates. Since r is random in Z, this happens with probability
at most qy/p. Otherwise, B defines

H(gpka Mv T,¢(T1)7¢(T2),R1,RQ,R3) =cC
Ho(gpk,M,T) = (Avﬁ) .
Algorithm B then computes the signature o as o «— (r,¥(11), ¢ (12), ¢, Sa, Sz, Ss), and

gives o to A. Note that by Lemma [5.1] ¢ is a properly distributed signature under user
1’s private key.

e Corruption queries and revocation queries: if A ever issues a corruption of revocation
query for users ig or i1 then B reports failure and aborts.

14

Challenge Algorithm A outputs a message M and two users i; and ¢} where it wishes to be
challenged. if {i}i]} # {io,i1} then B reports failure and aborts. Otherwise, we assume

iy = o and 4] = 41. Algorithm B picks a random b & {0,1} and generates a signature
o* under user 7;’s key for M using the same method used to respond to signing queries in
Phase 1. It gives o* as the challenge to A.

Phase 2. Algorithm A issues restricted queries. B responds as in Phase 1.

Output. Eventually, A outputs its guess ' € {0,1} for b. If b = b’ then B outputs 0 (indicating
that Z is random in G3); otherwise B outputs 1 (indicating that Z = v%*?).

Suppose B does not abort during the simulation. Then, when Z is random in G5 algorithm B
emulates the selfless-anonymity game perfectly. Hence, Pr[b = b'] > %-{—6. When Z = v%*? then the
private keys for users ig and ¢; are identical and therefore the challenge signature ¢* is independent
of b. Tt follows that Pr[b = b'] = 1/2. Therefore, assuming B does not abort, it has advantage at
least ¢/2 in solving the given linear challenge (ug,u1,v, ho, h1,Z) € GS.

Algorithm B does not abort if it correctly guesses the values i and ¢] during the setup phase
and none of the signature queries cause it to abort. The probability that a given signature query
causes B to abort is at most ¢y /p and therefore the probability that B aborts as a result of A’s
signature queries is at most gsqy /p. As long as B does not abort during phase 1, algorithm .4 gets
no information about the choice of ig,7;. Therefore, the probability that the query pattern during

phase 1 and the choice of challenge do not cause B to abort is at least 1/n2. It now follows that B

solves the given linear challenge with advantage at least § (% — %), as required. O

6.2 Traceability

Theorem 6.2. If SDH is (q,t,€)-hard on (G1,G2), then the VLR group signature scheme is
(t,qu,qs,n, €)-traceable, where n = q — 1, € = 4n\/2¢/qy + n/p, and t = O(1) - t'.

Proof. Our proof proceeds in three parts. First, we describe a framework for interacting with
an algorithm that wins a traceability game. Second, we show how to instantiate this framework
appropriately for different types of such breaker algorithms. Third, we show how to apply the
forking lemma [20] to the framework instances, obtaining SDH solutions.

Interaction Framework Suppose we are given an algorithm A that breaks the traceability of
the VLR group signature scheme. We describe a framework for interacting with A.

Setup. We are given groups (G1,G2) as above, with respective generators g1 and ga. We are also
given w = gJ € Go, and a list of pairs (A;,z;) for i = 1,...,n. For each i, either z; = x,
indicating that the x; corresponding to A; is not known, or else (A;,x;) is an SDH pair, and
e(A;,wgy") = e(g1,g2). We then run A, giving it the group public key (g1, g2, w) and the
users’ revocation tokens {A;}. We answer its oracle queries as follows.

Hash Queries. At any time, A can query the hash functions to obtain generators (@, o) or chal-
lenge c. We respond with random values while maintaining consistency. made again.

15

Signature Queries. Algorithm A asks for a signature on message M by a key at index 7. If
s; # *, we follow the group signing procedure with key (A;, z;) to obtain a signature o on M,
and return o to A.

Otherwise s; = *. We pick a nonce r pid Zy, obtain generators (u,0) «— Ho(gpk, M,r),

and set u «— ¥(4) and v «— ¥(0). We then pick « & Ly, set Ty «— u®, and Tp «— Agf
and run the Protocol 1| simulator with values (@, v,77,72). The simulator returns a tran-
script (@, 0, Ty, Ta, Ry, Ra, R3, ¢, Sa, Sz, Ss), from which we derive a VLR group signature o =
(r,T1,Ts, ¢, S, Sz, S5). In addition, we must patch the hash oracle at (M, r, Ty, Ts, R1, Ro, R3)
to equal c. If this causes a collision, i.e., if we previously set the oracle at this point to some
other ¢/, we declare failure and exit. Otherwise, we return o to A. A signature query can
trigger a hash query, which we charge against 4’s hash query limit to simplify the accounting.

Private Key Queries. Algorithm 4 asks for the private key of the user at some index i. If x; # *,
we return (A;, z;) to A. Otherwise, we declare failure and exit.

Output. Finally, if algorithm A is successful, it outputs a forged VLR group signature o =
(r,Th,T5, ¢, Sa, Sz, S5) on a message M with nonce r, along with a revocation list RL*. We
apply the implicit revocation algorithm, with revocation tokens {A;} to determine which A*
is encoded in (77,7%). This A* cannot be on RL*; if it were, the signature would have been
rejected as invalid. Thus for the forgery to be nontrivial, A* must also be outside the adver-
sary’s coalition U. If A* does not equal A; for any ¢, we output o. Otherwise, A* = A;« for
some i*. If s;+ = %, we output o. If, however, s;« # x, we declare failure and exit.

As implied by the output phase of the framework above, there are two types of forger algorithm.
Type I forgers output a forgery o on a message M that encodes some identity A* ¢ {A1,..., A, }.
Type II forgers output a forgery that encodes an identity A* such that A* = A;« for some i*,
and the forger did not make a private-key oracle query at i*. We treat these two types of forger
differently.

Given a ¢-SDH instance (¢4, g5, (¢5)7, (gé)”z, .., (gh)""), we apply the technique of Boneh and
Boyen’s Lemma 3.2 [7], obtaining generators g1 € G1, g2 € G2, w = gg, along with ¢ — 1 SDH pairs
(A;, z;) such that e(A;, wgs5') = e(g1, g2) for each i. Any SDH pair (A, z) besides these ¢ — 1 pairs
can be transformed into a solution to the original ¢-SDH instance, again using Boneh and Boyen’s
Lemma 3.2.

Type I Forger Against a (¢,qy,qs,n,€)-Type I forger A, we turn an instance of (n + 1)-SDH
into values (g1, g2, w), and n SDH pairs (A4;,x;). We then apply the framework to A with these
values. Algorithm A’s environment is perfectly simulated, and the framework succeeds whenever
A succeeds, so we obtain a Type I forgery with probability e.

Type II Forger Against a (t,qu,qs,n,€)-Type II forger A, we turn an instance of n-SDH into
values (g1, 92, w), and n — 1 SDH pairs. These pairs we distribute amongst n pairs (A;,x;). The

unfilled entry at random index i* we fill as follows. Pick A;« & (1, and set z;» « *, a placeholder
value. Now we run A under the framework. The framework declares success only if A never queries
the private key oracle at i*, but forges a group signature that traces to A;«. It is easy to see that the
framework simulation is perfect unless A queries the private key oracle at i*. Because the protocol
simulator invoked by the signing oracle produces group signatures that are indistinguishable from

16

those of a user whose SDH tuple includes A;«, the value of ¢* is independent of A’s view unless
and until it queries the private key oracle at i*. (Since the hash oracle takes as input five elements
of G or G4 besides the message M, the probability of collision in simulated signing queries is
bounded above by (¢zqs + ¢2)/p°. Assuming ¢s < gy < p = |G1|, this probability is negligible,
and we ignore it in the analysis.) Finally, when A outputs its forgery o, implicating some user 4
whose private key A has not requested, the value of i* (amongst the users whose keys it has not
requested) remains independent of A’s view. It is easy to see, then, that A outputs a forged group
signature that traces to user ¢* with probability at least €/n.

Application of Forger Now we show how to use the application of our framework to a Type I
or Type II adversary A to obtain another SDH pair, contradicting the SDH assumption. The
remainder of this proof follows closely the methodology and notation of the forking lemma [20].

Let A be a forger (of either type) for which the framework succeeds with probability €. From
here on, we abbreviate signatures as (M, 0y, ¢, 01), where o9 = (r, 4, 0,11, T, R1, Ro, R3), the values
given, along with M, to the random oracle H, and from which ¢ is derived, and where o1 =
(Sas Szy 85)- (Those values normally omitted from the signature can be recovered as the verification
algorithm in Section 4| does.)

We require that A always query Hy at (M,r) before querying H at (M,r,...). Any adversary
can be modified mechanically into satisfying this condition. This technical requirement means that,
even if in rewinding we change the value of H(M,r,...), the value of Ho(M,r), and therefore of
the u and v used implicitly in the arguments of the H call, remains unchanged.

For any fixed fy vector of Hy responses, a run of the framework on A is completely described
by the randomness string w used by the framework and A, by the vector fy of responses made
by the Hy hash oracle, and by the vector f of responses made by the H hash oracle. Let S be
the set of tuples (w, fo, f) such that the framework, invoked on A, completes successfully with
forgery (M, og,c,01), and A queried the hash oracle H on (M,o09). In this case, let Ind(w, fo, f)
be the index of f at which A queried (M, op). We define v = Pr[S] = ¢ — 1/p, where the 1/p term
accounts for the possibility that A guessed the hash of (M, op) without the hash oracle’s help. For
each j, 1 < j < qgu, let S; be the set of tuples (w, fo, f) as above and such that Ind(w, fo, f) = J.
Let J be the set of auspicious indices j such that Pr[S; | S| > 1/(2¢gy). Then

Pr[Ind(w, f) € J | S] >1/2 .

Let f\Z be the restriction of f to its elements at indices a,a + 1,...,b. For each j € J,
we consider the heavy-rows lemma [20, Lemma 1] with rows X = (w, fo, f \{_1) and columns
Y = (f[j"). Clearly Pr,[(z,y) € S;j] > v/(2gn). Let the heavy rows Q; be those rows such that,
V(z,y) € Q; : Pry[(z,y) € Sj] > v/(4qx). Then, by the heavy-rows lemma, Pr[Q; | S;] > 1/2. A
simple argument then shows that Pr[3j € J: Q; NS; | S] > 1/4.

Thus, with probability v/4, the framework, invoked on A, succeeds and obtains a forgery
(M, 09,c,01) that derives from a heavy row (z,y) € Q; for some j € J, i.e., an execution (w, fo, f)
such that

- .
Priw fo.) €8 [fI7 = R 2 v/(aw) -
If we now rewind the framework and A to the jth query and proceed with an oracle vector f’

that differs from f from the jth entry on, we obtain, with probability at least v/(4qy), a successful
framework completion and a second forgery (M, oq,c,0]), with (M, o) still queried at A’s jth

17

hash query. Since the adversary queried Hy at (M,r) (where r is the first element of o() before he
made his jth H oracle query, the values of @ and ¢ in these two forgeries will be the same.

By using the extractor of Lemma we obtain from the forgeries (oo, ¢,01) and (0o, ', 0}) an
SDH tuple (A, x). The extracted A is the same as the A encoded in (77,73) in 0¢. The framework
declares success only when the A encoded in (77,75) is not amongst those whose x it knows.
Therefore, the extracted SDH tuple (A, z) is not amongst those that we ourselves created, and can
be transformed, again following the technique of Boneh and Boyen’s Lemma 3.2 [7], to an answer
to the posed ¢-SDH problem.

Putting everything together, we have proved the following claims.

Claim 1. Using a (t,qu,qs,n,€) Type I forger, we solve an instance of (n+1)-SDH with probability
(e —1/p)%/(16qy) in time O(1) - t.

Claim 2. Using a (t,qu,qs,n,€) Type II forger, we solve an instance of n-SDH with probability
(e/n — 1/p)?/(16qy) in time O(1) - t.

We can guess which of the two forger types a particular forger is with probability 1/2; then
assuming the more pessimistic scenario of Claim 2 proves the theorem. 0

7 Efficient revocation

In our VLR group signature scheme (Section , signature verification time grows linearly in the
number of revoked users. It is desirable to have a Verifier-Local Revocation system where ver-
ification time is constant. In this section we describe a simple modification to the signing and
verification algorithms that achieves this at the cost of slightly reduced anonymity.

Consider how our system is used for privacy-preserving attestation: Users connect to various
web sites and at each site they perform a private attestation using the group signature issued by
the tamper-resistant chip in their machine. For an efficient revocation check, when the chip issues
a signature for attesting to a site S it uses the signing algorithm from Section {4| with the small
modification that the parameters u and v are generated as:

(u,v) & Ho(gpk, S,)

where r is random in the range {1,...,k} and k is a security parameter (e.g., k = 128). Note that,
unlike Section {4} here (u,v) do not depend on the message being signed. Hence, at a given site S
there are only k possible values for the pair (u,v).

Now, suppose site S has been supplied with a revocation list RL = {Ay,...,Ap}. To verify
that a signature o = (r, 11,75, ¢, Sq, Sz, S5) Was not issued by a revoked user the site uses the same
procedure as in Section Et

1. Compute (u,v) & Hy(gpk, S,r), and
2. Fori=1,...,b check that e(T1,v)e(A;,u) # e(Ta,u).

Since at site S there are only k possible values for u, the value e(A4;,u) can be precomputed for the
entire RL for all possible u’s. Thus, site S stores a |RL| x k table of values, e(A4;,u;). To check
revocation, it simply does a table-lookup to see if the value e(T%,u)/e(T1,v) is in the rth row of

18

the table. If not, then the signature was not issued by a revoked user. Hence, the revocation check
takes time independent of the size of RL.

The downside is that the scheme is now only partially anonymous. If the user issues two
signatures at site S using the same random value r € {1,...,k} then the site can test that these
two signatures came from the same user. However, signatures issued at different sites are still
completely unlinkable. Similarly, signatures issued at the same site using different r’s are unlinkable
(e.g., with & = 100 only 1% of signatures at S are linkable). For some applications, this trade-off
between partial linkability and efficient revocation might be acceptable.

8 Exculpability

In our concrete VLR scheme keys are issued by a trusted key generator. This is in keeping with the
security definitions given in Section which themselves are modeled after the Bellare-Micciancio-
Warinschi definitions for ordinary group signatures [5].

It is possible to achieve strong exculpability — where even the entity that issues user keys cannot
forge signatures under users’ keys—for our VLR group signatures. The necessary modifications
are essentially those suggested for Boneh-Boyen-Shacham group signatures [8, Section 7].

An appropriate model for proving the modified VLR group signatures secure would closely
resemble the definitions for traceable signatures proposed by Kiayias and Yung [16]. (“Claiming” a
signature, in the Kiayias-Yung terminology, would simply require proving knowledge of a value A;
such that (u, 0,77, T5/A;) is a co-Diffie-Hellman tuple.)

9 Conclusions and Open Problems

We have described a short group signature scheme where user revocation only requires sending
revocation information to signature verifiers, a setup we call verifier-local revocation. Our signatures
are short: only 141 bytes for a standard security level. They are shorter than group signatures
built from the Strong-RSA assumption and are shorter even than BBS short group signatures [§],
which do not support verifier-local revocation.

There are still a number of open problems related to VLR signatures. Most importantly, is
there an efficient VLR group signature scheme where signature verification time is sub-linear in the
number of revoked users, without compromising user privacy?

10 Acknowledgments

We thank Ernie Brickell and Nigel Smart for helpful discussions about this work.

References

[1] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably secure coalition-
resistant group signature scheme. In M. Bellare, editor, Proceedings of Crypto 2000, volume
1880 of LNCS, pages 255—70. Springer-Verlag, Aug. 2000.

19

2]

G. Ateniese, G. Tsudik, and D. Song. Quasi-efficient revocation of group signatures. In
M. Blaze, editor, Proceedings of Financial Cryptography 2002, volume 2357 of LNCS, pages
183-97. Springer-Verlag, 2003.

N. Baric and B. Pfitzmann. Collision-free accumulators and fail-stop signature schemes without
trees. In W. Fumy, editor, Proceedings of Furocrypt 1997, volume 1233 of LNCS, pages 480—
494. Springer-Verlag, May 1997.

P. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order. In B. Preneel and
S. Tavares, editors, Proceedings of SAC 2005, volume 3897 of LNCS, pages 319-31. Springer-
Verlag, 2006.

M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures: Formal defini-
tions, simplified requirements, and a construction based on general assumptions. In E. Biham,
editor, Proceedings of Eurocrypt 2003, volume 2656 of LNCS, pages 614-29. Springer-Verlag,
May 2003.

M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In D. Denning, R. Pyle, R. Ganesan, R. Sandhu, and V. Ashby, editors, Proceedings
of CCS 1993, pages 62-73. ACM Press, Nov. 1993.

D. Boneh and X. Boyen. Short signatures without random oracles. In C. Cachin and J. Ca-
menisch, editors, Proceedings of Eurocrypt 2004, volume 3027 of LNCS, pages 56—73. Springer-
Verlag, May 2004.

D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. Franklin, editor,
Proceedings of Crypto 2004, volume 3152 of LNCS, pages 41-55. Springer-Verlag, Aug. 2004.

D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. J. Cryptology,
17(4):297-319, Sept. 2004. Extended abstract in Proceedings of Asiacrypt 2001.

E. Brickell. An efficient protocol for anonymously providing assurance of the container of a
private key, Apr. 2003. Submitted to the Trusted Computing Group.

J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to efficient revoca-
tion of anonymous credentials. In M. Yung, editor, Proceedings of Crypto 2002, volume 2442
of LNCS, pages 61-76. Springer-Verlag, Aug. 2002.

D. Chaum and E. van Heyst. Group signatures. In D. W. Davies, editor, Proceedings of
FEurocrypt 1991, volume 547 of LNCS, pages 257-65. Springer-Verlag, Apr. 1991.

X. Ding, G. Tsudik, and S. Xu. Leak-free group signatures with immediate revocation. In
T. Lai and K. Okada, editors, Proceedings of ICDCS 2004, Mar. 2004.

A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In A. M. Odlyzko, editor, Proceedings of Crypto 1986, volume 263 of
LNCS, pages 186-194. Springer-Verlag, Aug. 1986.

S. Galbraith. Pairings. In I. F. Blake, G. Seroussi, and N. Smart, editors, Advances in Elliptic
Curve Cryptography, volume 317 of London Mathematical Society Lecture Notes, chapter IX,
pages 183-213. Cambridge University Press, 2005.

20

[16]

[17]

18]

[19]

[20]

[21]

22]

23]

[24]

[25]

A. Kiayias, Y. Tsiounis, and M. Yung. Traceable signatures. In C. Cachin and J. Camenisch,
editors, Proceedings of Eurocrypt 2004, volume 3027 of LNCS, pages 571-89. Springer-Verlag,
May 2004.

S. Mitsunari, R. Sakai, and M. Kasahara. A new traitor tracing. IEICE Trans. Fundamentals,
E85-A(2):481-4, Feb. 2002.

A. Miyaji, M. Nakabayashi, and S. Takano. New explicit conditions of elliptic curve traces for
FR-reduction. IEICE Trans. Fundamentals, E84-A(5):1234-43, May 2001.

K. Paterson. Cryptography from pairings. In I. F. Blake, G. Seroussi, and N. Smart, editors,
Advances in Elliptic Curve Cryptography, volume 317 of London Mathematical Society Lecture
Notes, chapter X, pages 215-51. Cambridge University Press, 2005.

D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures.
J. Cryptology, 13(3):361-96, 2000.

C. Schnorr. Efficient signature generation by smart cards. J. Cryptology, 4(3):161-174, 1991.

H. Shacham. New Paradigms in Signature Schemes. PhD thesis, Stanford University, Dec.
2005.

V. Shoup. Lower bounds for discrete logarithms and related problems. In W. Fumy, editor,
Proceedings of Eurocrypt 1997, volume 1233 of LNCS, pages 256—66. Springer-Verlag, May
1997.

Trusted Computing Group. Trusted Computing Platform Alliance (TCPA) Main Specification,
2003. Online: www.trustedcomputinggroup.org.

G. Tsudik and S. Xu. Accumulating composites and improved group signing. In C. S. Laih,
editor, Proceedings of Asiacrypt 2003, volume 2894 of LNCS, pages 269-86. Springer-Verlag,
Dec. 2003.

21

www.trustedcomputinggroup.org

	Introduction
	Verifier-Local Revocation
	Definitions

	Background
	Bilinear Groups
	Groups
	The Bilinear Map
	Running Times

	Hashing
	Complexity Assumptions
	The Strong Diffie-Hellman Assumption
	The Decision Linear Assumption

	Short VLR Group Signatures from SDH
	Intuition
	Proof of Security
	Selfless-Anonymity
	Traceability

	Efficient revocation
	Exculpability
	Conclusions and Open Problems
	Acknowledgments
	References

