
A Systematic Analysis of the Juniper Dual EC Incident

Stephen Checkoway*, Jacob Maskiewicz†, Christina Garman‡, Joshua Fried§,
Shaanan Cohney§, Matthew Green‡, Nadia Heninger§,

Ralf-Philipp Weinmann¶, Eric Rescorla†, Hovav Shacham†

*University of Illinois at Chicago, †University of California, San Diego, ‡Johns Hopkins University,
§University of Pennsylvania, ¶ Comsecuris

ABSTRACT
In December 2015, Juniper Networks announced multiple security
vulnerabilities stemming from unauthorized code in ScreenOS, the
operating system for their NetScreen VPN routers. The more so-
phisticated of these vulnerabilities was a passive VPN decryption
capability, enabled by a change to one of the elliptic curve points
used by the Dual EC pseudorandom number generator.

In this paper, we describe the results of a full independent analysis
of the ScreenOS randomness and VPN key establishment proto-
col subsystems, which we carried out in response to this incident.
While Dual EC is known to be insecure against an attacker who
can choose the elliptic curve parameters, Juniper had claimed in
2013 that ScreenOS included countermeasures against this type of
attack. We find that, contrary to Juniper’s public statements, the
ScreenOS VPN implementation has been vulnerable since 2008 to
passive exploitation by an attacker who selects the Dual EC curve
point. This vulnerability arises due to apparent flaws in Juniper’s
countermeasures as well as a cluster of changes that were all in-
troduced concurrently with the inclusion of Dual EC in a single
2008 release. We demonstrate the vulnerability on a real NetScreen
device by modifying the firmware to install our own parameters,
and we show that it is possible to passively decrypt an individual
VPN session in isolation without observing any other network traffic.
We investigate the possibility of passively fingerprinting ScreenOS
implementations in the wild. This incident is an important example
of how guidelines for random number generation, engineering, and
validation can fail in practice.

1. INTRODUCTION
In his statement for the record before the Senate Armed Services

Committee on February 9, 2016, James Clapper, the U.S. Director of
National Intelligence, illustrated the “worldwide threat assessment
of the U.S. intelligence community” with an example of vulnerable
infrastructure:

A major U.S. network equipment manufacturer ac-
knowledged last December that someone repeatedly
gained access to its network to change source code in
order to make its products’ default encryption break-

© 2016 The authors. This is the author’s version of the work. The conference version
appeared in the proceedings of CCS ’16, http://dx.doi.org/10.1145/2976749.2978395.

able. The intruders also introduced a default password
to enable undetected access to some target networks
worldwide. [10]

The “network equipment manufacturer” was Juniper Networks; it
had disclosed the two issues in a security bulletin on December 17,
2015 [23], and released patched versions of ScreenOS, the operating
system powering the affected NetScreen devices.

Immediately following Juniper’s advisory, security researchers
around the world — including our team — began examining the
ScreenOS firmware to find the vulnerabilities Juniper claimed to
have patched. They found that the change that, per Clapper, rendered
ScreenOS encryption “breakable” did nothing but replace a few
embedded constants.

In this paper, we explain how these changed constants may have
allowed whoever introduced them to decrypt passively recorded
VPN traffic to affected devices. The 2012 change took advantage
of Juniper’s 2008 overhaul of the ScreenOS randomness which
introduced the NSA-designed Dual EC random number generator,
and included Juniper-selected constants which we are unable to
verify are secure. Juniper’s December 2015 patch restored these
original constants.

Our methods include forensic reverse engineering of dozens of
ScreenOS firmware revisions stretching back nearly a decade; exper-
imental testing on NetScreen hardware; and Internet measurement
studies.

Juniper’s NetScreen devices were FIPS certified, and the affected
code implemented the standard IPsec protocol suite. Our findings
thus have implications for many of the stakeholders in the devel-
opment of cryptographic products, including protocol designers,
implementers, code reviewers, and policymakers.

Pseudorandom number generators. Random number generation
is critical to the implementation of cryptographic systems. Random
numbers are used for a variety of purposes, including generation
of nonces and cryptographic keys. Because generating a sufficient
quantity of true random numbers via physical means is hard, cryp-
tographic systems typically include deterministic pseudorandom
number generators (PRNGs) which expand a small amount of se-
cret internal state into a stream of values which are intended to be
indistinguishable from true randomness.

Historically, random number generators have been a major source
of vulnerabilities [8, 19, 22, 28, 45]. This is because an attacker who
is able to predict the output of a PRNG will often be able to break
any protocol implementation dependent on it. For instance, they
may be able to predict any cryptographic keys (which should remain
secret) or nonces (which should often remain unpredictable). Past
PRNG failures have resulted from a failure to seed with sufficiently
random data [19, 22] or from algorithms which are not secure, in

1

http://dx.doi.org/10.1145/2976749.2978395


the sense that they allow attackers to recover the internal state of the
algorithm from some public output.

The NSA-designed Dual EC PRNG [4, 27] has the problematic
property that an attacker who knows the discrete logarithm of one
of the input parameters (Q) with respect to a generator point, and is
able to observe a small number of consecutive bytes from the PRNG,
can then compute the internal state of the generator and thus predict
all future output. The changed constants in ScreenOS defined this
Dual EC point Q.

Summary of our findings. Our analysis shows that from 2008 until
it was patched in April 2016, Juniper’s ScreenOS PRNG implemen-
tation was vulnerable to efficient state recovery attacks conducted
by an attacker who could select the Q value. This capability is not
an inevitable result of the known attacks on Dual EC, but instead
stems from a collection of design choices made by Juniper in 2008.

We identified a constellation of changes made to both the PRNG
and IKE implementations between ScreenOS 6.1 and 6.2 that to-
gether substantially predispose the IKE/IPsec implementation to
state recovery attacks on the Dual EC generator. These changes,
which were introduced concurrently with the addition of Dual EC,
create a “perfect storm” of vulnerabilities that combine to enable
a highly effective single-handshake exploit against the ScreenOS
IKE implementation. Moreover, we identify several implementa-
tion decisions that superficially appear to reduce exploitability, but
that on closer examination actually facilitate the attack. It is these
changes — crucially, not the “unauthorized code” introduced by the
third party — that enable passive VPN decryption for an attacker
who has the discrete log of Q.

To validate the accuracy of our findings, we implement a proof of
concept exploit against our SSG-550M running ScreenOS 6.3.0 and
show that when the device is configured with a Q parameter of our
choosing, our attacks can efficiently decrypt VPN connections from
a single handshake, without seeing any other traffic. Moreover, we
investigate the impact of different IPsec versions and configurations
on the attack, and show that configuration decisions can substantially
affect the exploitability of the device — in some cases rendering the
device entirely secure.

2. Dual EC BACKGROUND
In this section, we describe the Dual EC pseudorandom number

generator along with some details on how ScreenOS implements
Dual EC. We also describe the attack on Dual EC described by
Shumow and Ferguson [40],

Dual EC comes in a variety of forms. There are two slightly
different NIST standards for Dual EC, which also contain optional
features. There are three standard elliptic curves which can be
used, and implementors are free to make a number of software
engineering choices. Each of these design decisions can affect the
difficulty of the Shumow–Ferguson attack. For concreteness, we
describe Dual EC as implemented in Juniper’s ScreenOS below. For
more details on other forms of Dual EC, see Checkoway et al. [9].

Dual EC has three public parameters: the elliptic curve and two
distinct points on the curve called P and Q. ScreenOS uses the
elliptic curve P-256 and sets P to be P-256’s standard generator as
specified in NIST Special Publication 800-90A [34]. That standard
also specifies the Q to use, but ScreenOS uses Juniper’s own elliptic
curve point instead. The finite field over which P-256 is defined has
roughly 2256 elements. Points on P-256 consist of pairs of 256-bit
numbers (x,y) that satisfy the elliptic curve equation. The internal
state of Dual EC is a single 256-bit number s.

In ScreenOS, Dual EC is always used to generate 32 bytes of out-
put at a time. Let x(·) be the function that returns the x-coordinate

of an elliptic curve point; ‖ be concatenation; lsbn(·) be the function
that returns the least-significant n bytes of its input in big-endian
order; and msbn(·) be the function that returns the most-significant
n bytes. Starting with an initial state s0, Dual EC generates 32 pseu-
dorandom bytes output and a new state s2 as follows,

s1 = x(s0P) r1 = x(s1Q)

s2 = x(s1P) r2 = x(s2Q)

output = lsb30(r1) ‖ msb2
(
lsb30(r2)

)
,

where sP and sQ denote scalar multiplication.
In 2007, Shumow and Ferguson [40] noted that if the elliptic-

curve discrete logarithm e = logP Q (i.e., the integer e such that
eP = Q) were known, then seeing output would reveal the Dual EC
internal state. The key insight is that one can obtain d = logQ P =
e−1 mod n, where n is the group order, and then multiplying the
point s1Q by d yields the internal state x(d · s1Q) = x(s1P) = s2. Al-
though s1Q is itself not known, 30 of the 32 bytes of its x-coordinate
(namely r1) is the first 30-bytes of output.

This insight gives rise to the simple procedure to recover s2. For
each of the 216 256-bit integers r such that lsb30(r) equals the first
30-bytes of output, check if r is a valid x-coordinate of a point on the
curve.1 In other words, find a point R such that x(R) = r. Roughly
half of the r values will be valid x-coordinates.2 For each such R,
compute s′ = x(dR) and r′ = x(s′Q). If the correct r = r1 is chosen,
msb2

(
lsb30(r′)

)
will be equal to the last two bytes of output and

s′ = s2, the new internal state.
The one complication with the above procedure is that there may

be several values of r such that msb2
(
lsb30(r′)

)
= lsb2(output) and

each such r corresponds to a potential internal state s′. In practice,
this is a minor complication as it is exceedingly rare for there to be
more than three such r.

3. HISTORY OF THE JUNIPER INCIDENT
After NIST recommended against the use of Dual EC [34] in

response to post-Snowden concerns about the default value of Q,
Juniper published a knowledge base article [25] explaining their
use of Dual EC in ScreenOS, the operating system powering its
NetScreen firewall appliances, stating that although those products
used Dual EC:

ScreenOS does make use of the Dual_EC_DRBG stan-
dard, but is designed to not use Dual_EC_DBRG as its
primary random number generator. ScreenOS uses it
in a way that should not be vulnerable to the possible
issue that has been brought to light. Instead of using the
NIST recommended curve points it uses self-generated
basis points and then takes the output as an input to
FIPS/ANSI X.9.31 (sic) PRNG, which is the random
number generator used in ScreenOS cryptographic op-
erations.

The first of these mitigations — self-generated basis points3 — is
not completely satisfactory because it depends on Juniper generating
Q in such a way that nobody knows its discrete log, which they
have not verifiably demonstrated. However, the second mitigation —

1This procedure is sometimes called point decompression.
2Each r that is an x-coordinate of some point R is also an x-
coordinate of the point −R. It doesn’t matter which point is chosen
as R and −R differ only in the “sign” of their y-component.
3 While the Juniper article says “points”, actually only Q differs
from the NIST default values. Juniper’s implementation uses the
default P value.

2



if implemented correctly — defends against the current publicly
known attacks on Dual EC because those attacks rely on having
Dual EC output rather than a one-way function of that output, so
even an attacker who knew the discrete log of Q would be unable to
recover the PRNG state.

This was the situation on December 17, 2015 when Juniper issued
an out-of-cycle security bulletin [23] for two security issues in
ScreenOS:
• CVE-2015-77554 (“Administrative Access”)
• CVE-2015-77565 (“VPN Decryption”)

This announcement was particularly interesting because it was
not the usual report of developer error, but rather of malicious code
which had been inserted into ScreenOS by an unknown attacker:

During a recent internal code review, Juniper discov-
ered unauthorized code in ScreenOS that could allow a
knowledgeable attacker to gain administrative access to
NetScreen® devices and to decrypt VPN connections.
Once we identified these vulnerabilities, we launched
an investigation into the matter, and worked to develop
and issue patched releases for the latest versions of
ScreenOS.

The “Administrative Access” vulnerability was determined to
be a back door in the SSH [46] daemon that would have allowed
anyone who knew the correct password to log in with administrative
access. This issue has been extensively discussed by Moore [33].
The second issue, however, turns out to be far more technically
interesting. According to Juniper’s advisory:

VPN Decryption (CVE-2015-7756) may allow a knowl-
edgeable attacker who can monitor VPN traffic to de-
crypt that traffic. It is independent of the first issue.

This issue affects ScreenOS 6.2.0r15 through 6.2.0r18
and 6.3.0r12 through 6.3.0r20. No other Juniper prod-
ucts or versions of ScreenOS are affected by this issue.

There is no way to detect that this vulnerability was
exploited.

While both Juniper’s advisory and the CVE itself are short on
details, comparison of the binaries for the vulnerable and patched
versions reveal that the relevant change to the code is a change
in the value of Q and the corresponding test vectors [43]. The
natural inference, therefore, is that the attacker changed Q away from
Juniper’s original version (which is itself different from the default
Q in the standard) and that the patched version changes it back.
What makes this even more interesting is that — as noted above —
even a Q value for which the attacker knows the discrete log should
not lead to a passive decryption vulnerability because the output
is supposed to be filtered through the ANSI X9.31 PRNG. This
obviously raises serious questions about the accuracy of Juniper’s
2013 description of their system, specifically:

1. Why does a change in Q result in a passive VPN decryption
vulnerability?

2. Why doesn’t Juniper’s use of X9.31 protect their system
against compromise of Q?

3. What is the history of the PRNG code in ScreenOS?
4. How was Juniper’s Q value generated?
5. Is the version of ScreenOS with Juniper’s authorized Q vul-

nerable to attack?

4http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-7755
5http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-7756

Table 1: ScreenOS firmware versions we examined.

Device series Architecture Version Revisions

SSG-500 Intel x86 6.3.0 12b

SSG-5/SSG-20 ARM-BE 5.4.0 1–3, 3a, 4-16
6.0.0 1–5, 5a, 6–8, 8a
6.1.0 1–7
6.2.0 1–8, 19
6.3.0 1–6

Juniper’s public statements regarding this incident set up a mys-
tery. We have a body of material — an archive of firmware releases —
that we use to answer many of the questions that make up that mys-
tery. Specifically, we answer why changing Q matters and why
X9.31 does not defend against that change in Section 4 and 5. By
examining multiple versions of ScreenOS, we reconstruct a rough
timeline of the evolution of ScreenOS’s PRNG code in Section 9.
Then there are some lingering questions, especially ones to do with
motive or the identity of actors, that would require a different body
of material to approach. We call these out in Section 9.1, and suggest
specific resources that journalists might wish to consult to answer
them.

4. THE SCREENOS PRNG
In this section, we describe the methodology and results of our

analysis of the ScreenOS 6.2 PRNG cascade subroutines.6

Immediately following Juniper’s 2015 announcement [23], secu-
rity researchers around the world — including our team — began
examining the ScreenOS firmware in an attempt to find the vulnera-
bilities Juniper claimed to have patched. HD Moore quickly posted
a diff of the strings in the firmware between versions 6.2.0r14.0 and
6.2.0r15.0 — the version where the unauthorized code was intro-
duced.7 Line 934 shows a changed 32-byte hexadecimal constant.
Based on the following hexadecimal constants, we hypothesized that
this was the x-coordinate of an elliptic curve point on NIST curve P-
256. By reverse engineering a copy of the firmware, it soon became
apparent to our team and others that the changed constant was the
x-coordinate of a nonstandard point Q in Dual EC.8 Knowing that
a third party changed the point Q in Dual EC is suggestive — but
not dispositive — of that being key to being able to decrypt VPN
connections described in Juniper’s announcement. Understanding
both how this could be exploited as well as when and how ScreenOS
started using Dual EC required a closer, forensic investigation.

Towards those ends, our team acquired several Juniper Secure Ser-
vices Gateway (SSG) devices running ScreenOS, including an Intel
x86–based SSG-550M and an ARM-based SSG-5. Additionally, we
acquired ScreenOS firmware binaries for 50 different point releases
of ScreenOS across the two architectures and five major versions.
Table 1 summarizes the versions we examined. We verified the MD5
or SHA-1 hash of each firmware version against those published on
Juniper’s website — except for the 6.0 revisions for which we could
find no published hashes.

Each revision of the firmware contains a modified copy of the “en-
gine” variant of OpenSSL 0.9.6c. Identifying OpenSSL’s functions
in a binary is particularly easy. One need only look up error and
function ordinals used as arguments to error handling functions in
lists of error codes included in the OpenSSL source code. Once the

6ScreenOS 6.3’s cascade is identical.
7https://gist.github.com/hdm/0fbaf7408a6c7e0566c5
8Adam Langley documented some of this effort as it appeared on
Twitter https://www.imperialviolet.org/2015/12/19/juniper.html.

3

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-7755
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-7756
https://gist.github.com/hdm/0fbaf7408a6c7e0566c5
https://www.imperialviolet.org/2015/12/19/juniper.html


Listing 1: The core ScreenOS 6.2 PRNG subroutines.
1 void prng_reseed(void) {
2 blocks_generated_since_reseed = 0;
3 if (dualec_generate(prng_temporary, 32) != 32)
4 error_handler("FIPS ERROR: PRNG failure, "
5 "unable to reseed\n", 11);
6 memcpy(prng_seed, prng_temporary, 8);
7 prng_output_index = 8;
8 memcpy(prng_key,
9 &prng_temporary[prng_output_index], 24);

10 prng_output_index = 32;
11 }
12
13 void prng_generate(void) {
14 int time[2];
15 time[0] = 0;
16 time[1] = get_cycles();
17 prng_output_index = 0;
18 ++blocks_generated_since_reseed;
19 if (!one_stage_rng())
20 prng_reseed();
21 for (; prng_output_index <= 31;
22 prng_output_index += 8) {
23 // FIPS checks removed for clarity
24 x9_31_generate_block(time, prng_seed, prng_key,
25 prng_block);
26 // FIPS checks removed for clarity
27 memcpy(&prng_temporary[prng_output_index],
28 prng_block, 8);
29 }
30 }

OpenSSL functions were identified, we identified the pseudorandom
number generator functions and, ultimately, how those were used to
construct nonces and Diffie–Hellman keys in IKE.

Extracting the strings from each of the firmware binaries revealed
the presence of an OpenSSL elliptic curve component in versions
6.2.0r1 and later which suggested that that was where Dual EC was
introduced. Nevertheless, we examined all of the five major versions
for which we had firmware. For each of those major versions, we
reverse-engineered the earliest revision we had, the latest revision
we had, and one or more intermediate revisions to determine how
the IKE nonce generation — including the pseudorandom number
generator used — changed over time.

Listing 1 shows the decompiled source code for the ScreenOS
PRNG version 6.2.0r1. Note that identifiers such as function and
variable names are not present in the binary; we assigned these
names based on analysis of the apparent function of each symbol.
Similarly, specific control flow constructs are not preserved by the
compilation/decompilation process. For instance, the for loop on
line 22 may in fact be a while loop or some other construct in
the actual Juniper source. Decompilation does, however, preserve
the functionality of the original code. For clarity, we have omitted
FIPS checks that ensure that the ANSI X9.31 generator [1, Ap-
pendix A.2.4] has not generated duplicate output.

Superficially, the ScreenOS implementation appears consistent
with Juniper’s description: When prng_generate() is called, it
first potentially reseeds the X9.31 PRNG state (lines 18−20) via
prng_reseed(). When prng_reseed() is called, it invokes the
Dual EC DBRG to fill the 32-byte buffer prng_temporary. From
this buffer, it extracts a seed and cipher key for the ANSI X9.31 gen-
erator. Once the X9.31 PRNG state is seeded, the implementation
then generates 8 bytes of X9.31 PRNG output at a time (line 25)
into prng_temporary, looping until it has generated 32 bytes of
output (lines 22–29), using the global variable prng_seed to store

the ANSI X9.31 seed state, updating it with every invocation of
prng_generate_block().

However, upon closer inspection, the behavior of the genera-
tor is subtly different. This is due to two coupled issues: First,
prng_reseed() and prng_generate_blocks() share the static
buffer prng_temporary; and second, when prng_reseed() is in-
voked, it fills prng_temporary (line 3) and then sets the static vari-
able prng_output_index to 32 (the size of the Dual EC output).9

Unfortunately, prng_output_index is also the control variable for
the loop that invokes the ANSI X9.31 PRNG in prng_generate()
at line 22. The consequence is that whenever the PRNG is reseeded,
prng_output_index is 32 at the start of the loop and therefore no
calls to the ANSI X9.31 PRNG are executed. Thus, Dual EC output
is emitted directly from the prng_generate() function.

In the default configuration, one_stage_rng() always returns
false so X9.31 is reseeded on every call. There is an undocu-
mented ScreenOS command, set key one-stage-rng, which
is described by a string in the command-parsing data-structure as
“Reduce PRNG to single stage.” Invoking this command effectively
disables reseeding until this setting is changed.

When combined with the cascade bug described above, disabling
reseeding introduces a different security vulnerability: The first
block emitted after reseed is precisely the concatenation of the 8-
byte seed and the 24-byte key used for future blocks of output from
the ANSI X9.31 PRNG. An attacker who is lucky enough to observe
an immediate post-reseed output can predict the rest of the PRNG
stream until the next reseed even without knowing logP Q.10

Had prng_output_index not been used in prng_reseed, the
reuse of prng_temporary would be safe. As described in section 9,
the index variable used in the for loop in prng_generate changed
from a local variable to the prng_output_index global variable
between the final version of ScreenOS 6.1 and the first version of 6.2.

5. INTERACTION WITH IKE
As suggested by the exploit description, the primary concern with

a Dual EC implementation is that an attacker may be able to use
public information emitted by the PRNG to extract the Dual EC
internal state, and use this to predict future secret values. Because
ScreenOS is not only a firewall but also a VPN device, the natural
target is Internet Key Exchange (IKE) [21, 26], the key establish-
ment protocol used for IPsec [30]. Note that the existence of a
Dual EC generator does not by itself imply that Juniper’s IKE imple-
mentation is itself exploitable, even in conditions where the attacker
knows the Dual EC discrete log. There are a number of parameters
that affect both the feasibility and cost of such an attack.

5.1 Overview of IKE
IKE (and its successor IKEv2) is a traditional Diffie–Hellman-

based handshake protocol in which two endpoints (dubbed the ini-
tiator and the responder) establish a Security Association (SA)
consisting of parameters and a set of traffic keys which can be used
for encrypting traffic. Somewhat unusually, IKE consists of two
phases:

9The global variable reuse was first publicly noted by Willem
Pinckaers on Twitter. Online: https://twitter.com/_dvorak_/status/
679109591708205056, retrieved February 18, 2016.

10There are technical obstacles to overcome. X9.31 uses the cur-
rent time (parameter DT in the specification; implemented as the
processor cycle counter in ScreenOS) as an input to the PRNG. As
long as the time value can be guessed (or brute forced), the X9.31
generator’s output can be predicted. As one-stage-rng is off by
default and the command that enables is is undocumented, we did
not study this issue in depth.

4

https://twitter.com/_dvorak_/status/679109591708205056
https://twitter.com/_dvorak_/status/679109591708205056


• Phase 1 (IKEv1)/Initial Exchange (IKEv2): Used to establish
an “IKE SA” which is tied to the endpoints but not to any
particular class of non-IKE network traffic.
• Phase 2 (IKEv1)/CREATE_CHILD_SA (IKEv2): Used to estab-

lish SAs which protect non-IKE traffic (typically IPsec). The
IKE messages for this phase are protected with keys estab-
lished in the first phase. This phase may be run multiple times
with the same phase 1 SA in order to establish multiple SAs
(e.g., for different IP host/port pairs), but as a practical matter
many VPN connections compute only one child SA and use
it for all traffic.

For simplicity, we will use the IKEv1 terminology of phase 1/
phase 2 in the rest of this document.

IKE messages are composed of a series of “payloads” such as KE
(key exchange), Ni (initiator nonce), and Nr (responder nonce).

The first IKE phase consists of a Diffie–Hellman exchange in
which both sides exchange DH shares and a nonce, which are com-
bined to form the derived keys. The endpoints may be authenticated
in a variety of ways including a signing key and a statically con-
figured shared secret. The second IKE phase may involve a DH
exchange but may also just consist of an exchange of nonces, in
which case the child SA keys are derived from the shared secret
established in the first phase.

At this point, we have a conceptual overview of how to attack
IKE where ScreenOS is the responder: (1) using the responder
nonce in the first phase, compute the Dual EC state; (2) predict the
responder’s DH private key and use that to compute the DH shared
secret for the IKE SA; (3) using the keys derived from the IKE SA,
decrypt the second phase traffic to recover the peers’ nonces and
public keys (in the best case, the responder nonce and private key
can be computed by running Dual EC forward; otherwise one can
repeat the Dual EC attack); and (4) use those to compute the shared
secret for the second phase SA and thereby the traffic keys. Use
those keys to decrypt the VPN traffic.

However, while this is straightforward in principle, there are
a number of practical complexities and potential implementation
decisions which could make this attack easier or more difficult (or
even impractical) as described below.

5.2 Nonce Size
The first question we must examine is whether the attacker ever

gets a complete Dual EC block. As Checkoway et al. [9] describe
in detail, it is only practical to exploit Dual EC if provided with
nearly a complete point output. As specified, Dual EC emits only
30 bytes of the 32-byte point, which requires the attacker to try
approximately half of the remaining 216 values to find the state, and
the work factor goes up exponentially with the number of missing
bytes, so exploitation rapidly becomes impractical the less of the
point the attacker has.

Many reasonable implementation strategies could result in an
attacker obtaining only small fractions of a point. For example,
unlike TLS, IKE has a variable-length nonce, which is required to
be between 8 and 256 bytes in length [21, Section 5]. If a nonce
length below 30 bytes were used, it could significantly increase the
amount of work required to recover the Dual EC state

However, as of version 6.2 ScreenOS uses a 32-byte nonce made
from two successive invocations of Dual EC, with the first supplying
30 bytes and the second supplying 2 bytes. As described in Section 2,
this is nearly ideal from the perspective of the attacker because it
can use the first 30 bytes (the majority of the point) to determine
possible states, and then narrow the results by checking which states
produce the correct value for the remaining two bytes. In practice,
this usually results in 1 to 3 possible states.

5.3 Nonces and DH Keys
Although the IKE messages contain both a nonce and a DH share

our analysis of Juniper’s IKE implementation indicates that the KE
payload containing the DH share is encoded before the Nr (nonce)
payload. If (as is natural), the keys and nonces are generated in the
same order as they are encoded, then it will not be possible to use Nr
from one connection to attack that same connection. This is because
Dual EC state recovery only allows you to predict future values,
not recover past values. While not necessarily fatal to the attacker,
because nonces generated in one connection might be used to predict
the DH private keys generated in some subsequent connection; this
would not be ideal from the attacker’s perspective, especially if
connection establishment is infrequent.

Conveniently for the attacker, however, ScreenOS also contains
a pre-generation feature that maintains a pool of nonces and DH
keys which can then be used in new IKE connections rather than
generating them in the critical path (i.e., during the handshake). The
pooling mechanism is quite intricate and appears to be designed
to ensure that enough keys are always available while avoiding
consuming too much run time on the device.

Summarized briefly, independent FIFO queues are maintained for
nonces, each finite field DH group (MODP 768, MODP 1024, MODP
1536, and MODP 2048), and (in version 6.3) each elliptic curve
group (ECP 256 and ECP 384). The sizes of these queues depend on
the number of VPN configurations which have been enabled for any
given group. For instance, if a single configuration is enabled for a
group then that group will have queue size of 2 and disabled groups
have a queue size of 0. The size of the nonce queue is set to be twice
the aggregate size of all of the DH queues. So, for instance, if only
the MODP 1024 group is configured, then the initial queue size will
be (MODP 1024 = 2, nonce = 4). Or, if two VPN configurations
are set to use MODP 1024 and one configuration is set to use MODP
1536, initial queue size will be (MODP 1024 = 4, MODP 1536 = 2,
nonce = 12). At initial startup time, the system completely fills all
the queues to capacity and then sets a timer that fires every second
to refill the queues if any values have been used.11 If a nonce or
a DH key is ever requested when the queue is empty, then a fresh
value is generated on the fly.

Importantly, the queues are filled in priority order with nonces
being the highest priority followed by the groups in descending
order of cryptographic strength (ECP 384 down to MODP 768).
This means that in many (but not all) cases, the nonce for a given
connection will precede the keys for that connection in the random
number sequence.

Figure 1 shows a (somewhat idealized) sequence of generated
values,12 with the numbers indicating the order in which they were
generated before and after an IKE DH exchange. Figure 1a shows
the situation after startup: The first four values are used to fill the
nonce queue and the next two values are used to generate the DH
shares. Thus, when the exchange happens, it uses value 1 for the
nonce and value 5 for the key, allowing the attacker to derive the
Dual EC state from value 1 and then compute forward to find the

11Note: only one value is generated per second, so if several values
are used, it takes some time to refill the queue.

12For simplicity, we represent multiple consecutive invocations of
the PRNG as a single value and ignore invocations of the PRNG
for non-IKE purposes. In addition, because the queues are refilled
asynchronously with respect to the IKE exchanges, there is a race
condition between values being consumed and being refreshed. The
pattern shown here and below is the result of assuming that the timer
fires between handshakes. If it fires more frequently (i.e., between
each DH and nonce encoding), then the nonces become even and
the DH shares become odd. Mixed patterns are also possible.

5



1 2 3 4Nonces

5 6MODP
1024

(a) At system startup.

2 3 4 7Nonces

6 8MODP
1024

(b) After a DH exchange.

Figure 1: Nonce queue behavior during an IKE handshake. Num-
bers indicate generation order, and values generated after the hand-
shake are shaded. During a DH exchange, outputs 1 and 5 are used
as the nonce and key, advancing the queue, and new outputs are
generated to fill the end of the queue.

Nonces

26 28MODP
2048

11 12MODP
1024

13 15 17 19 21 23 25 27

Figure 2: Queue state after 8 MODP 2048 exchanges. Numbers
indicate generation order, and stale values are shaded. If several
connections have been made to the same DH group, the other DH
group can grow stale as all nonces that were generated before those
keys are used up.

DH private key. After a single DH exchange, which requires one
DH key and one nonce, the state is as shown in Figure 1b, with the
new values shaded. Note that the next-in-line values continue to
have the property that the nonce was generated before the DH share.
Because nonce computation is prioritized over key generation, in
this simple configuration where you have a single DH group that
is used for every handshake, then as long as handshakes are done
reasonably slowly (giving the background task enough time to fill
the queue) the nonce used for a given handshake will always have
been generated prior to the DH key for that handshake. Of course,
if a large number exchanges are run in succession (i.e., outpacing
the background task) it is possible to exhaust both queues entirely,
at which point the request for a key or nonce will cause the value to
be generated immediately, resulting in the DH key being computed
before the nonce.

5.4 Non-DH Phase 2 Exchanges
As noted above, the phase 2 exchange need not include a new DH

exchange; implementations can simply do a nonce exchange and
generate fresh keys (although Juniper’s documentation recommends
doing DH for phase 2 as well [24, Page 72]). In this case, IKE will
consume an additional nonce from the nonce queue but not a new
DH key from the DH key queue. In the case where endpoints do a
single phase 1 exchange and then a phase 2 exchange, with only the
former doing DH, then setting up a VPN connection setup consumes
two nonces and one DH key. However, because the nonce queue
is twice as large as the DH queue, as long as the refill timer fires
reasonably often with respect to the handshakes it is not possible
to exhaust the nonce queue (thus causing a fresh PRNG value to
be generated) while there is still a stale DH value in the DH queue.
Note that if the nonce and DH queues were the same size, then
non-DH phase 2 exchanges would frequently cause keys to be stale
with respect to the nonce.

In addition, if multiple non-DH phase 2 exchanges are done within
a single phase 1 exchange, then it is possible to empty the nonce
queue while there are still values in the DH queue. In this case,
it will only be possible to decrypt connections established using
those values if the attacker has recorded previous nonces, rather than
decrypting a connection in isolation. Similarly, the current nonces
could be used to decrypt future connections but not the connections
they are transmitted with.

5.5 Multiple Groups
If ScreenOS is configured to use multiple groups, then it is pos-

sible to have the shares for one group become stale with respect to
the nonces queue, as shown in Figure 2, which shows the result of
eight MODP 2048 exchanges on the queues. The shaded MODP 1024
values were all generated before any of the remaining nonces. If

the attacker starts listening at this point and observes a MODP 1024
exchange, he will not be able to decrypt it.

5.6 Recovering traffic keys
As described above, IKE comes in two versions (IKEv1 and

IKEv2) which are slightly different. Furthermore, each version uses
a somewhat unusual two-phase approach to protecting traffic. In
this section, we describe the phases and the authentication modes
that determine whether or not protected traffic can be passively
decrypted.

IKEv1, phase 1. IKEv1 defines four authentication modes for
phase 1: digital signatures, two modes using public-key encryption,
and preshared keys [21, Section 5]. Although the details vary, each
mode computes a shared secret, SKEYID, derived from secret values
(e.g., nonces and Diffie–Hellman keys) exchanged in the handshake.
Next, the authentication keying material, SKEYID_a, and encryption
keying material, SKEYID_e, are derived from SKEYID. Finally, the
traffic keys used to protect phase 2 are derived from SKEYID_e
in an algorithm-specific manner. We omit further discussion of
authentication key material below as a passive adversary does not
need it. An active adversary wishing to tamper with the traffic would
need to use SKEYID_a in the straightforward manner prescribed by
the RFC.
• Authentication with digital signatures. In this mode, the

initiator and responder nonces and DH public keys are ex-
changed in the clear. Starting with the responder’s nonce,
an attacker who can recover the responder’s DH private key
has all of the material necessary to compute SKEYID and thus
traffic keys.
• Authentication with public key encryption. IKEv1 defines

two public-key encryption modes for authentication. The re-
vised mode uses half the number of public-key encryptions
and decryptions the other mode uses, but are otherwise sim-
ilar. In these modes, the DH public keys are exchanged in
the clear but each peer encrypts its nonce using the other’s
public key. These modes require the initiator to know the
responder’s public key prior to the handshake. Each peer de-
crypts the other’s nonce and computes SKEYID. Since nonces
are encrypted, even if an attacker can recover the responder’s
nonce (e.g., by capturing a nonce in the clear from a previous
connection, recovering the Dual EC state, and walking the
generator forward), the initiator’s nonce is also encrypted,
thus stopping the attack.
• Authentication with preshared keys. In this mode, a pre-

shared key needs to be established out of band. The DH public
keys and nonces are exchanged in the clear. The encryption
keying material, SKEYID_e is derived from the preshared key,
the nonces, and the DH keys. An attacker who can recover a

6



DH private key can perform an offline attack on the preshared
key. Depending on the strength of the PSK, this offline attack
may be trivial or may be computationally intractable.13

IKEv1, phase 2. After phase 1 completes, there is a second phase,
called Quick Mode, which involves another exchange of nonces and,
optionally, another DH exchange for forward secrecy [26]. As the
messages for phase 2 are protected by the keys established during
phase 1, there is no additional encryption. Thus, an attacker who
has successfully recovered the phase 1 keys can decrypt phase 2
messages. At this point, if another DH key exchange is used, the
attacker can either run the Dual EC-state-recovery attack again or
simply walk the Dual EC generator forward to recover the DH
private key. If only nonces are exchanged, then no additional work
is necessary. In either case, the attacker can compute the traffic keys
and recover plain text.

IKEv2, phase 1. A connection in IKEv2 begins by exchanging two
request/response pairs which form the initial exchange. The first
pair of messages, called IKE_SA_INIT, exchange DH public keys and
nonces in the clear. The peers use these to compute a shared secret,
SKEYSEED, from which all traffic keys are derived. These keys are
used to protect the following messages.

This first exchange contains all of the information necessary for
the attacker to recover the Dual EC state and compute a DH private
key and thus derive SKEYSEED. This stands in contrast to IKEv1
where the authentication mode influences key derivation and hence,
exploitability.

The second exchange, called IKE_AUTH, is encrypted using keys
derived from SKEYSEED and is used to authenticate each peer,
but plays no role in decryption. At this point, a child security
association (CHILD_SA) is set up which can be used for protecting
VPN traffic.

IKEv2, phase 2. IKEv2 does contain a second phase, called CRE-
ATE_CHILD_SA, which can be used to create additional child security
associations. One use of this phase is periodic rekeying. The use of
a second phase is optional.14

Similar to IKEv1’s second phase, nonces and, optionally, DH
public keys are exchanged. As before, when DH keys are used, an
attacker may either perform the attack to recover Dual EC’s state a
second time or walk the generator forward.

6. ATTACKING IKE
To validate the attacks we describe above, we purchased a Juniper

Secure Services Gateway 550M VPN device, and modified the
firmware version 6.3.0r12 in a manner similar to the 2012 attack.
This required us to generate a point Q for which we know the
trapdoor (logP Q)−1, and to modify the Dual EC Known Answer
Test (KAT) correspondingly. To install the firmware on the device,
we further modified a non-cryptographic checksum contained within
the header of the firmware.15

13Anecdotally, the preshared keys used in practice are often quite
weak. For example, FlyVPN’s “How To Setup L2TP VPN On
Android 4” instructs the user to “Input ‘vpnserver’ letters into ‘IPSec
pre-shared key.’ ” https://www.flyvpn.com/How-To-Setup-L2TP-
VPN-On-Android-4.html, retrieved February 18, 2016.

14“The second request/response (IKE_AUTH) transmits identities,
proves knowledge of the secrets corresponding to the two iden-
tities, and sets up an SA for the first (and often only) AH and/or
ESP CHILD_SA” [26].

15If a code-signing certificate is installed on the device, firmware
updates require the presence of a valid digital signature on the new
firmware using the key in that certificate. Since we did not have a
certificate installed, we were able to omit this signature.

Using the new firmware, we next configured the device with three
separate VPN gateways: (1) configured for IKEv1 with a PSK,
(2) configured for IKEv1 with a 1024-bit RSA signing certificate,
and (3) configured for IKEv2 with a PSK. For each configuration,
we initiated VPN connections to the box using strongSwan [42].
By capturing the resulting traffic, we were then able to extract the
nonces in the IKE handshakes and run the Dual EC attack to recover
the state of the random number generator for each connection. As
previously discussed, since the 32-byte nonces consist of the con-
catenation of two consecutive 30-byte Dual EC blocks, truncated to
32-bytes, we used the first 30 bytes of the nonce to recover a poten-
tial state value, and then confirmed this guess against the remaining
2 bytes of the nonce.

From this point, we generated a series of Dual EC outputs to
obtain a private exponent consistent with the Diffie–Hellman public
key observed in the traffic. This required a single modular exponen-
tiation per potential exponent x, followed by a comparison to the
extracted key exchange payload value. Given the correct private ex-
ponent, we then obtained the shared secret from the initiator value,
thereby determining the DH shared secret gxy. Given the Diffie–
Hellman shared secret, we implemented the remaining elements of
the IKEv1 and IKEv2 standards [21, 26] in order to calculate the
Phase 1 (Aggressive Mode) keying material (for IKEv1) and the
corresponding IKE_SA_INIT/IKE_AUTH keying material (for IKEv2).
This information encrypts the subsequent handshake messages, and
is itself used to calculate the key material for subsequent payloads,
including Encapsulated Secure Payload (ESP) messages. A chal-
lenge in the IKEv1 PSK implementation is the need to incorporate
an unknown PSK value into the PRF used to calculate the resulting
key material. For our proof of concept implementation we used a
known PSK, however without knowledge of this value, an additional
brute-force or dictionary attack step would have been required. No
such problem exists for the IKEv1 certificate connections, or for
IKEv2 PSK.

Using the recovered key material, we next decrypt the remain-
ing traffic, which in each case embeds a second Diffie–Hellman
handshake with additional nonces and Diffie–Hellman ephemeral
public keys. Since this handshake is also produced from the same
generator, we can simply wind the generator forward (or restart
with a nonce drawn from the second phase handshake) to recover
the corresponding Diffie–Hellman private keys. This new shared
secret can then be used to calculate the resulting key material. All
subsequent traffic that we see and decrypt utilized the Encapsulating
Security Payload (ESP) protocol [29] in tunnel mode.

7. PASSIVELY DETECTING SCREENOS
An adversary who knows the Dual EC Q parameter — either

Juniper’s 2008 point or the unauthorized 2012 point — may wish
to detect vulnerable versions of ScreenOS by passively watching
network traffic. In theory, such an adversary has several avenues
open to it. The easiest approach is to attempt the attack on every
VPN connection to see if the attack is successful. Alternatively, the
adversary could attempt to fingerprint VPN boxes and only perform
the attack on connections that match.

Dual EC is known to have a small, but nonnegligible, bias. In
particular, Schoenmakers and Sidorenko [39] and Gjøsteen [18]
give a procedure to distinguish 30-byte blocks generated uniformly
at random from those generated by Dual EC. The basic idea is to
count how many points on the curve have x-coordinates that agree
with the 30-byte block in their least significant 30 bytes. In both
the uniformly at random case and the Dual EC case, the number of
points on the curve that match follow a normal distribution. In order
to use the this distinguisher, one needs to see a sufficient number

7

https://www.flyvpn.com/How-To-Setup-L2TP-VPN-On-Android-4.html
https://www.flyvpn.com/How-To-Setup-L2TP-VPN-On-Android-4.html


of 30-byte blocks (in the form of IKE nonces) to state with high
confidence that the blocks came from one distribution or the other.

We empirically computed the parameters of these two distribu-
tions to see how difficult this task is. We generated 2 million 30-byte
blocks using Dual EC and an additional 2 million blocks uniformly
at random and performed the point counting. We estimate the distri-
butions’ parameters by fitting the data using maximum likelihood
estimation. The results are not encouraging. When generated uni-
formly at random, the number of points on the curve that agree with
the generated block have parameters µ = 65536.02 and σ = 256.05.
When generated using Dual EC, the parameters are µ = 65536.78
and σ = 256.06. This approach is unlikely to work without seeing
tens or hundreds of thousands of connections.

Although detecting the Dual EC bias requires a massive number
of connections, the adversary’s task is actually much easier due to a
bug in ScreenOS’s Dual EC implementation. ScreenOS contains a
customized version of OpenSSL and uses OpenSSL’s elliptic curve
and arbitrary-precision (BIGNUM) routines to implement Dual EC.
The OpenSSL function to convert a BIGNUM to an array of bytes
is BN_bn2bin(). Due to a design defect in OpenSSL’s API, there
is no way to correctly use BN_bn2bin without first determining
how many bytes it will use — using BN_num_bytes()— and zero-
padding, and only then using BN_bn2bin():16

int size = BN_num_bytes(x);
memset(buffer, 0, 30 - size);
BN_bn2bin(x, buffer + (30 - size));

ScreenOS’s Dual EC implementation omits the zero padding when
converting from BIGNUMs to binary output. The upshot is that
neither the first nor the thirty-first byte of a nonce will ever be zero.

Thus, if the adversary ever sees a zero byte in either position, it
can conclude that the implementation is not Juniper’s Dual EC.

If the nonces are generated uniformly at random, then we ex-
pect each of these bytes to be zero with (independent) probability
1/256. Thus, the probability that after n nonces without zeros in
those positions, the nonce was generated uniformly at random is
(255/256)2n.

This bug does not affect the exploitability of the Dual EC genera-
tor; however, it can lead to a few additional potential internal states
to check as described in Section 2.

8. COUNTING SCREENOS DEVICES
The zero-detection technique described in the previous section

also suggests a method of counting the number on the Internet
running vulnerable versions ScreenOS, as discussed in this section.
As a convenience, in the discussion below we say a host sent a zero
to mean that during an IKEv1 or IKEv2 key exchange, the responder
nonce contained a zero at position 0 or 30.

Data collection. We used Internet-wide scans to attempt to mea-
sure the population of affected devices. Because the signal to be
measured is fairly small, we performed the scan in multiple passes,
starting by identifying all hosts which might potentially be running
an affected version of ScreenOS and then repeatedly scanning them,
dropping each one as soon as it sent a zero, leaving us with a fi-
nal group of hosts which are highly probable to be ScreenOS. The
data collection was performed during April 2016 using ZGrab, an
application-layer scanner that operates with ZMap [15].

In the first phase, we performed an Internet-wide scan of all IPv4
addresses on port 500 to determine which hosts were configured

16This defect was corrected quite recently, years after the version
of OpenSSL ScreenOS uses was written. https://mta.openssl.org/
pipermail/openssl-commits/2016-February/003520.html

to negotiate IKEv1 and IKEv2. Next, we used a custom ZGrab
module, which acted as an IKE initiator and attempted to perform
the first key exchange phase for both IKEv1 and IKEv2. Our initiator
client offered a set of cipher suites chosen from the most commonly
supported options observed by Adrian et al. [3].17 We tested this
packet on the default configuration of our vulnerable NetScreen
device to verify that it was accepted.

Our initial scan found 7,703,858 hosts that responded to our
probes with valid IKE packets, indicating that they support IKEv1
or IKEv2. Of those hosts, only 2,263,314 were willing to perform
an initial key exchange with us. The remaining were likely config-
ured to only negotiate with specific whitelisted IPs. Because the
affected versions of ScreenOS send 32-byte nonces, we excluded
all hosts responding with nonces of other lengths. This left us with
343,467 hosts: 94,201 which just accepted IKEv1, 131,080 which
just accepted IKEv2, and 118,186 which accepted both. If a host
responded to both IKEv1 and IKEv2, it was subsequently scanned
only for IKEv2 in an effort to minimize our impact; see the limi-
tations section below for a discussion of the consequences of this
choice.

In the second phase, we periodically scanned all of the remaining
hosts that had responded in the preceding scan with a 32-byte nonce
without sending a zero. This phase consisted of 601 rounds of
scanning, spread out over five days to minimize the impact of our
scans on the hosts. By the end of the second phase, 58,695 IKEv1
hosts and 71,360 IKEv2 hosts had stopped responding and were not
rescanned. Of the total remaining N = 213,412 hosts, 31,801 IKEv1
and 176,619 IKEv2 hosts sent a zero, leaving 3,705 IKEv1 hosts
and 1,287 IKEv2 hosts that responded to 602 scans (the first phase,
baseline scan and the 601 second phase scans) without sending a
zero.

If we assume that non-ScreenOS hosts construct nonces uniformly
at random — this does not appear to be actually true, as discussed
below — the probability that a non-ScreenOS host sent n nonces
without sending a zero is pn = (255/256)2n. In particular, the prob-
ability that a non-ScreenOS host sent 602 nonces without sending
a zero is p602 ≈ .90%. If S of the N total hosts run ScreenOS, we
would expect to see S+(N−S) · p602 hosts that do not send a zero
after 602 rounds. We measured 3705+1287 = 4992 hosts that did
not send a zero and so we estimate that there are about S ≈ 3103
ScreenOS hosts in our dataset. Using data from Censys [16] scans
of other ports running HTTPS, SSH, and/or Telnet management
services, we were able to confirm that 447 of these hosts were in
fact running some version of ScreenOS.

Limitations. There are several limitations to the data and analyses
discussed above: hosts are a weak proxy for traffic, nonpublic hosts,
IP blocking, scanning methodology, and analysis methodology. We
discuss each in turn.

Fundamentally, we would like to understand how much VPN
traffic is vulnerable to Juniper’s “knowledgeable attacker.” Unfortu-
nately, a network scan cannot answer that question. Instead, we can
only compute a weak proxy for this number by determining how
many vulnerable VPN devices are on the Internet.

A second potentially-confounding factor is that not all VPN de-
vices are publicly accessible. These devices may be configured
to create VPN connections between several private networks and
thus would refuse our baseline scan handshake if peer addresses
had been explicitly configured in the host. This stands in contrast
to a scan to detect vulnerabilities in public web servers using TLS

17We used the 3DES-CBC-SHA, AES-CBC-SHA, AES-CBC-SHA, 3DES-
CBC-MD5, DES-CBC-MD5, DES-CBC-SHA, AES-CBC-MD5, and AES-
CBC-MD5 cipher suites.

8

https://mta.openssl.org/pipermail/openssl-commits/2016-February/003520.html
https://mta.openssl.org/pipermail/openssl-commits/2016-February/003520.html


Listing 2: The core ScreenOS 6.1 PRNG subroutine.
1 void prng_generate(char *output) {
2 unsigned int index = 0;
3 int time[2];
4
5 // FIPS checks removed for clarity
6 if (blocks_generated_since_reseed++ > 9999)
7 prng_reseed();
8 // FIPS checks removed for clarity
9 time[0] = 0;

10 time[1] = get_cycles();
11 do {
12 // FIPS checks removed for clarity
13 prng_generate_block(time, prng_seed, prng_key,
14 prng_block);
15 // FIPS checks removed for clarity
16 memcpy(&output[index], prng_output_block,
17 min(20-index, 8));
18 index += min(20-index, 8);
19 } while (index <= 19);
20 }

and represents a fundamental limitation of network mass scans for
understanding VPN infrastructure.

Third, our measurements saw a significant drop in response rates
over time. Some of this may be due to natural movement of hosts
over time, as we attempted to minimize impact by rescanning hosts
that had previously responded successfully. In some cases, despite
our attempts to scan slowly and over a long period of time, we may
have inadvertently triggered ScreenOS’s built-in anti-DoS protection
for some hosts. We are unable to distinguish these cases.

Fourth, our scanning methodology turned out to be based on
flawed assumptions, namely that non-ScreenOS hosts would send
uniformly random nonces and that IKEv1 and IKEv2 behavior
would be the same. A frequency analysis of the bytes in various
positions in the nonces we collected suggests that the bytes are not
uniformly distributed in non-ScreenOS hosts (i.e., even nonces from
hosts which send zeros are not uniform) and that, for some reason,
the nonuniformity is stronger in IKEv2 hosts, making those results
even less reliable. Thus, our decision to scan hosts that support both
IKEv1 and IKEv2 only using IKEv2 was an error.

9. DISCUSSION
Much attention has been paid to the 2012 compromise of Juniper’s

ScreenOS source code by unknown parties. In this paper we have
shown that the vulnerabilities announced by Juniper can be traced
largely to the pre-existing design of Juniper’s ScreenOS random
number generator. Specifically, we argue that Juniper’s design is
exploitable due to a series of deliberate design decisions, accidents,
and oversights on the part of the ScreenOS developers.

Below we review each of the conditions that are required to
produce an exploitable PRNG in the Juniper system:

1. Implementation of Dual EC. The cascade design of Ju-
niper’s double PRNG, which employs Dual EC to seed the
PRNG on each call seems a surprising choice, given the per-
formance limitations of Dual EC. Notably, the transition from
ScreenOS 6.1 (X9.31 only) to 6.2 (Dual EC and X9.31) in-
volved the addition of a nonce pre-generation queue to the
existing DH key queues.18 One potential motivation for this
change could be the additional security assurance provided

18To give a rough estimate of the performance difference, we imple-
mented Dual EC and ANSI X9.31 using the same procedure used
in ScreenOS and measured how long it takes to generate 32-byte
blocks. Dual EC takes roughly 125 times as long as X9.31.

by Dual EC. However, we note that Juniper did not seek FIPS
certification of the Dual EC generator, despite the fact that
following the deprecation of the ANSI X9.31 generator on
January 1, 2016, it would have been the only FIPS-certified
PRNG in their product.19

2. Presence of a Dual EC/ANSI cascade flaw. Even with
Dual EC present in the ScreenOS devices, the use of a cas-
cade between Dual EC and ScreenOS should have prevented
the known state recovery attacks. As detailed in Section 4,
this protection is not available due to flaws in the cascade
implementation, which allows for the exfiltration of unpro-
cessed Dual EC output. This flaw is particularly perplexing.
Compare the prng_generate() function in version 6.1 (List-
ing 2) with the analogous function in version 6.2 (Listing 1).
Apart from minor changes arising from moving from gener-
ating 20 bytes at a time to generating 32 bytes at a time and
always reseeding rather than reseeding based on a counter,
the functions look quite similar. However, for some reason,
the loop index variable was changed from a local variable to
a global variable.

3. Always reseeding. In version 6.1, ScreenOS reseeded the
X9.31 PRNG from system entropy every 10,000 calls (hard-
coded; see Listing 2). However, in version 6.2, the reseeding
mechanism was repurposed to produce the cascade by always
reseeding. When combined with the cascade flaw described
above, all PRNG output comes from Dual EC, increasing the
probability that a specific value observed by the attacker can
be used to recover PRNG state.

4. Use of 32-byte IKE nonces. The IKE standards do not pro-
vide a specific recommendation for nonce length, stating only
that nonces should be between 8 and 256 bytes, and that
nonces should be at least half the key size of the PRF used.
The last version of ScreenOS without Dual EC was 6.1.0r7
and specified 20 byte nonces. In the subsequent release,
ScreenOS 6.2.0r1, Juniper developers added Dual EC and
modified the IKE nonce size from 20 to 32 bytes. Efficiently
recovering the state of the Dual EC generator requires at a
minimum 26 bytes of unprocessed PRNG output, and as dis-
cussed in Section 5.2, having greater than 30 bytes expedites
the state recovery attack.

5. Modifying the order of nonce and key generation. The
ScreenOS IKEv1 and IKEv2 implementations both output
IKE Key Exchange prior to the IKE Nonce packet. How-
ever, this output order does not reflect the generation order
of the same values in all versions of ScreenOS. In particular,
the addition of nonce queues in ScreenOS 6.2.0r1 effectively
guarantees that in most cases a non-loaded system will gener-
ate a nonce immediately prior to the Diffie–Hellman private
key that will be used in a given handshake. In practice, this
facilitates state recovery attacks that can recover secret keys
(and thus enable decryption) within a single IKE handshake,
significantly improving the effectiveness of passive attacks.

All told, in the course of a single version revision, Juniper made
a series of changes that combined to produce a system which only
required the attacker to know the discrete log of Q to be exploitable.
See Table 2 for a summary of changes. For a randomly selected Q,
or a point chosen using the nothing-up-my-sleeve process proposed
in ANSI X9.82 [2], calculating d is likely to be infeasible. We
have no way to evaluate the likelihood that some party knows d for
Juniper’s non-standard Q point, except to note that Juniper does not

19A review of the CMVP certification lists [35] shows that all
ScreenOS FIPS certification certificates have indeed been de-listed
as of February 2016.

9



Table 2: ScreenOS features by version.

Reseed period Reseed DH Nonce Nonce size
Version PRNG (calls) bug queue queue (bytes) DH groups supported
6.1.0 X9.31 10000 X 20 MODP 768, 1024, 1536, 2048
6.2.0 Dual EC + X9.31 1 X X X 32 MODP 768, 1024, 1536, 2048
6.3.0 Dual EC + X9.31 1 X X X 32 MODP 768, 1024, 1536, 2048; ECP 256, 384

Between versions 6.1.0 and 6.2.0, a cluster of changes were made to the PRNG and IKE subsystems. In the PRNG subsystem, the switch to (1) Dual EC +
X9.31; (2) reseeding on every call; and (3) the bug in reseed that causes X9.31 to be skipped produce the necessary conditions to attack IKE. In the IKE
subsystem, changing the nonce size from 20 bytes to 32 bytes moves the attack from completely impractical to nearly best-case scenario, from an attacker’s
point of view. The introduction of a nonce queue changes the nature of the attack such that, in the usual case, an attacker can decrypt a session based solely
on that session’s traffic.

Version 6.3.0 is nearly identical to 6.2.0 but supports elliptic curve Diffie–Hellman groups. In contrast to the changes between 6.1.0 and 6.2.0, this may
actually make an attacker’s job harder; see Section 5.5.

appear to have used any of the recommendations presented in the
NIST standard [34]. Based on the conclusions of Juniper’s 2012
vulnerability report [23], however, it does seem reasonable to assume
that the 2012 attacker-generated Q′ was maliciously generated.

9.1 Lessons
The ScreenOS vulnerabilities we have studied provide important

broader lessons for the design of cryptographic systems, which we
summarize below.

For protocol designers. Allowing nonces to vary in length, and
in particular to be larger than necessary for uniquely identifying
sessions, may be a bad idea. The authors are unaware of any crypto-
graphic rationale for 256-byte nonces, as permitted by IPsec; it is
simply an invitation for implementations to disclose sensitive state,
intentionally or not.20

Adding even low-entropy shared secrets as key derivation inputs
helps protect against entropy failures. We observe a difference in
exploitability of the ScreenOS bugs between IKEv1 and IKEv2
that is entirely due to the different use of the PSK between the two
protocols. It is unfortunate that IKEv2 is easier to exploit.

More generally, protocol designers may wish to hedge their de-
signs against entropy failure [6]. There are few widely deployed
cryptographic protocols but many crypto libraries and randomness
subsystems, so changes to protocols may do more good than revised
design guidelines for PRNGs. One approach is to derandomize
protocols by replacing randomized nonces with deterministic, cryp-
tographically secure values derived from connection parameters, to
avoid nonce collisions or predictability due to improperly seeded
random number generators. Bellare et al. [7] propose techniques
to render symmetric cryptographic primitives deterministic and re-
silient against algorithm substitution attacks. Future research might
investigate whether similar guarantees can be extended to protocols
employing asymmetric primitives such as key exchange protocols.

For implementers and code reviewers. Cryptographic code must
be locally auditable: It must be written in such a way that examining
a function or a module in isolation allows the reader to understand
its behavior.

ScreenOS’s implementation failed to live up to this guideline. A
loop counter in the core prng_generate routine was defined as a
global variable and changed in a subroutine. This is a surprising-
enough pattern that several experienced researchers who knew that
the routine likely had a bug failed to spot it before Willem Pinckaers’
contribution. The prng_generate routine and the prng_reseed
routine reuse the same 32-byte buffer, prng_temporary, for two

20Of course, reducing nonce size cannot prevent all data exfiltration
strategies. However, it may increase the difficulty of hiding the
necessary code, and the complexity of executing an attack.

entirely different purposes: Dual EC output with which to seed
X9.31, and output from the PRNG subsystem. ScreenOS’s use of
pregeneration queues makes it difficult to determine whether nonces
or Diffie–Hellman shares are generated first. Someone reading the
code for the top-level functions implementing IKE in isolation will
conclude that Diffie–Hellman shares are generated first, whereas in
practice the opposite is usually the case.

The state recovery attacks suffered by Juniper suggest that imple-
mentations may wish to avoid revealing the raw output of a random
number generator entirely, perhaps by hashing any PRNG output
before using it as a nonce. One could also design implementations
so that separate PRNGs are used for different protocol components,
to separate nonce security from key security.

Several of the above mistakes represent poor software engineering
practices. Cryptographic code reviews, whether internal or external
(e.g., for FIPS validation), should take code quality into account.

For NIST. Juniper followed then-current best practices in designing
and verifying their random number generators. They used a NIST-
certified algorithm, followed the FIPS-recommended procedure to
verify the output using test vectors, and followed a commonly-
recommended engineering guideline to use a PRNG as a whitener
for a potentially insecure random number generator.

In this case, all three approaches failed. In particular, a crippling
defect in the whitening countermeasure managed to go undetected in
FIPS certification. This suggests potential future work for research
in the verification of cryptographic systems. One step would be to
track the origin and use of any buffers — especially shared buffers —
and enforce a rule that all random number generator output can
be traced back to an appropriate cryptographic function, such as a
block cipher or hash.

To the extent that FIPS guidelines mandate the use of global state,
they run counter to our suggestion, above, that cryptographic code
be locally auditable.

Products are evaluated against FIPS standards by accredited labo-
ratories. ScreenOS was FIPS certified with the X9.31 PRNG, yet
the lab evaluating ScreenOS failed to spot that X9.31 was never
invoked, as well as failing to detect the defect in the Dual EC imple-
mentation described in Section 4. NIST should revisit its laboratory
accreditation program to ensure more thorough audits, especially of
randomness subsystem code.

For attackers. The choice by the attacker to target the random num-
ber generation subsystem is instructive. Random number generators
have long been discussed in theory as a target for kleptographic
substitution attacks [47], but this incident tells us that the threat is
more real than has been known in the academic literature.

From the perspective of an attacker, by far the most attractive fea-
ture of the ScreenOS PRNG attack is the ability to significantly un-
dermine the security of ScreenOS without producing any externally-

10



detectable indication that would mark the ScreenOS devices as vul-
nerable. This is in contrast to previous well-known PRNG failures,
which were externally observable, and, in the case of the Debian
PRNG flaw, actually detected through observational testing. Indeed,
the versions of ScreenOS containing an attacker-supplied parameter
appear to have produced output that was cryptographically indistin-
guishable from the output of previous versions, thus preventing any
testing or measurement from discovering the issue.

For policymakers. In the recent debate over whether law enforce-
ment is “going dark,” some have proposed a mandate for crypto-
graphic systems to allow “exceptional access”: mechanisms for law
enforcement to recover plaintext on demand. Dual EC represents
a particularly promising template for such an exceptional access
system. Either no one knows the value of d corresponding to NSA’s
point Q or only NSA does (barring a leak). In NSA’s jargon, a
Dual EC-style backdoor would be “NOBUS”: No one but the U.S.
could exploit it.

The unauthorized change to ScreenOS’s Dual EC constants made
in 2012 illustrates a new threat: the ability for another party to
apparently subvert a NOBUS back door for its own purposes, with
only minimally detectable changes. Since the Federal Government
is a NetScreen customer [36], the changes made in 2008 to add
Dual EC to ScreenOS and to expose its output in IKE handshakes
may have had negative repercussions for U.S. security, NOBUS or
not.

Indeed, despite suspicion, there has been no incontrovertible
evidence of Dual EC’s being used for kleptography. ScreenOS after
the 2012 unauthorized change represents the deployment of Dual EC
for which there is the strongest such evidence — and the party that
took advantage of it may not have been NSA.

For journalists. Much of the coverage of the Juniper disclosure
has focused on the unauthorized changes made in 2012 to the ran-
domness subsystem and in 2014 to the login code. By contrast, our
forensic investigation of ScreenOS releases highlights the changes
made in the 6.2 series, in 2008, as the most consequential.

These changes, which introduced Dual EC and changed other
subsystems in such a way that an attacker who knew the discrete
log of Q could exploit it, were, as far as we know, added by Juniper
engineers, not by attackers. This raises a number of questions:

How was the new randomness subsystem for the ScreenOS 6.2 se-
ries developed? What requirements did it fulfill? How did Juniper
settle on Dual EC? What organizations did it consult? How was
Juniper’s point Q generated?

We are not able to answer these questions with access to firmware
alone. Juniper’s source code version-control system, their bug-
tracking system, their internal e-mail archives, and the recollections
of Juniper engineers may help answer them.

Despite numerous opportunities, including public questions put
to their Chief Security Officer and a congressional hearing on this
incident,21 Juniper has either failed or explicitly refused to provide
any further details.

10. RELATED WORK
Dual EC. The history of the Dual EC random number generator
was described by Checkoway et al. [9]. By 2006, it was already
clear that the generator output has biases in its output that make
it unsuitable for deployment, through work by Gjøsteen [18] and
by Schoenmakers and Sidorenko [39]. Shumow and Ferguson’s
presentation at the Crypto 2007 rump session [40] further made

21Online: https://oversight.house.gov/hearing/federal-cybersecurity-
detection-response-and-mitigation/.

clear that someone in possession of the discrete logarithm of Q
to base P and who saw raw output from the generator would be
able to reconstruct its internal state and predict all future outputs.
Nevertheless, Dual EC was adopted as part of NIST’s SP 800-
90A standard [4], and was not withdrawn until 2015 [5], following
reporting based on the Snowden documents [37] that suggested that
the Dual EC backdoor might be intentional. A presentation by John
Kelsey gives a postmortem of Dual EC standardization from NIST’s
perspective [27].

Our analysis in Section 4 shows that Juniper adopted Dual EC
in 2008. In 2013, NIST’s reopening SP 800-90A for comments
led Juniper to publish a knowledge base article explaining that
ScreenOS uses Dual EC, but “in a way that should not be vulnerable
to the possible issue that has been brought to light,” because of the
custom Q and because Dual EC output is filtered through X9.31 [25].
As our analysis shows, at the time that Juniper made this statement,
the Q value shipping in ScreenOS was already one introduced in
the unauthorized 2012 change. In January 2016, Juniper announced
that it would remove Dual EC from its ScreenOS products in “the
first half of 2016” [44].

Randomness failures. Many instances of randomness failures in
widely deployed systems have been reported. In 1996, Goldberg and
Wagner showed that the Netscape browser seeded its PRNG inse-
curely, allowing SSL traffic to be decrypted [19].

Between 2006 and and 2008, Linux systems running the Debian
distribution or its derivatives (including Ubuntu) shipped a modified
version of the OpenSSL library that failed to incorporate entropy
from the kernel into its own entropy pool. The available entropy was
then low enough under normal conditions that the keys that affected
systems generate could be exhaustively enumerated and identified
over the network [45].

Heninger et al. [22] performed a pairwise GCD on RSA mod-
uli obtained from scanning the IPv4 address space, finding many
shared factors and weak keys; the root cause was the lack of entropy
available shortly after boot in many network devices. Kim et al. [31]
showed that a related problem affected OpenSSL on Android.

Bernstein et al. showed that randomness failures in smart cards
allowed private keys to be recovered using lattice attacks [8].

Design of PRNGs. A line of work beginning with Kelsey et al. [28]
and continuing to today [11, 12] has sought to formalize the security
desiderata for PRNGs used as part of cryptographic systems, and
to evaluate deployed PRNGs against these desiderata. Gutterman
et al. [20] and, later, Lacharme et al. [32] analyzed the Linux ran-
domness system; Dorrendorf et al. [14] analyzed that of Windows.

As new use cases arose, the security desiderata have been re-
vised and expanded. For example, Ristenpart and Yilek analyzed
application-level randomness reuse in virtual machines whose state
is reset and rolled back [38], and Everspaugh et al. [17] extended
the analysis to kernel-level randomness.

Kleptography. Young and Yung formalized a theoretical model
of cryptographic backdoors in black box cryptography that they
called “kleptography” [47]. More recently, Bellare, Paterson, and
Rogaway developed a model of algorithmic substitution attacks as a
formalization of a cryptographic back door and designed symmetric
encryption schemes to secure against this forms of attacks [7]. Dodis
et al. provide a formal treatment of backdoored PRNGs [13].

Stevens developed techniques for “counter-cryptanalysis” that
he used to reconstruct the MD5 collision attack that the unknown
authors of the Flame malware exploited against the Microsoft Ter-
minal Server Licensing Service prior to its discovery in 2012 [41].
This incident is the best prior example we have of a publicly visible
cryptanalytic attack carried out by sophisticated attackers.

11

https://oversight.house.gov/hearing/federal-cybersecurity-detection-response-and-mitigation/
https://oversight.house.gov/hearing/federal-cybersecurity-detection-response-and-mitigation/


Acknowledgments
This material is based in part upon work supported by the U.S.
National Science Foundation under awards EFMA-1441209, CNS-
1505799, CNS-1010928, CNS-1408734, and CNS-1410031; The
Mozilla Foundation; a gift from Cisco; and the Office of Naval
Research under contract N00014-14-1-0333.

References
[1] Accredited Standards Committee (ASC) X9, Financial Services. ANS X9.31-

1998: Digital signatures using reversible algorithms for the financial services
industry (rDSA), 1998. Withdrawn.

[2] Accredited Standards Committee (ASC) X9, Financial Services. ANS X9.82-3-
2007: Random number generation, part 3: Deterministic random bit generators,
2007.

[3] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A. Halder-
man, N. Heninger, D. Springall, E. Thomé, L. Valenta, B. VanderSloot, E. Wus-
trow, S. Zanella-Béguelin, and P. Zimmermann. Imperfect forward secrecy: How
Diffie-Hellman fails in practice. In C. Kruegel and N. Li, editors, Proceedings
of CCS 2015, pages 5–17. ACM Press, Oct. 2015.

[4] E. Barker and J. Kelsey. NIST Special Publication 800-90A: Recommendation
for Random Number Generation Using Deterministic Random Bit Generators.
Technical report, National Institute of Standards and Technology, 2006.

[5] E. Barker and J. Kelsey. NIST Special Publication 800-90A Revision 1: Recom-
mendation for Random Number Generation Using Deterministic Random Bit
Generators. Technical report, National Institute of Standards and Technology,
June 2015.

[6] M. Bellare, Z. Brakerski, M. Naor, T. Ristenpart, G. Segev, H. Shacham, and
S. Yilek. Hedged public-key encryption: How to protect against bad randomness.
In M. Matsui, editor, Proceedings of Asiacrypt 2009, volume 5912 of LNCS,
pages 232–49. Springer-Verlag, Dec. 2009.

[7] M. Bellare, K. G. Paterson, and P. Rogaway. Security of symmetric encryption
against mass surveillance. In J. Garay and R. Gennaro, editors, Proceedings of
Crypto 2014, Part I, volume 8616 of LNCS, pages 1–19. Springer-Verlag, Aug.
2014.

[8] D. J. Bernstein, Y.-A. Chang, C.-M. Cheng, L.-P. Chou, N. Heninger, T. Lange,
and N. Someren. Factoring RSA Keys from Certified Smart Cards: Coppersmith
in the Wild. In K. Sako and P. Sarkar, editors, Proceedings of Asiacrypt 2013,
volume 8270 of LNCS, pages 341–60. Springer-Verlag, Dec. 2013.

[9] S. Checkoway, M. Fredrikson, R. Niederhagen, A. Everspaugh, M. Green,
T. Lange, T. Ristenpart, D. J. Bernstein, J. Maskiewicz, and H. Shacham. On
the practical exploitability of Dual EC in TLS implementations. In K. Fu, editor,
Proceedings of USENIX Security 2014, pages 319–35. USENIX, Aug. 2014.

[10] J. R. Clapper. Worldwide threat assessment of the U.S. intelligence com-
munity. Statement for the record, Senate Armed Services Committee. On-
line: http://www.armed-services.senate.gov/imo/media/doc/Clapper_02-09-16.
pdf, Feb. 2016.

[11] Y. Dodis, D. Pointcheval, S. Ruhault, D. Vergnaud, and D. Wichs. Security
analysis of pseudo-random number generators with input: /dev/random is not
robust. In V. Gligor and M. Yung, editors, Proceedings of CCS 2013, pages
647–58. ACM Press, Nov. 2013.

[12] Y. Dodis, A. Shamir, N. Stephens-Davidowitz, and D. Wichs. How to eat your
entropy and have it too — optimal recovery strategies for compromised RNGs. In
J. Garay and R. Gennaro, editors, Proceedings of Crypto 2014, Part II, volume
8617 of LNCS, pages 37–54. Springer-Verlag, Aug. 2014.

[13] Y. Dodis, C. Ganesh, A. Golovnev, A. Juels, and T. Ristenpart. A formal treat-
ment of backdoored pseudorandom generators. In M. Fischlin and E. Oswald, ed-
itors, Proceedings of EUROCRYPT 2015, pages 101–126. Springer, Apr. 2015.

[14] L. Dorrendorf, Z. Gutterman, and B. Pinkas. Cryptanalysis of the random num-
ber generator of the Windows operating system. ACM Trans. Info. & System
Security, 13(1):10, 2009.

[15] Z. Durumeric, E. Wustrow, and J. A. Halderman. ZMap: Fast Internet-wide
scanning and its security applications. In S. King, editor, Proceedings of USENIX
Security 2013, pages 605–619. USENIX, Aug. 2013.

[16] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A. Halderman. A search
engine backed by Internet-wide scanning. In C. Kruegel and N. Li, editors, Pro-
ceedings of CCS 2015, pages 542–53. ACM Press, Oct. 2015.

[17] A. Everspaugh, Y. Zhai, R. Jellinek, T. Ristenpart, and M. Swift. Not-so-random
numbers in virtualized Linux and the Whirlwind RNG. In M. Backes, A. Perrig,
and H. Wang, editors, Proceedings of Security and Privacy (“Oakland”) 2014,
pages 559–74. IEEE Computer Society, May 2014.

[18] K. Gjøsteen. Comments on Dual-EC-DRBG/NIST SP 800-90, draft De-
cember 2005. Online: https://www.math.ntnu.no/~kristiag/drafts/dual-ec-drbg-
comments.pdf, Mar. 2006.

[19] I. Goldberg and D. Wagner. Randomness and the Netscape browser. Dr. Dobb’s
Journal, 21(1):66–70, Jan. 1996.

[20] Z. Gutterman, B. Pinkas, and T. Reinman. Analysis of the Linux random number
generator. In V. Paxson and B. Pfitzmann, editors, Proceedings of Security and
Privacy (“Oakland”) 2006, pages 371–85. IEEE Computer Society, May 2006.

[21] D. Harkins and D. Carrel. The Internet Key Exchange (IKE). RFC 2409 (Pro-
posed Standard), Nov. 1998. Obsoleted by RFC 4306, updated by RFC 4109.
Online: https://tools.ietf.org/html/rfc2409.

[22] N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman. Mining your Ps
and Qs: Detection of widespread weak keys in network devices. In T. Kohno,
editor, Proceedings of USENIX Security 2012. USENIX, Aug. 2012.

[23] Juniper Networks. 2015-12 Out of Cycle Security Bulletin: ScreenOS: Mul-
tiple Security issues with ScreenOS (CVE-2015-7755, CVE-2015-7756), Dec.
15. URL https://kb.juniper.net/InfoCenter/index?page=content&id=JSA10713&
cat=SIRT_1&actp=LIST.

[24] Juniper Networks. Concepts & Examples ScreenOS Reference Guide: Virtual
Private Networks, rev. 02 edition, Dec. 2012. URL http://www.juniper.net/
techpubs/software/screenos/screenos6.3.0/630_ce_VPN.pdf.

[25] Juniper Networks. Juniper Networks product information about
Dual_EC_DRBG. Knowledge Base Article KB28205, Oct. 2013. Online:
https://web.archive.org/web/20151219210530/https://kb.juniper.net/InfoCenter/
index?page=content&id=KB28205&pmv=print&actp=LIST.

[26] C. Kaufman. Internet Key Exchange (IKEv2) Protocol. RFC 4306 (Proposed
Standard), Dec. 2005. Obsoleted by RFC 5996, updated by RFC 5282. Online:
https://tools.ietf.org/html/rfc4306.

[27] J. Kelsey. Dual EC in X9.82 and SP 800-90A. Presentation to NIST VCAT com-
mittee, May 2014. Slides online http://csrc.nist.gov/groups/ST/crypto-review/
documents/dualec_in_X982_and_sp800-90.pdf.

[28] J. Kelsey, B. Schneier, D. Wagner, and C. Hall. Cryptanalytic attacks on pseu-
dorandom number generators. In S. Vaudenay, editor, Proceedings of FSE 1998,
volume 1372 of LNCS, pages 168–88. Springer-Verlag, Mar. 1998.

[29] S. Kent. IP Encapsulating Security Payload (ESP). RFC 4303 (Proposed Stan-
dard), Nov. 2005. Online: https://tools.ietf.org/html/rfc4303.

[30] S. Kent and K. Seo. Security architecture for the Internet Protocol. RFC 4301
(Proposed Standard), Dec. 2005. Online: https://tools.ietf.org/html/rfc4301.

[31] S. H. Kim, D. Han, and D. H. Lee. Predictability of Android OpenSSL’s pseudo
random number generator. In V. Gligor and M. Yung, editors, Proceedings of
CCS 2013, pages 659–68. ACM Press, Nov. 2013.

[32] P. Lacharme, A. Röck, V. Strubel, and M. Videau. The Linux pseudorandom
number generator revisited. Cryptology ePrint Archive, Report 2012/251, 2012.
https://eprint.iacr.org/.

[33] H. D. Moore. CVE-2015-7755: Juniper ScreenOS Authentication Back-
door. https://community.rapid7.com/community/infosec/blog/2015/12/20/cve-
2015-7755-juniper-screenos-authentication-backdoor, Dec. 2015.

[34] National Institute of Standards and Technology. NIST opens draft Special Pub-
lication 800-90A, recommendation for random number generation using deter-
ministic random bit generators for review and comment. http://csrc.nist.gov/
publications/nistbul/itlbul2013_09_supplemental.pdf, Sept. 2013.

[35] National Institute of Standards and Technology. CMVP historical validation
list, Feb. 2016. URL http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/
140val-historical.htm. Retrieved February 18, 2016.

[36] Office of Personnel Management. Juniper network firewall maintenance renewal.
FedBizOps.gov solicitation number M-13-00031. Online: https://www.fbo.gov/
index?id=b3246ffee0a3e9c0ced948b3a8ebca7b, Sept. 2013.

[37] N. Perlroth, J. Larson, and S. Shane. N.S.A. able to foil basic safeguards of
privacy on Web. The New York Times, Sep. 5 2013. Online: http://www.nytimes.
com/2013/09/06/us/nsa-foils-much-internet-encryption.html.

[38] T. Ristenpart and S. Yilek. When good randomness goes bad: Virtual machine
reset vulnerabilities and hedging deployed cryptography. In W. Lee, editor, Pro-
ceedings of NDSS 2010. Internet Society, Feb. 2010.

[39] B. Schoenmakers and A. Sidorenko. Cryptanalysis of the Dual Elliptic Curve
pseudorandom generator. Cryptology ePrint Archive, Report 2006/190, 2006.
URL https://eprint.iacr.org/.

[40] D. Shumow and N. Ferguson. On the possibility of a back door in the NIST
SP800-90 Dual Ec Prng. Presented at the Crypto 2007 rump session, Aug. 2007.
Slides online: http://rump2007.cr.yp.to/15-shumow.pdf.

[41] M. Stevens. Counter-cryptanalysis. In C. Ran and J. A. Garay, editors, Pro-
ceedings of Crypto 2013, Part I, volume 8042 of LNCS, pages 129–46. Springer-
Verlag, Aug. 2013.

[42] strongSwan. strongSwan: the opensource IPsec-based VPN solution, Nov. 2015.
URL https://www.strongswan.org/.

[43] R.-P. Weinmann. Some analysis of the backdoored backdoor. Online: https:
//rpw.sh/blog/2015/12/21/the-backdoored-backdoor/, Dec. 2015.

[44] B. Worrall. Advancing the security of Juniper products. On-
line: http://forums.juniper.net/t5/Security-Incident-Response/Advancing-the-
Security-of-Juniper-Products/ba-p/286383, Jan. 2016.

[45] S. Yilek, E. Rescorla, H. Shacham, B. Enright, and S. Savage. When private keys
are public: Results from the 2008 Debian OpenSSL vulnerability. In A. Feld-
mann and L. Mathy, editors, Proceedings of IMC 2009, pages 15–27. ACM Press,
Nov. 2009.

[46] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Protocol Architecture. RFC
4251 (Proposed Standard), Jan. 2006. Online: https://tools.ietf.org/html/rfc4251.

[47] A. Young and M. Yung. Kleptography: Using cryptography against cryptogra-
phy. In W. Fumy, editor, Proceedings of Eurocrypt 1997, volume 1233 of LNCS,
pages 62–74. Springer-Verlag, May 1997.

12

http://www.armed-services.senate.gov/imo/media/doc/Clapper_02-09-16.pdf
http://www.armed-services.senate.gov/imo/media/doc/Clapper_02-09-16.pdf
https://www.math.ntnu.no/~kristiag/drafts/dual-ec-drbg-comments.pdf
https://www.math.ntnu.no/~kristiag/drafts/dual-ec-drbg-comments.pdf
https://tools.ietf.org/html/rfc2409
https://kb.juniper.net/InfoCenter/index?page=content&id=JSA10713&cat=SIRT_1&actp=LIST
https://kb.juniper.net/InfoCenter/index?page=content&id=JSA10713&cat=SIRT_1&actp=LIST
http://www.juniper.net/techpubs/software/screenos/screenos6.3.0/630_ce_VPN.pdf
http://www.juniper.net/techpubs/software/screenos/screenos6.3.0/630_ce_VPN.pdf
https://web.archive.org/web/20151219210530/https://kb.juniper.net/InfoCenter/index?page=content&id=KB28205&pmv=print&actp=LIST
https://web.archive.org/web/20151219210530/https://kb.juniper.net/InfoCenter/index?page=content&id=KB28205&pmv=print&actp=LIST
https://tools.ietf.org/html/rfc4306
http://csrc.nist.gov/groups/ST/crypto-review/documents/dualec_in_X982_and_sp800-90.pdf
http://csrc.nist.gov/groups/ST/crypto-review/documents/dualec_in_X982_and_sp800-90.pdf
https://tools.ietf.org/html/rfc4303
https://tools.ietf.org/html/rfc4301
https://eprint.iacr.org/
https://community.rapid7.com/community/infosec/blog/2015/12/20/cve-2015-7755-juniper-screenos-authentication-backdoor
https://community.rapid7.com/community/infosec/blog/2015/12/20/cve-2015-7755-juniper-screenos-authentication-backdoor
http://csrc.nist.gov/publications/nistbul/itlbul2013_09_supplemental.pdf
http://csrc.nist.gov/publications/nistbul/itlbul2013_09_supplemental.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-historical.htm
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-historical.htm
https://www.fbo.gov/index?id=b3246ffee0a3e9c0ced948b3a8ebca7b
https://www.fbo.gov/index?id=b3246ffee0a3e9c0ced948b3a8ebca7b
http://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html
http://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html
https://eprint.iacr.org/
http://rump2007.cr.yp.to/15-shumow.pdf
https://www.strongswan.org/
https://rpw.sh/blog/2015/12/21/the-backdoored-backdoor/
https://rpw.sh/blog/2015/12/21/the-backdoored-backdoor/
http://forums.juniper.net/t5/Security-Incident-Response/Advancing-the-Security-of-Juniper-Products/ba-p/286383
http://forums.juniper.net/t5/Security-Incident-Response/Advancing-the-Security-of-Juniper-Products/ba-p/286383
https://tools.ietf.org/html/rfc4251

	Abstract
	1 Introduction
	2 Dual EC Background
	3 History of the Juniper Incident
	4 The ScreenOS PRNG
	5 Interaction with IKE
	5.1 Overview of IKE
	5.2 Nonce Size
	5.3 Nonces and DH Keys
	5.4 Non-DH Phase 2 Exchanges
	5.5 Multiple Groups
	5.6 Recovering traffic keys

	6 Attacking IKE
	7 Passively detecting ScreenOS
	8 Counting ScreenOS Devices
	9 Discussion
	9.1 Lessons

	10 Related Work
	Acknowledgments
	References

