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ABSTRACT

To date, many attempts have been made to fingerprint users
on the web. These fingerprints allow browsing sessions to be
linked together and possibly even tied to a user’s identity.
They can be used constructively by sites to supplement tra-
ditional means of user authentication such as passwords; and
they can be used destructively to counter attempts to stay
anonymous online.

In this paper, we identify two new avenues for browser fin-
gerprinting. The new fingerprints arise from the browser’s
JavaScript execution characteristics, making them difficult
to simulate or mitigate in practice. The first uses the innate
performance signature of each browser’s JavaScript engine,
allowing the detection of browser version, operating system
and microarchitecture, even when traditional forms of sys-
tem identification (such as the user-agent header) are modi-
fied or hidden. The second subverts the whitelist mechanism
of the popular NoScript Firefox extension, which selectively
enables web pages’ scripting privileges to increase privacy
by allowing a site to determine if particular domains exist
in a user’s NoScript whitelist.

We have experimentally verified the effectiveness of our
system fingerprinting technique using a 1,015-person study
on Amazon’s Mechanical Turk platform.

1. INTRODUCTION

A unique fingerprint that identifies a browser and its user
has many uses on the Web. Used constructively, such a
fingerprint allows sites to recognize returning users both be-
tween visits and during a visit, for example to avoid asking
for login credentials for every action that requires authen-
tication, or to detect account hijacking and impersonation.
Used maliciously, such a fingerprint may allow an attacker
to track a user between sites (even when those sites do not
cooperate with the attacker) and to identify users who use
privacy-enhancing technologies such as Tor.

The traditional means for a user to identify himself to
a service is the password. With services and user browsing
data moving to cloud-hosted infrastructure, it is increasingly
the case that large-scale data compromise makes it hard to
have a firm hold on customer identity. Since users reuse
passwords at multiple sites, this is true even when a site im-
peccably secures its own login database: The recent Gawker
compromise allowed hackers to compromise many Twitter
accounts that reused the same login credentials.

Accordingly, for many sites, and especially those (such as
online banking) where fraud is a concern, identifying users
by password alone is not sufficient. Increasingly, such sites
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employ additional means to identify the user and the sys-
tem she is using. Hardware tokens are appropriate in certain
settings, but their cost and inconvenience form a barrier to
ubiquitous use. For such sites, browser and user fingerprints
form an attractive alternative to hardware tokens. On the
(reasonable) assumption that typical users will usually log
in from a single machine (or, at most, a handful), JavaScript
fingerprinting allows sites to harden passwords against ac-
count hijacking with a minimum of user inconvenience.

Destructively, fingerprints can also be used to identify
and track users, even when those users wish to avoid be-
ing tracked. The most familiar browser fingerprinting tech-
nology is the cookie, a client-side datastore partitioned by
domain and path. Cookies installed by third-party content
included on sites users visit allow users to be tracked between
sites. Modern browsers provide many other client-side data-
stores that can provide cookie-like functionality [16]. The
browser history and file cache are effectively unpartitioned
by domain and can be queried by timing or DOM APIs [12],
and can be used as a fingerprint [15]. Information disclosed
by the browser in headers, through JavaScript APIs, and
through plugins can provide a fingerprint with more than
18 bits of effective entropy [18, 9]. Even quirks of the brow-
ser’s JavaScript handling and supported DOM features can
be used as a fingerprint [11]. These techniques can be used
in concert by sites, yielding a fingerprint that can uniquely
identify users and facilitate their being tracked.

Our results.

We describe two new techniques for fingerprinting brow-
sers, both making use of the JavaScript interpreter. The
fingerprinting information we obtain can be used alongside
previously known fingerprinting technologies, such as those
explored in EFF’s Panopticlick project, to enable user de-
vice identification and supplement user passwords (in a con-
structive appplication) or to reduce the anonymity set of
Web users even further (in a destructive application).

Our first technique times the performance of different op-
erations in the core of the JavaScript language. Unlike pre-
vious fingerprinting techniques based on JavaScript [11, 9],
ours depends not on functionality differences, but perfor-
mance differences between browsers. This means that it can
be used even when limited functionality is made available
to JavaScript. Also, because our technique takes advantage
of the execution timing differences between instruction se-
quences produced by the browser’s JavaScript JIT, it can
distinguish not only browser versions but also microarchi-
tectural features not normally exposed to JavaScript. As



browsers compete largely on JavaScript performance, any
countermeasure that involves slowing JavaScript execution
or preventing accurate timing will be unacceptable to ven-
dors, making this fingerprinting technique very robust.

Our second technique allows the attacker to query entries
in the user’s NoScript whitelist. NoScript [17] is a Firefox ex-
tension that allows users to whitelist or blacklist domains for
JavaScript execution. When a user visits a page, scripts will
execute only if the site’s domain is whitelisted. Moreover,
if page includes a script from a second domain, then that
script will execute only when that script-provider domain is
also whitelisted. Many sites do not function properly when
JavaScript is disabled, so users customize their NoScript
whitelist for their favorite sites. We show that a site can
include a script from another domain to determine whether
that other domain is whitelisted; scripts appropriate for in-
cluding can be automatically found for a large fraction of
the Alexa Top 1000 sites. When tested in aggregate, the
domains found in the NoScript whitelist constitute a finger-
print of a user’s preferred sites and habits, leaking valuable
information about their preferences to attackers. While this
attack targets a particular browser extension (which may
not be installed by every fingerprinted user), its existence il-
lustrates the possiblity of arbitrary websites probing for the
existence and internal state of browser extensions.

Applications and threat model.

For constructive applications, we consider an attacker who
has stolen a user’s login credentials (via malware or phish-
ing) and is attempting to impersonate the user. Such an
attacker can study the victim’s system configuration and
could mimic the user-agent string, but may not be able to
duplicate the victim’s hardware and software configuration.
Under this model, the attacker may impersonate the user
in any self-reported fingerprint scheme (such as the Panop-
ticlick approach of accessing user agent, available plugins,
and other data through JavaScript APIs). When creating a
fingerprint directly from raw JavaScript performance, how-
ever, the attacker will be unable to replicate the user’s tim-
ings for every conceivable script. This unforgeability prop-
erty provides an inherent advantage over other browser fin-
gerprinting schemes.

For destructive applications, we consider browsers’ “pri-
vate browsing” modes [1] or the Tor network [8] together
with the Torbutton extension for Firefox [20]. For the for-
mer, we adopt the Web attacker model of Aggarwal et al. [1];
for the latter, we also consider a rogue exit node model; un-
like a Web attacker, a rogue Tor exit node can inject content
that appears to come from sites the attacker doesn’t con-
trol—including sites on the default NoScript whitelist such
as addons.mozilla.org.

Related work.

When operations depend on secret values, the time it takes
to complete them often leaks information useful to the at-
tacker. Timing side channels have been used to attack sev-
eral cryptosystems, notably a remote timing attack on RSA
decryption in SSL [5]. In a Web context, timing has been
used against clients to determine whether content was in the
cache [10] and against servers to learn information such as
the number of items in a user’s shopping cart [4]. Clock
skew, which is correlated with processor activity, has been
used to identify Tor hidden services [19]. Finally, we observe

that other sources of information, including summaries of
the Web traffic they generate, can be used to fingerprint
browsers [22].

Our NoScript whitelist fingerprint is closely related to his-
tory sniffing [12, 13]. The different decoration applied by
browsers to visited and unvisited links, together with ways
for sites to determine the decoration applied to page ele-
ments, makes it possible for attackers to determine whether
a users visiting their site had previously visited any URL
of interest. This technique, known since at least 2002 [7],
can be used interrogate tens of thousands of URLs per sec-
ond [14]. Whereas history sniffing applies to specific URLs,
NoScript whitelist sniffing applies to domains; whereas his-
tory entries are set automatically whenever a user visits a
page, NoScript whitelists are changed manually by users.
These two differences mean that NoScript whitelist sniffing
provides less information than history sniffing; the latter
difference may mean that the fingerprint it provides is more
stable over time. Moreover, with browsers deploying fixes
against traditional history-sniffing techniques (see, e.g., [6,
2] for Firefox), the amount of information available to at-
tackers from history sniffing may be reduced, making other
techniques more attractive by comparison.

2. JAVASCRIPT PERFORMANCE FINGER-
PRINTING

As browsers advance and compete on features and usabil-
ity, one of the largest areas of development is the JavaScript
engine. Benchmark suites, such as V8 and SunSpider, are
created to measure scripting speed. As developers apply
clever approaches such as just-in-time script compilation,
the JavaScript engines improve. These improvements are
not uniform, however: different approaches yield different
payoffs on certain types of script. The process of incremen-
tal improvement produces a tell-tale signature, detectable
simply through timing the execution of otherwise innocu-
ous JavaScript. By leveraging these discrepancies, timing
information can be used to fingerprint the host machine.

2.1 Methodology

Utilizing the SunSpider and V8 JavaScript benchmarks
along with custom code, we constructed a suite of 39 indi-
vidual JavaScript tests. To create a fingerprint, we simply
measure the time in milliseconds to complete each test in our
benchmark suite. This produces a 39-dimensional vector,
which characterizes the performance of the tested machine.

Naturally, differences in processor architecture and clock
speed impact these timings significantly. Many processors
also support CPU throttling, which dynamically slows the
processor during periods of low utilization. Similarly, bench-
mark completion times may be affected if external (non-
browser) processes cause significant load. To remove these
effects from our measurements, we normalize the timing vec-
tor before attempting classification.

Oddly, single-test times, even during a single otherwise-
idle browser session, can vary widely. This is possibly due to
other scripts running in the browser, JavaScript garbage col-
lection, or even the timing infrastructure used by our bench-
marks. We take several steps to minimize the effects of this
variance. First, we add an 800 ms delay between the end of
one test and the start of another. This allows the browser
time to handle any cleanup and execute scripts running in



other windows of the session. Secondly, we run each test
five times, and take the minimum positive time for each
test. Intuitively, while the browser may be slowed by exter-
nal factors, it will never be induced to perform better than
its maximum speed. Also, our JavaScript timing framework
reported that an indivdual test time took Oms an appre-
ciable fraction of the time, even dipping to —1ms once or
twice (which is clearly impossible). Running each test mul-
tiple times, then, will smooth out these glitches and random
browser slowdowns, in effect decreasing the variance of the
final test vector. While these techniques increase the reli-
ability of our tests, they do impose a penalty in terms of
execution time.

Our benchmark suite takes 190.8s to complete on Fire-
fox 3.6. However, due to the per-test 800 ms timeout, the
test suite spends approximately 156s sleeping. By using
a smaller timeout, the total time could be reduced signifi-
cantly. Also, we did not experiment with removing tests —
our results may be achievable with less than 39 tests.

(More generally, while we have used off-the-shelf Java-
Script benchmark scripts to demonstrate the feasibility of
our approach, we believe that custom-written scripts tar-
geting specific JavaScript engine revisions and microarchi-
tectural features would execute more efficiently and provide
an even more effective fingerprint than our prototype.)

Once we have a fingerprint vector for a given configura-
tion, we need some way of classifying a test vector in order
to infer facts about the user’s setup. To do so, we utilize an
extremely simple method: matching the fingerprint vector
to a representative vector corresponding to a known config-
uration. From our data, we generate fingerprint vectors of
several leading browsers, and use these to classify the brow-
ser used to execute the benchmark code.

2.1.1 Optimization

One of the largest weaknesses in our approach is that
the fingerprinting time is very large—usually over 3 min-
utes. Much of this time is spent on ways to reduce timing
jitter: an 800ms pause is inserted between each test, and
the entire benchmark suite is executed five separate times.
As noted recently by the Google Chrome team [3], modern
browsers complete most SunSpider benchmarks extremely
quickly (under 10ms), and so a random delay of just a few
milliseconds can appear as a momentous difference in test
times. By running each individiual test many times in a row
(Google chose 50 repititions for their SunSpider variant),
timing variance can be greatly reduced. As a bonus, let-
ting each test run longer will mitigate the JavaScript timing
idiosyncrasies that result in negative or zero elapsed times.
Taken together, these facts suggest that timing many runs
of each individual benchmark test (instead of timing each
test many times) will reduce timing variance significantly.
Heavy-handed measures such as long inter-test delays and
gratuitious repetition can be discarded, thereby eliminating
our largest sources of delay and shortening our fingerprinting
time considerably.

2.2 Data Collection

We collected JavaScript fingerprints for 1015 user config-
urations, where each configuration is an operating system,
browser, hardware, and benchmark performance tuple. To
achieve data collection on this scale, we conducted a survey
on the Amazon Mechanical Turk marketplace, paying users a

small monetary sum to report their CPU model, clock speed,
RAM, and operating system and to allow our JavaScript to
run. We also record the browser-reported User Agent string,
which we treat as ground truth (i.e., we assume that user
agents are not forged).

The operating systems reported by our users include vari-
ants of Windows (7, Vista, XP, NT 4.0), OS X (10.6, 10.5,
10.4) and Linux (Ubuntu, Mint, generic). As for browsers,
we observed usage of Chrome, Firefox, Internet Explorer,
Opera, Safari, and SeaMonkey. The exact breakdowns are
given in Table 1.

Intel processors underly a vast majority of our partici-
pants’ systems, with the most popular being Core 2 (395),
Pentium Dual Core (137), and Pentium 4 (123). Other
common platforms include Core i3, Core, Atom, Athlon 64,
Core i5, and Athlon II.

Overall, our results appear to contain a representative
sample of the browsers, operating systems and hardware
configurations in use on the Web today.

2.2.1 Data Quality

Our Mechanical Turk survey presented users with three
free-form text entry boxes, along with drop-down menus to
report operating system and number of CPU cores. We also
provide step-by-step instructions, with example screenshots,
detailing how to obtain the relevant information for both
Windows and OS X.

Nevertheless, improperly filled-out surveys comprised a
non-trivial portion of responses. Each of our 1015 samples
was hand-verified, and we include every response for which
we could decipher a distinct CPU, clock speed, core count,
and RAM. We received an extra 185 submissions which did
not measure up to this standard and were excluded from
further consideration. A fairly reasonable (but unhelpful)
answer was “Celeron”, as this does not specify a particular
CPU model. We accepted their response (and paid the user),
then excluded the result later in the process. Most of the
rejections, however, were unusable: “Intel” and “x86” were
very common. Some of the authors’ favorite submissions for
CPU architecture included “Normal”, “HP Compaq LE1711”
(an HP LCD monitor), and two separate participants who
reported their architecture as “von Neumann”.

Furthermore, among our 1015 accepted data points, 47
of them self-report a different operating system than their
HTTP user agent claims. We did not investigate further, but
note that this does suggest that some valid-looking but in-
correct data might have been submitted by misunderstand-
ing users. However, we ignore these effects and treat every
report as correct.

2.3 Results

2.3.1 Browser Detection

First, we demonstrate the feasibility of determining brow-
ser version through JavaScript performance. To do so, we
ran our test suite on a single computer in a variety of brow-
sers. The test machine consisted of an Intel Core 2 Duo
processor at 2.66 GHz with 4 GB of RAM. We created test
vectors for Firefox 3.6.3, Internet Explorer 8.0, Opera 10.51,
and Safari 4.0.5. Internet Explorer was tested on Windows
7, while the remaining three browsers were run on Mac OS
X 10.6.3. Each browser returns a 39-dimensional normalized
vector of test times, a subset of which are presented in Fig-



ure 1. Clearly, significant differences exist in the JavaScript
performance profile of each browser, which we can exploit to
recognize a browser’s unique JavaScript execution signature.

To determine the effectiveness of general browser detec-
tion via JavaScript performance, we use the survey-supplied
labels to generate browser fingerprint vectors. For each
browser under test, we average the first ten survey vectors
we received, using 38 tests as vector elements (test genera-
tion and selection is discussed in Section 2.4). The resulting
vector is the first-level browser fingerprint.

While the top-level fingerprints are generally reliable, in
our experience it creates unnecessary misclassification errors
between minor versions of Firefox (namely, 3.6 and 4.0).
To combat this, we also create a second-level fingerprint,
consisting of 37 tests, specifically for finer-grained Firefox
classification. Since this fingerprint is only applied if the
first-level classification indicates a browser in the Firefox
family, we can strip out unneeded tests and produce finger-
print vectors to distinguish between minor variations in the
SpiderMonkey JavaScript engine. This pattern of succes-
sively more precise tests can produce far better results than
a single-level classification alone.

Our data set provides enough benchmarks to create fin-
gerprint vectors for various major versions of Chrome (2.0
through 11.0) and Internet Explorer (7, 8, 9), along with
minor versions for Firefox (2.0, 3.0, 3.1, 3.5, 3.6, 4.0b) and
Safari (4.0, 4.1, 5.0). We also have both an Opera 9.64 and a
SeaMonkey 2.0 sample. Our methods are sufficiently robust
to reliably detect the distinct JavaScript execution profile
for each of these 23 browser versions. Further work might
be able to distinguish between even smaller browser revi-
sions, if those revisions included changes to the JavaScript
engine.

To classify an unknown configuration, we simply execute
the test suite which creates the 39-element fingerprint vec-
tor. Classification then becomes a simple matter of compar-
ing against browser fingerprints and choosing the nearest
match, using the Euclidean distance metric. The results of
classification for our 1015 samples can be found in Table 2.
Notably, we correctly classify 810 browsers, for an overall
accuracy of 79.8%.

Our classification results include the reference vectors for
each browser, i.e., the first ten samples from which we create
the browser fingerprint vector. We use this approach mainly
due to the relative excess of small categories in our data set:
15 browser versions contain less than 10 data points. For
these browsers, we generate the test vector using every avail-
able sample. To demonstrate browser differentiation, then,
we have no other samples with which to perform proper
classification, so we classify the reference vectors themselves
and see if they match their browser vector or not (note that
an IE 7.0 sample is misclassified, even though the reference
vector is made of itself and one other vector!). By keep-
ing these categories, we also gain the benefit that vectors in
the larger browser pools are compared against the smaller
versions, allowing for misclassifications if the browsers’ per-
formance characteristics are too similar. For consistency, we
include the reference vectors of the larger categories in our
classification results as well.

Examining our results in detail, we notice that 176 of 205
misclassifications occur between major versions of Chrome,
giving us a Chrome detection correctness of 62.5%. We as-
cribe these failures to two major features. First, Chrome’s

6.0 70 80 90 100 11.0

Chrome 6.0 0.00 0.18 0.19 0.17 0.25 0.25
Chrome 7.0 0.18 0.00 0.09 0.16 0.25 0.24
Chrome 8.0 0.19 0.09 0.00 0.17 0.27 0.26
Chrome 9.0 0.17 0.16 0.17 0.00 0.17 0.18
Chrome 10.0 0.25 0.25 0.27 0.17 0.00 0.09
Chrome 11.0 0.25 0.24 0.26 0.18 0.09 0.00

Table 3: Pairwise distances of Chrome major
version fingerprints

auto-updater continuously moves most users along the up-
grade path. We were able to acquire less than 5 fingerprint
vectors for Chrome 2.0 through 7.0, which reduces our con-
fidence in the overall major version fingerprint. Secondly,
Chrome’s extremely aggressive release schedule means that
only about 6 months elapsed between the release of Chrome
6.0 and Chrome 10.0. Our experiments indicate that Java-
Script development continued over those six months, but
not enough to reliably distinguish between versions using
our test suite. This pattern of incremental improvement
can be seen in Table 3, which displays the pairwise distance
between Chrome fingerprint vectors.

Overall, our methodology is extremely robust for browser
family detection (Chrome, Firefox, etc), with a correctness
rate of 98.2%.

2.3.2  Operating System Detection

In the previous subsection, we described techniques for
fingerprinting browser versions via JavaScript performance.
In this subsection, we extend our techniques to fingerprint
operating system versions. This is more difficult to do, but
also provides information that is more difficult to gather re-
liably from adversarial users by means of the User Agent
string or other forms of browser self-reporting. Indeed, sev-
eral alternative methods exist for detecting browser version,
such as inspection of browser-specific JavaScript capabilities,
whereas scripts must rely on browser self-reporting for such
platform details as operating system version or underlying
architecture.

The effects of operating system on JavaScript performance
are quite small. In fact, they are vastly overshadowed by
differences in the JavaScript engines themselves. To com-
bat this, operating system detection is only feasible within
a particular browser version. We chose to examine the ef-
fects of operating system on Firefox 3.6, as it was reliably
detectable and had the most cross-platform data points in
our survey (397 on Windows, 19 on OS X, and 8 on Linux).
We followed the same procedure as in browser detection:
using the same 38 tests from the first ten samples in each
category to form the fingerprint, then using Euclidean dis-
tance for classification. The results of this classification are
in Table 4.

Notably, while we lack a significant number of Linux and
OS X samples, our Windows identification rate is 98.5%,
and we did not misclassify a single OS X example, demon-
strating that operating system detection is quite possible
through JavaScript benchmarking. Also, given the even dis-
tribution across successive Windows versions, these results
indicate that detecting versions within an operating system
family through JavaScript is difficult. Further targeted work
is needed in this area.
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Table 1: Fingerprints Collected for Classification: OS and Browser Breakdown
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Table 2: Browser Detection Results
Columns correspond to classification, rows represent actual version (as reported by user agent)
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Figure 1: Comparison of relative browser performance: Normalized test time vectors for different browsers
on a single machine

Linux OS X 104 OSX 10.5 OS X 10.6 Windows 7 Windows Vista Windows XP
Linux 2 3 - - - 3
OS X 104 - 2 - - - _
OS X 10.5 - - 2 - - -
OS X 10.6 - 2 1 10 - - -
Windows 7 1 - - 76 68 17
Windows Vista - - - 17 23 5
Windows XP 1 1 3 51 80 51

Table 4: Detected Operating Systems under Firefox 3.6

2.3.3 Architecture Detection

Continuing our exploration of Firefox 3.6 behavior, we ex-
amine the effects of processor architecture on browser per-
formance. In our data set, the major architectures running
Firefox 3.6 are Core 2 (150), Pentium Dual Core (51), Pen-
tium 4 (53), Core i3 (26), and Athlon 64 (22).

Our detection methodology for architecture differs slightly
than our previous classification strategies. We use a 1-
nearest neighbor strategy, based on the same 38-test bench-
mark vector used in first-level browser classification. This
approach represents a departure from our previous classifi-
cation strategies; we discuss why shortly. While 1-nearest
neighbor gives reasonable results, it performs very badly on
underrepresented platforms with very few samples. There-
fore, we exclude any architecture with 5 samples or fewer
from consideration.

The results from the classification can be found in Table 5.
Overall, we achieve a 45.3% classification success rate.

Examining the results in detail, we see clusters of misclas-
sifications across similar processors. For example, processors
sold under the “Pentium Dual Core” name are detuned ver-
sions of Core or Core 2 chips, and over half (71 of 120) of
our misclassifications occur between the Core 2 and Pen-
tium Dual Core categories. Core i3 and Core i5 processors
can be extremely similar, with Intel Clarkdale and Arran-

dale processors being sold under both those names. Our
Pentium D samples are mainly misclassified as Pentium 4,
which we posit is due both to the minimal number of Pen-
tium D examples as well as the design similarity between
those processors. Our survey procedures collected manufac-
turer marketing names, like “Core 2” and “Athlon”, while
the data suggests that a more precise approach, such as de-
termining individual manufacturer code names, could allow
for better and finer-grained processor detection.

We chose to use a 1-nearest neighbor classification scheme
due to this marketing name mismatch. For example, a test
vector made from samples from both Yonah and Penryn-
based Pentium Dual Core CPUs will average to somewhere
between the two, leaving each individual Dual Core sam-
ple lying closer (and classified as) to the (Yonah) Core and
(Penryn) Core 2 test vectors, respectively. The 1-nearest
neighbor classification scheme avoids this averaging issue,
at the expense of slightly higher noise in the results. With
a larger and more precise data set, we posit that the test-
vector-generation approach would also work for detecting
CPU architectures.

Overall, our JavaScript fingerprinting techniques are able
to infer underlying hardware details which were previously
unexposed to JavaScript APIs. We believe that more tar-
geted work in this area will allow the inference of processor
types with much higher reliability and accuracy.
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Atom 9 - - - - 2 1 _ _ _ _ _ _ _
Pentium 3 - 5 - - - 1 1 - - - - - - -
Pentium 4 - - 40 - - 3 5 - - 1 - - -
Pentium D 1 -5 - - - - - - - - - _ _ _
Pentium M - - - - - 4 4 2 _ _ _ _ _ _ _
Core - - - -1 1 5 8 -1 1 1 - - -
Pentium Dual Core - - 2 - 1 4 11 30 - 2 - - - 1 -
Core 2 2 1 9 - 1 8 41 78 3 3 3 -1 - -
Core i3 - - - - - 1 1 1 17 4 1 1 - - -
Core i5 - - - - - 2 - 2 7 - 1 1 - - -
Athlon - - - - - - - 4 - 1 1 2 - 1 1
Athlon 64 - - - - - 1 1 1 2 1 2 10 - 1 3
Athlon II 1 - - - - 1 - 2 1 - - - - 1 1
Phenom 11 - - - - - 1 - - _ - - 1 3 )
Sempron - - - - - 2 - - - - - - _ 7

Table 5: Detected CPU Architecture under Firefox 3.6

Strangely, in our tests, the total time taken to complete
our benchmarks did not scale linearly with clock speed, even
given an identical browser, operating system, and processor
architecture. Since we expected overall performance to be
a fairly good indicator of processor clock speed, these dis-
crepancies may point toward additional sources of system-
specific information, which could further enhance the user’s
architectural fingerprint.

2.4 JavaScript Test Selection

In our fingerprints, we use all 26 tests from SunSpider 0.9
and 9 tests constructed from the V8 Benchmark Suite v5
along with 4 custom tests, for a total of 39 individual bench-
marks. The custom tests excercise straight-line code, nested
for loops, random number generation, and basic arithmetic.
Our fingerprinting techniques, however, use 38 of these tests
to perform classification. We chose to discard the “splay”
test from V8 due to its excessive completion time (over
2000 ms; other tests might take tens or hundreds of mil-
liseconds). As demonstrated in Figure 1, left unchecked,
“V8-splay” dominates the normalized vector of test times
for both Firefox and Safari, marginalizing any interesting
effects we might observe through the other tests. Therefore,
we discard the splay test when computing fingerprint vec-
tors (and note that best normalization results are achieved
when all test timings are of similar magnitudes).

As previously noted in Section 2.3.1, this particular set of
38 tests performs badly when differentiating between minor
versions of Firefox. After experimentation, we discovered
that better results were achieved after removing the V8 test
“regex” from consideration as well, leaving a 37-element vec-
tor for differentiating minor Firefox versions.

3. NOSCRIPT WHITELIST FINGERPRINT-
ING

NoScript is a Firefox browser plug-in aimed at protecting
users against malicious JavaScript on the web. The rec-
ommended usage model is to whitelist trusted sites: the
NoScript website suggests that JavaScript be blocked by de-
fault, and recommends that the user allow scripts “only by

trusted web sites of your choice (e.g. your online bank)”. As
the web becomes more interactive, allowing JavaScript is be-
coming increasingly necesssary to preserve website function-
ality. The NoScript whitelist, then, may contain potentially
sensitive information about a user’s browsing habits, such
as her preferred news sources, banks, webmail provider, and
entertainment. Individual whitelist entries can thus reveal
sensitive personal information. Just as importantly, the fact
that users who visit different sites will allow JavaScript from
different sites means that whitelists can be used as additional
form of fingerprint.

The NoScript whitelist is very flexible, allowing entries to
be either Full Addresses (http://www.noscript.net), Full
Domains (www.noscript.net), or Base 2nd Level Domains
(noscript.net). By default, NoScript will populate its white-
list with Base 2nd Level Domains, allowing JavaScript for a
domain and all of its subdomains. With this in mind, in this
paper we consider all subdomains to be in the same protec-
tion domain as their parent. However, note that should a
user switch to using either Full Addresses or Full Domains in
their whitelist, she will still whitelist addresses which corre-
spond to scripts she wishes to run. The JavaScript allowed
by these entries is therefore executable in her browser and
can be detected by our fingerprinting methods.

Technically speaking, the NoScript plugin blocks not only
the execution of untrusted scripts, but even the fetching of
such scripts from the server. Within a trusted JavaScript
execution context, an untrusted script simply does not ex-
ist. No exceptions are thrown; the contents of the untrusted
script are simply missing. As we will show, by using these
facts a malicious website, once allowed to execute any Java-
Script at all, can probe the contents of the user’s NoScript
whitelist.

Lastly, this attack is only mountable if a NoScript user al-
lows malicious JavaScript to execute. However, many sites
fail to display content or work properly without the use of
JavaScript. The current best framebusting defense [21] even
hides page content by default, requiring JavaScript execu-
tion to display anything at all. The attacker could also lure
user cooperation via the offer of a game or service, either of
which could require JavaScript functionality.



3.1 Attack Methodology

We begin by describing how an attacker can determine
whether a particular domain is in the user’s NoScript white-
list, and how she can then combine multiple such checks
to compute a whitelist fingerprint for the user. Performing
these checks requires locating suitable indicator JavaScript
scripts on the sites to query; we describe an effective auto-
mated spidering approach for finding such scripts. As noted
above, we grant our attacker the capabilities provided by the
Web attacker or rogue Tor exit node model, as appropriate.

3.1.1 Domain Checking

To create a page which checks for a given domain in a
NoScript whitelist:

1. Find a URL in the domain containing JavaScript, suit-
able for inclusion in a <script> tag.

2. Inspect the JavaScript for the name of a defined object,
such as a variable or function.

3. Create a page with two elements:

e A <script> tag referencing the script URL.

e JavaScript code checking for the existence of the
defined object.

When a user visits this page with JavaScript enabled, one
of two things occurs: Either the object exists or is unde-
fined. In the first case, JavaScript is enabled for the tested
domain. Otherwise, the domain is blocked (via NoScript or
some other means). Note that other browser plugins, such
as AdBlock Plus, may block the script’s execution. We ig-
nore the effects of such plugins, as they effectively modify
the NoScript blacklist.

Many scripts, when removed from their native locations,
throw errors or otherwise fail during this test. Generally,
this is due to missing components in the execution environ-
ment, such as other JavaScript elements from their domain
or an unexpected DOM tree. If such an error occurs, exe-
cution of the script stops immediately. However, the func-
tions and variables it defines are still inserted into the global
window object, and thus our domain test will be successful.

3.1.2  Site Spidering

Any effective fingerprinting solution needs to encompass a
significant number of possible domains. Manual creation of
a domain-checking page is fairly trivial, but the creation of
hundreds or thousands of these pages represents significant
human effort. Fortunately, automation of this process is
fairly easy.

To produce our domain-checking pages, we built a simple
web spider. Given a domain, it simply crawls the first ten
in-domain URLs, looking for <script> tags. Any scripts
included from domains other than the one we are targeting
are ignored, as presumably these are not necessary to the
operation of the site in question. When an appropriate script
URL is found, we execute the code using the V8 JavaScript
engine® with an EnvJS? environment. If this execution finds
a properly defined object, such as a variable or function, the
spider has all it needs to create a NoScript test page for the
domain. For an example of an automatically-created domain
test page for google.com, see Figure 2.

!Online: http://code.google.com/p/v8/
2QOnline: http://www.envjs.com/

<html>
<head>

<script type="text/javascript"
src="http://www.google.com/accounts/hosted
/helpcenter/js/tooltips/TooltipLoader.js">

</script>

<script type="text/javascript">
if ("XML_STATUS_OKAY" in window) {

location.hash = "enabled";
} else {
location.hash = "disabled";
}
</script>
</head><body></body>
</html>

Figure 2: Whitelist test page for google.com

3.1.3  Whitelist Fingerprinting

Once a suitable number of domain test pages are created,
we can turn our attention to delivering the tests to the ma-
chine being fingerprinted and collecting the results into some
usable format. To achieve this, we create a test suite from
the individual test pages.

The test suite consists of an HTML page and associated
JavaScript. To test a given domain, an iframe, containing
the test page for the domain to test, is created and inserted
into the page. Once the test page reaches a determination,
it modifies its location.hash attribute. As each test com-
pletes, its iframe is destroyed, releasing its resources and,
importantly, stopping all JavaScript execution in the frame.
Since each iframe potentially includes arbitrary JavaScript,
ceasing its execution as quickly as possible reduces browser
load and allows for faster testing.

To prevent serious performance degradation, the test suite
limits the number of active tests at once. This prevents a
slow-to-respond site from blocking the fingerprinting progress,
while not noticably reducing browser responsiveness. Cur-
rently, we simply set this limit to a small constant. Conceiv-
ably, this could be automatically adjusted for network lag
and browser speed to reduce testing times even further.

This approach does have its limitations. Most notably,
the testing process creates continual change in the brow-
ser’s chrome. As each iframe loads from the test server,
the text on the tab associated with the test flashes between
its HTML page title and “Loading...”. Also, test progress
is noted in the status bar, with messages such as “Con-
necting to www.google.com” and “Transferring data from
www.google.com”. When NoScript blocks a script, it adds a
yellow information bar to the bottom of the browser window.
However, once the last iframe is removed, this NoScript in-
formation bar disappears as well. These limitations suggest
that the optimal way to run the fingerprinting process is in a
popunder or otherwise hidden tab, where these notifications
will go unnoticed by an unsuspecting user.

Note that the attacker’s site must itself be authorized
to execute JavaScript for the fingerprinting to succeed. A
Web attacker may be able to trick the user into temporar-
ily adding her site to the whitelist, for example through the
promise of a JavaScript-enabled game or other interesting
content. A rogue Tor exit node will simply inject the script
into a trusted-by-default domain.>

3An earlier version of the Torbutton FAQ recommended


http://code.google.com/p/v8/
http://www.envjs.com/

3.2 Prevalence of Testable JavaScript

To measure the effectiveness of our techniques, we attempt
to create whitelist probes for each of the Alexa Top 1,000
sites. Starting the spider at the root of each site, we inves-
tigate 10 pages in a breadth-first fashion. As described in
Section 3.1.2, we stop when we find an appropriate script,
which we define as any includable script available in the do-
main or any subdomain thereof.

Out of the Alexa Top 1,000 sites, we find 706 sites which
fit our criteria, and generate NoScript whitelist test scripts
for each of these domains.

There are several reasons why a site might not be testable:

1. No JavaScript

2. JavaScript only embedded in HTML pages (no .js
files)

3. JavaScript files not accessible within first 10 pages
4. All JavaScript served from a different domain
5. Crawling forbidden by robots.txt

(Note that real attackers would not be constrained by the
robots.txt file and could crawl many more pages in each
site, looking for smaller scripts that would load and execute
more quickly. Our findings are thus a lower bound on the
effectiveness of our fingerprinting technique.)

For example, yahoo.com serves all of its external Java-
Script files from yimg.com, while facebook.com disallows
crawling, requires a login to get past the first few pages, and
uses fbcdn.net to serve their JavaScript. Manual interven-
tion may be required in these cases to recognize site-specific
content distribution networks (CDNs), or high-value sites
that request logins before presenting any interactive content
(such as banks or webmail providers).

Once we acquired the set of test scripts, we had to manu-
ally remove 17 misbehaving tests. Most of these scripts con-
tained elements such as alert() calls, framebusting code,
attempts to set document .domain, or illegal characters. One
of these scripts appears to be programmatically generated,
and changes every few seconds (rendering our preinspection
worthless). Another attempts to fetch a resource from our
test server, and throws an error before creating the variable
of interest. Lastly, our JavaScript execution engine simply
fails on one script, leaving our test page useless. We did not
inspect the affected sites for alternative scripts, although
issues such as these could potentially be detected and dis-
carded during the site crawl phase.

Therefore, our minimal crawler is able to generate usable
test scripts for 68.9% of the Alexa Top 1000 sites. We note
again that this is a lower bound, and additional (and less
polite) searching would likely reveal suitable scripts at more
sites.

3.3 Fingerprinting Speed

For user fingerprinting systems, speed is paramount. More
elements tested means a more unique, and therefore more
useful, fingerprint. To determine the speed of probing No-
Script whitelists, we created a test suite (as described in Sec-
tion 3.1.3) to examine all 689 checkable domains we found

against the use of NoScript because it would “allow ma-
licious exit nodes to compromise your anonymity via the
default whitelist (which they can spoof to inject any script
they want).”

in the Alexa Top 1000. The test suite creates an iframe for
each tested domain and loads a domain test page. This page
attempts to fetch a script from the remote site and can then
test for success. Once an answer has been determined, the
domain’s iframe is deleted, which stops any further script
execution. To reduce the impact of high-latency servers, the
test suite runs five independent iframes simultaneously.

We tested our benchmarks on Firefox 3.6.11 with NoScript
2.0.3.5. The test machine consisted of an Intel Core 2 Duo
processor at 2.66 GHz with 4 GB of RAM. The test suite
was served off of a machine on the UC San Diego network.

We ran the test suite twice, once with NoScript configured
to block all domains and once with NoScript installed but
configured to allow all scripts.

3.3.1 NoScript Disabled

With NoScript disabled, Firefox behaves normally, fetch-
ing all requested resources and executing all scripts. We
execute the test five times. Each time, we clear all caches
and restart Firefox to ensure that all necessary resources
were fetched from their remote servers.

The mean time to completely test all 689 domains is 118.6
seconds, with a maximum of 131.9 seconds. Since our bench-
mark machine and test server are on the same network,
fetching each of the domain test pages is a minimal cost.
Most of the overall test time is spent fetching and executing
the remote scripts. The CDF of domain test times (includ-
ing iframe creation, test page fetch, remote script fetch, and
script execution) across all five runs is shown in Figure 3.

3.3.2 NoScript Enabled

With NoScript enabled, Firefox refuses to run all scripts
that don’t appear on the NoScript whitelist. Helpfully, No-
Script will disable even fetching a blocked script. This re-
moves the network round trip associated with loading a do-
main’s script (although not the original test page fetch).
In accordance with our threat model, we whitelist our test
suite, allowing JavaScript to run only for us.

We execute the test suite five times. Each time, we clear
all caches and restart Firefox.

The mean time to completely test all 689 domains is 22.2
seconds, with a maximum of 23.3 seconds. Since no external
requests are made, most of this time consists of iframe setup,
test page fetch, and test suite delays. The CDF of domain
test times across all five runs is shown in Figure 4.

Notably, as there are no external script fetches, this finger-
printing session runs much faster than before. Also, as none
of the sites being tested receive any network traffic from the
system being fingerprinted, they are unable to detect finger-
print attempts through log inspection.

3.3.3 In Practice

Our fingerprinting methodology expects NoScript to be
installed and in use on a user’s browser. As the user repeat-
edly visits sites of interest which require JavaScript, the user
will likely whitelist those sites to streamline their browsing
experience. When the user encounters a fingerprinting at-
tempt, then, we expect that most domains are blocked while
a select few are allowed. For the allowed domains, we suf-
fer network fetch and script execution time penalties. In
this model, then, the total time taken to fingerprint a par-
ticular user lies somewhere between the fully-blocked and
fully-allowed cases.
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Figure 4: Completion Time CDF for domain
whitelist check (NoScript On)

In this paper, we do not attempt to optimize the finger-
printing process. However, there are a few simple ways in
which optimizations could be applied. For example, test
pages could each test multiple domains, instead of just one.
This would cut down on the number of iframes created,
along with the number of elements fetched from the test
suite server. Care must be taken to eliminate potential in-
teractions between the unrelated scripts, but it is easy to
imagine methods of making this possible. If we expect that
each whitelist contains relatively few domains, then a less
careful approach to testing will give almost as much speedup
even when scripts might interact negatively with each other:
test several domains in one iframe and, if any of them appear
to be allowed, repeat the tests in separate iframes. More-
over, running more simultaneous iframes might allow more
domains to be tested in parallel, at the cost of browser set-
up time. And, of course, the attacker can test that a user
has enabled the NoScript extension before proceeding with
the fingerprinting by checking that a script from some other
attacker-controlled domain isn’t loaded and run.
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distinguish between major browser versions, operating sys-
tems and microarchitectures, and that our NoScript white-
list fingerprint can be used to efficiently query almost 70%
of the Alexa Top 1000 domains.

Our implementations represent a lower bound on the ef-
fectiveness of our techniques. We have shown that it is
possible to distinguish between browsers, along with the
underlying system hardware and software, based solely on
scripting benchmarks. We believe that a finer-grained ap-
proach to JavaScript performance fingerprinting can provide
even more detailed information, such as hardware revisions
within a processor family, clock speed, cache size, and the
amount of RAM on the target system. Secondly, extending
our technique to mobile devices should produce excellent
results, given their unique and constant combination of mo-
bile browser, operating system, and mobile hardware. Also,
we believe that NoScript whitelist fingerprinting can be de-
ployed relatively efficiently and against a larger fraction of
top sites than we have currently shown.

In future work we hope to deploy a measurement study,
modeled after that of Eckersley [9], to measure the effective
entropy from our fingerprints. We believe that there will
be sufficient entropy in users’ browsers, hardware configura-
tions, and NoScript whitelists to usefully augment current
fingerprinting techniques.
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