
Improving SSL Handshake Performance via Batching

Hovav Shacham
hovav@cs.stanford.edu

Dan Boneh
dabo@cs.stanford.edu

Abstract

We present an algorithmic approach for speeding up SSL’s performance on a web server. Our
approach improves the performance of SSL’s handshake protocol by up to a factor of 2.5 for
1024-bit RSA keys. It is designed for heavily-loaded web servers handling many concurrent SSL
sessions. We improve the server’s performance by batching the SSL handshake protocol. That
is, we show that b SSL handshakes can be done faster as a batch than doing the b handshakes
separately one after the other. Experiments show that taking b = 4 leads to optimal results,
namely a speedup of a factor of 2.5. Our starting point is a technique due to Fiat for batching
RSA decryptions. We improve the performance of batch RSA and describe an architecture for
using it in an SSL web server. We give experimental results for all the proposed techniques.

1 Introduction

The Secure Socket Layer (SSL) is the most widely deployed protocol for securing communication
on the World Wide Web (WWW). The protocol is used by most e-commerce and financial web
sites. It guarantees privacy and authenticity of information exchanged between a web server and
a web browser. Unfortunately, SSL is not cheap. A number of studies show that web servers using
the SSL protocol perform far worse than web servers who do not secure web traffic. The number
of independent transactions per second that a typical SSL web server can handle is 10 to 30 times
less than that of a web server using cleartext communication only (HTTP). This performance
degradation forces web sites using SSL to buy significantly more hardware in order to provide a
reasonable response time to their customers.

Here we propose a software-only approach for speeding up SSL: batching the SSL handshakes
on the web server. The basic idea is as follows: the web server waits until it receives b handshake
requests from b different clients. It then treats these b handshakes as a batch and performs the
necessary computations for all b handshakes at once. Our experiments show that, for b = 4, batching
the SSL handshakes in this way results in a factor of 2.5 speedup over doing the b handshakes
sequentially, without requiring any additional hardware.

Our starting-point is a technique due to Fiat [5] for batch RSA decryption. Fiat suggested
that one can decrypt multiple RSA ciphertexts as a batch faster than decrypting them one by one.
Unfortunately, our experiments show that Fiat’s basic algorithm, naively implemented, does not
give much improvement for key sizes commonly used in SSL handshakes. Our first set of results,
given in Sect. 3, shows how to batch RSA decryption in a way that gives a significant speedup with
common RSA keys.

In Sect. 4 we present an architecture for a batching web server and discuss several scheduling
issues. As we will see, a batching web server must manage multiple public key certificates. Con-
sequently, a batching web server must employ a scheduling algorithm that assigns certificates to
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incoming connections, and pick batches from pending requests, so as to optimize server perfor-
mance.

Finally, in Sect. 5 we describe our experiments and give running times for various key sizes and
various loads on the web server.

1.1 Preliminaries

As discussed above, this paper focuses on improving the performance of the SSL handshake protocol.
The handshake protocol is part of the bottleneck that significantly degrades server performance.

1.1.1 SSL Handshake.

For completeness we briefly describe the SSL handshake protocol. We note that SSL supports
several handshake mechanisms. The one described below is the simplest and is the most commonly
used. More information can be found in [4].
Step 1: the web browser connects to the web server and sends a client-hello message.
Step 2: the web server responds with a server-hello message sequence. These messages contain the
server’s certificate, which in turn contains the server’s RSA public key.
Step 3: The browser picks a random 48-byte string R and encrypts it using the web server’s public
RSA key. Let C be the resulting ciphertext. The web browser sends a client-key-exchange message
which contains C. The string R is called the pre-master-secret.
Step 4: The web server obtains the pre-master-secret R by using its private RSA key to decrypt C.
Both the browser and server then derive the session keys from R and some other shared information.

1.1.2 RSA Public Keys.

Step 4 above is the expensive step in the SSL handshake since it requires the server to perform an
RSA decryption. To describe our speedup of the SSL handshake we must first briefly recall the
RSA cryptosystem [9]. We do so briefly and refer to [8] for a complete description.

An RSA public key is made of two integers 〈N, e〉. Here N = pq is the product of two large
primes, and is typically 1024 bits long. The value e is called the encryption exponent and is typically
some small number such as e = 3 or e = 65537. Both N and e are embedded in the server’s public-
key certificate. The RSA private key is an integer d satisfying e · d = 1 mod (p− 1)(q − 1).

To encrypt a message M using an RSA public key 〈N, e〉, one first formats the message M to
obtain an integer X in {1, . . . , N}. This formatting should be done using the OAEP method [1, 7].
The ciphertext is then computed as C = Xe mod N . Recall that the web browser does this in
Step 3 of the SSL handshake protocol.

To decrypt a ciphertext C the web server uses its private key d to compute the e’th root of C
in ZN . The eth root of C is given by Cd mod N . Since both d and N are large numbers (each
1024 bits long) this is a lengthy computation on the web server. We note that d must be taken as
a large number (i.e., on the order of N) since otherwise the RSA system is insecure [2, 11].

2 Review of Fiat’s Batch RSA

Fiat [5] is the first to propose speeding up RSA decryption via batching. We briefly review Fiat’s
proposal and describe our improvements in the next section. For the rest of the paper all arithmetic
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is done modulo N , except where otherwise noted.
Fiat observed that when using small public exponents e1 and e2 it is possible to decrypt two

ciphertexts for approximately the price of one. Suppose v1 is a ciphertext obtained by encrypting
using the public key 〈N, 3〉. Similarly, v2 is a ciphertext obtained by encrypting using the public
key 〈N, 5〉. To decrypt v1 and v2 we must compute v

1/3
1 and v

1/5
2 mod N . Fiat observed that by

setting A = (v5
1 · v3

2)
1/15 we obtain

v
1/3
1 =

A10

v3
1 · v2

2

and v
1/5
2 =

A6

v2
1 · v2

Hence, at the cost of computing a single 15’th root we are able to decrypt both v1 and v2. Note
that some extra arithmetic is required.

This batching technique is only worthwhile when the public exponents e1 and e2 are very small
(e.g., 3 and 5). Otherwise, the extra arithmetic required is too expensive. Also, notice that one can
only batch-decrypt ciphertexts encrypted using distinct public exponents. This is essential. Indeed,
in Appendix A we show (using simple Galois theory) that it is not possible to batch when the same
public key is used. That is, it is not possible to batch the computation of v

1/3
1 and v

1/3
2 .

Fiat generalized the above observation to the decryption of a batch of b RSA ciphertexts. We
have b distinct and pairwise relatively prime public keys e1, . . . , eb, all sharing a common modulus
N = pq. Furthermore, we have b encrypted messages v1, . . . , vb, one encrypted with each key, which
we wish to decrypt simultaneously, obtaining the plaintexts mi = v

1/ei

i .
The batch process is implemented around a complete binary tree with b leaves, with the ad-

ditional property that every inner node has two children. Our notation will be biased towards
expressing locally recursive algorithms: Values will be percolated up and down the tree. With one
exception noted later, quantities subscripted by L or R refer to the corresponding value of the left
or right child of the node, respectively. For example, m is the value of m at a node; mR is the value
of m at that node’s right child.

Some values necessary to batching depend only on the particular placement of keys in the tree,
and may be precomputed and reused for multiple batches. We will denote precomputed values in
the batch tree with capital letters, and values that are computed in a particular decryption with
lower-case letters.

Fiat’s algorithm consists of three phases: an upward-percolation phase, an exponentiation phase,
and a downward-percolation phase. We consider each in turn.

2.0.3 Upward-percolation.

In the upward-percolation phase, we seek to combine the individual encrypted messages vi to form,
at the root of the batch tree, the value v =

∏b
i=1 v

e/ei

i , where e =
∏b

i=1 ei.
In preparation, we assign to each leaf node a public exponent: E ← ei. Each inner node then

has its E computed as the product of those of its children: E ← EL · ER. (The root node’s E will
be equal to e, the product of all the public exponents.)

Each encrypted message vi is placed (as v) in the leaf node labeled with its corresponding ei.
The v’s are percolated up the tree using the following recursive step, applied at each inner node:

v ← vER
L · vEL

R . (1)
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2.0.4 Exponentiation-phase.

At the completion of the upward-percolation phase, the root node contains v =
∏b

i=1 v
e/ei

i . In the
exponentiation phase, the eth root of this v is extracted. (In the basic Fiat scheme, this is the
only point at which knowledge of the factorization of N is required.) The exponentiation yields
v1/e =

∏b
i=1 v

1/ei

i , which we store as m in the root node.

2.0.5 Downward-percolation.

In the downward-percolation phase, we seek to break up the product m into its constituent sub-
products mL and mR, and, eventually, into the decrypted messages mi at the leaves.

Fiat gives a method for accomplishing this breakup. At each inner node we choose an X
satisfying the following simultaneous congruences:

X = 0 (mod EL) X = 1 (mod ER)

We construct X using the Chinese Remainder Theorem. Two further numbers, XL and XR, are
defined at each node as follows:

XL = X/EL XR = (X − 1)/ER

Both divisions are done over the integers. (There is a slight infelicity in the naming here: XL and
XR are not the same as the X’s of the node’s left and right children, as implied by the use of the
L and R subscripts, but separate values.)

As Fiat shows, X, XL, and XR are such that, at each inner node, mX equals vXL
L · vXR

R ·mR.
This immediately suggests the recursive step used in downward-percolation:

mR ← mX
/(

vXL
L · vXR

R

)
mL ← m/mR (2)

At the end of the downward-percolation process, each leaf’s m contains the decryption of the v
placed there originally. Only one large (full-size) exponentiation is needed, instead of b of them. In
addition, the process requires a total of 4 small exponentiations, 2 inversions, and 4 multiplications
at each of the b− 1 inner nodes.

3 Improved Batching

Basic batch RSA is fast with very large moduli, but not a big improvement with moderate-size
moduli. This is because batching is essentially a tradeoff: more auxiliary operations in exchange
for fewer full-strength exponentiations.

Since we are experimenting with batching in an SSL-enabled web server we must focus on key
sizes generally employed on the web, e.g., n = 1024 bits. We also limit the batch size b to small
numbers, on the order of b = 4, since collecting large batches can introduce unacceptable delay.
For simplicity of analysis (and implementation), we further restrict our attention to values of b that
are powers of 2.

In this section we describe a number of improvements to batch RSA that lead to a significant
speedup in a batching web server.
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3.1 Division Speedups

Fiat’s scheme presented in the previous section performs two divisions at each internal node, for a
total of 2b−2 required modular inversions. Modular inversions are asymptotically faster than large
modular exponentiations [6]. In practice, however, modular inversions are costly. Indeed, our first
implementation (with b = 4 and a 1024-bit modulus) spent more time doing the inversions than
doing the large exponentiation at the root.

We present two techniques that, when combined, require only a single modular inversion
throughout the algorithm. The cost is an additional O(b) modular multiplications. This trade-
off gives a substantial running-time improvement.

3.1.1 Delayed Division.

An important realization about the downward-percolation phase given in Equation (2) is that the
actual value of m for the internal nodes of the tree is consulted only for calculating mL and mR.
An alternative representation of m that allows the calculation of mL and mR and can be evaluated
at the leaves to yield m would do just as well.

We convert a modular division a/b to a “promise,” 〈a, b〉. We can operate on this promise
as though it were a number, and, when we need to know its value, we can “force” it by actually
computing b−1a.

Operations on these promises work in the obvious way (similar to operations in projective
coordinates):

a/b = 〈a, b〉 〈a, b〉c = 〈ac, bc〉
c · 〈a, b〉 = 〈ac, b〉 〈a, b〉 · 〈c, d〉 = 〈ac, bd〉
〈a, b〉/c = 〈a, bc〉 〈a, b〉

/
〈c, d〉 = 〈ad, bc〉

Multiplications and exponentiations take twice as much work as otherwise, but division can be
computed without resort to modular inversion.

If, after the exponentiation at the root, we express the root m as a promise, m ← 〈m, 1〉, we
can easily convert the downward-percolation step in (2) to employ promises:

mR ←mX
/(

vXL
L · vXR

R

)
mL ←m/mR (3)

No internal inversions are required. The promises can be evaluated at the leaves to yield the
decrypted messages.

Batching using promises requires b − 1 additional small exponentiations and b − 1 additional
multiplications, one each at every inner node, and saves 2(b− 1)− b = b− 2 inversions.

3.1.2 Batched Division.

To reduce further the number of inversions, we use batched divisions. When using delayed inversions
(as described in the previous section) one division is needed for every leaf of the batch tree. We show
that these b divisions can be done at the cost of a single inversion with a few more multiplications.

Suppose we wish to invert three values x, y, and z. We can proceed as follows: we form the
partial products yz, xz, and xy; and we form the total product xyz and invert it, yielding (xyz)−1.
With these values, we can calculate all the inverses:

x−1 = (yz) · (xyz)−1 y−1 = (xz) · (xyz)−1 z−1 = (xy) · (xyz)−1
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Thus we have obtained the inverses of all three numbers, at the cost of only a single modular inverse
along with a number of multiplications. More generally, we obtain the following lemma:

Lemma 3.1. Let x1, . . . , xn ∈ ZN . Then all n inverses x−1
1 , . . . , x−1

n can be obtained at the cost of
one inversion and 3n− 3 multiplications.

Proof. A general batched-inversion algorithm proceeds, in three phases, as follows. First, set A1 ←
x1, and Ai ← xi ·Ai−1 for i > 1. It is easy to see, by induction, that

Ai =
i∏

j=1

xj . (4)

Next, invert An =
∏

xj , and store the result in Bn: Bn ← (An)−1 =
∏

x−1
j . Now, set Bi ←

xi+1 ·Bi+1 for i < n. Again, it is easy to see that

Bi =
i∏

j=1

x−1
j . (5)

Finally, set C1 ← B1, and Ci ← Ai−1 · Bi for i > 1. We have C1 = B1 = x−1
1 , and, combining (4)

and (5), Ci = Ai−1 ·Bi = x−1
i for i > 1. We have thus inverted each xi.

Each phase above requires n− 1 multiplications, since one of the n values is available without
recourse to multiplication in each phase. Therefore, the entire algorithm computes the inverses of
all the inputs in 3n− 3 multiplications and a single inversion.

The algorithm presented above has a natural tree-based variant. Briefly: Assign the inputs to
leaves in a binary tree: A← xi. Percolate the A’s upward: A← AL · AR. Invert A at the root to
obtain B = A−1. Then percolate B downward: BL ← B · AR, BR ← B · AL. At each node, by
induction, B = A−1 = A−1

L ·A
−1
R ; accordingly, the value of B at each leaf will be the inverse of the

corresponding A. Three multiplications are required at each interior node.
Batched division can be combined with delayed division: The promises at the leaves of the

batch tree are evaluated using batched division. Consequently, only a single modular inversion is
required for the entire batching procedure.

3.2 Global Chinese Remainder

It is standard practice to employ the Chinese Remainder Theorem in calculating RSA decryptions.
Rather than compute m← vd (mod N), one evaluates modulo p and q:

mp ← v
dp
p (mod p) mq ← v

dq
q (mod q)

Here dp = d mod p − 1 and dq = d mod q − 1. Then one uses Garner’s method [6] to calculate m
from mp and mq. This is approximately 4 times faster than evaluating m directly [8].

This idea extends naturally to batch decryption. We reduce each encrypted message vi modulo
p and q. Then, instead of using a single batch tree modulo N , we use two separate, parallel batch
trees, modulo p and q, and then combine the final answers from both using Garner’s method.
Batching in each tree takes between a quarter and an eighth as long as in the original, unified
tree (since the number-theoretical primitives employed, as commonly implemented, take quadratic
or cubic time in the bit-length of the modulus), and the b CRT steps required to calculate each
mi mod N afterwards take negligible time compared to the accrued savings.
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3.3 Simultaneous Multiple Exponentiation

Simultaneous multiple exponentiation (see [8], §14.6) provides a method for calculating au·bv mod m
without first evaluating au and bv. It requires approximately as many multiplications as does a
single exponentiation with the larger of u or v as exponent.

For example, in the percolate-upward step, V ← V ER
L · V EL

R , the entire right-hand side can be
computed in a single multiexponentiation. The percolate-downward step involves the calculation
of the quantity V XL

L · V XR
R , which can be accelerated similarly.

These small-exponentiations-and-product calculations are a large part of the of the extra book-
keeping work required for batching beyond the full-strength exponentiation at the root and the
full-strength, batched inversion. Using Simultaneous multiple exponentiation cuts the time re-
quired to perform them by a factor of almost 2.

3.4 Node Reordering

There are two factors that determine performance for a particular batch of keys.
First, smaller encryption exponents are better. The number of multiplications required for

evaluating a small exponentiation is proportional to the number of bits in the exponent. Since
upward and downward percolation both require O(b) small exponentiations, increasing the value
of e =

∏
ei can have a drastic effect on the efficiency of batching.

Second, some exponents work well together. In particular, the number of multiplications re-
quired for a simultaneous multiple exponentiation is proportional to the number of bits in the
larger of the two exponents. If we can build batch trees that have balanced exponents for mul-
tiple exponentiation (EL and ER, then XL and XR, at each inner node), we can streamline the
multi-exponentiation phases.

With b = 4, optimal reordering is fairly simple. Given public exponents e1 < e2 < e3 < e4,
the arrangement e1–e4–e2–e3 minimizes the disparity between the exponents used in simultaneous
multiple exponentiation in both upward and downward percolation. Rearranging is harder for
b > 4.

Furthermore, some multiplications can be saved if the binary expansions of the exponents tend
to have zeros in the same indexes, but this is probably harder to control for.

4 Architecture for a Batching Web Server

Building the batch RSA algorithm into real-world systems presents a number of architectural
challenges. Batching, by its very nature, requires an aggregation of requests. Unfortunately,
commonly-deployed protocols and programs were not designed with RSA aggregation in mind.
Our solution is to create a batching server process that provides its clients with a decryption
oracle, abstracting away the details of the batching procedure.

With this approach we minimize the modifications required to the existing servers. Moreover,
we simplify the architecture of the batch server itself by freeing it from the vagaries of the protocols
it enables. The resulting web server design is shown in Fig. 1. Note that batching requires that the
web server manage multiple certificates, i.e., multiple public keys, all sharing a common modulus
N . We describe the various issues with this design in the subsections below.
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Web server
process #1
using 〈N, 3〉

Web server
process #2
using 〈N, 5〉

Web server
process #3
using 〈N, 7〉

Web server
process #4

using 〈N, 11〉

Batch server process. Will batch any two distinct requests.

Figure 1: A batching web server using a 2-of-4 batching architecture

4.1 The Two-Tier Model

For a protocol that calls for public-key decryption, the presence of a batch-decryption server induces
a two-tier model. First is the batch server process, which aggregates and performs RSA decryptions.
Next are client processes that send decryption requests to the batch server. These client processes
implement the higher-level application protocol (e.g., SSL) and interact with end-user agents (e.g.,
browsers).

Hiding the workings of the decryption server from its clients means that adding support for batch
RSA decryption to existing servers (such as ApacheSSL) engenders roughly the same changes as
adding support for hardware-accelerated decryption. The only additional challenge is in assigning
the different public keys to the end-users; here the hope is to obtain roughly equal numbers of
decryption requests with each ei. End-user response times are highly unpredictable, so there is a
limit to the cleverness that may be usefully employed in the key distribution.

One solution that seems to work: If there are k keys (each with a corresponding certificate),
spawn ck web server processes, and assign to each a particular key. This approach has the advantage
that individual server processes need not be aware of the existence of multiple keys. The correct
value for c depends on factors such as the load on the site, the rate at which the batch server can
perform decryption, and the latency of the communication with the clients.

We discuss additional ways of accommodating workload unpredictability in the next subsection.

4.2 Decryption Server Scheduling

The batch server performs a set of related tasks. It receives requests for decryption, each of which
is encrypted with a particular public exponent ei; it aggregates these into batches as well as it can;
it performs the batch decryption described in Sect. 2, above; finally, it responds to the requests
with the corresponding plaintexts.

The first and last of these tasks are relatively simple I/O problems; the decryption stage has
already been discussed. What remains is the scheduling step: Of the outstanding requests, which
should we batch? This question gives rise to a related one: If no batch is available, what action
should we take?

We designed our server with three scheduling criteria: maximum throughput, minimum turn-
around time, and minimum turnaround-time variance. The first two criteria are self-evident; the
third may require some motivation. Lower turnaround-time variance means the server’s behavior
is more consistent and predictable, and helps prevent client timeouts. It also tends to prevent
starvation of requests, which is a danger under more exotic scheduling policies.

Under these constraints, a batch server’s scheduling should implement a queue, in which older
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requests are handled first, if possible. At each step, the server seeks the batch that allows it to
service the oldest outstanding requests.

We cannot compute a batch that includes more than one request encrypted with any particular
public exponent ei. This immediately leads to the central realization about batch scheduling: It
makes no sense, in a batch, to service a request that is not the oldest for a particular ei; substituting
the oldest request for a key into the batch improves the overall turnaround-time variance and makes
the batch server better approximate a perfect queue.

Therefore, in choosing a batch, we need only consider the oldest pending request for each ei.
To facilitate this, the batch server keeps k queues Qi, one for each key. When a request arrives,
it is enqueued onto the queue that corresponds to the key with which it was encrypted; this takes
O(1) time. In choosing a batch, the server examines only the heads of each of the queues.

Suppose that there are k keys, with public exponents e1, . . . , ek, and that the server decrypts
requests in batches of b messages each. (We will see a reason why we might want to choose k larger
than b in Sect. 4.4, below.) The correct requests to batch are the b oldest requests from amongst
the k queue heads. If we keep the request queues Qi in a heap (see, for example, [3]), with priority
determined by the age of the request at the queue head, then batch selection can be accomplished
thus: extract the maximum (oldest-head) queue from the heap; dequeue the request at its head,
and repeat to obtain b requests to batch. After the batch has been selected, the b queues from
which requests were taken may be replaced in the heap. The entire process takes O(b lg k) time.

4.3 Multi-Batch Scheduling

Note that the process described above picks only a single batch to perform. It would be possible
to attempt to choose several batches at once; this would allow more batching in some cases. For
example, with b = 2, k = 3, and requests for the keys 3–3–5–7 in the queues, the one-step lookahead
may choose to do a 5–7 batch first, after which only the unbatchable 3–3 remain. A smarter server
could choose to do 3–5 and 3–7 instead.

The algorithms for doing lookahead are somewhat messier than the single-batch ones. Addition-
ally, since they take into account factors other than request age, they can worsen turnaround-time
variance or lead to request starvation.

There is a more fundamental objection to multi-batch lookahead. Performing a batch decryption
takes a significant amount of time; accordingly, if the batch server is under load, additional requests
will have arrived by the time the first chosen batch has been completed. These may make a better
batch available than was without the new requests. (If the batch server is not heavily loaded,
batching is not important, as explained in Sect. 4.4, below.)

4.4 Server-Load Considerations

Not all servers are always under maximal load. Server design must take different load conditions
into account.

Our server reduces latency in a medium-load environment as follows: we use k public keys on
the web server and allow batching of any subset of b of them, for some b < k. This has some costs:
we must pre-construct and keep in memory the constants associated with

(
k
b

)
batch trees, one for

each set of e’s.
However, we need no longer wait for exactly one request with each e before a batch is possible.
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For k keys batched b at a time, the expected number of requests required to give a batch is

E[# requests] = k ·
b∑

i=1

1
k − i + 1

. (6)

With b = 4, moving from k = 4 to k = 6 drops the expected length of the request queue at which
a batch is available by more than 31%, from 8.33 to 5.70.

The particular relationship of b and k can be tuned for a particular server. The batch-selection
algorithm described in Sect. 4.2, above, has time-performance logarithmic in k, so the limiting
factor on k is the size of the kth prime, since particularly large values of e degrade the performance
of batching.

In low-load situations, requests trickle in slowly, and waiting for a batch to be available may
introduce unacceptable latency. A batch server must have some way of falling back on unbatched
RSA decryption. Conversely, if a batch is available, batching is a better use of processor time
than unbatched RSA. So, by the considerations given in Sect. 4.3, above, the batch server should
perform only a single unbatched decryption, then look for new batching opportunities.

Scheduling the unbatched decryptions introduces some complications. The obvious algorithm —
when requests arrive, do a batch if possible, otherwise do a single unbatched decryption— leads
to undesirable real-world behavior. The batch server tends to exhaust its queue quickly. Then it
responds immediately to each new request, and so never accumulates enough requests to batch.

We chose a different approach, which does not exhibit the performance degeneration described
above. The server waits for new requests to arrive, with a timeout. When new requests arrive,
it adds them to its queues. If a batch is available, it evaluates it. The server falls back on
unbatched RSA decryptions only when the request-wait times out. This approach increases the
server’s turnaround-time under light load, but scales gracefully in heavy use. The timeout value is,
of course, tunable.

The server’s scheduling algorithm is given in Fig. 2.

5 Performance

We measured the performance of the batch RSA decryption method described in Sect. 3, and of the
batch server described in Sect. 4. These tests show a marked improvement over unbatched RSA
and SSL at standard key sizes.

Timing was performed on a machine with an Intel Pentium III processor clocked at 750 MHz
and 256 MB RAM. For SSL handshake measurements the client machine (used to drive the web
server) featured dual Intel Pentium III processors clocked at 700MHz and 256 MB RAM. The two
machines were connected via switched fast Ethernet. The underlying cryptography and SSL toolkit
was OpenSSL 0.9.5.

5.1 RSA Decryption

Since modular exponentiation is asymptotically more expensive than the other operations involved
in batching, the gain from batching approaches a factor-of-b improvement only when the key size is
improbably large. With 1024-bit RSA keys the overhead is relatively high, and a naive implemen-
tation is slower than unbatched RSA. The improvements described in Sect. 3 are intended to lower
the overhead and improve performance with small batches and standard key-sizes. The results are
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Batch-Server()
1 while true
2 do Request-Wait-With-Timeout()
3 if Requests-Arrived()
4 then Enqueue-Requests()
5 b← Pick-Batch()
6 if b 6= nil
7 then Do-Batch(b)
8 else b← Pick-Batch()
9 if b 6= nil

10 then Do-Batch(b)
11 else r ← Pick-Single()
12 if r 6= nil
13 then Do-Single(r)

Figure 2: Batch server scheduling algorithm

Table 1: RSA decryption time, in milliseconds, as a function of batch size and key size

batch key size
size 512 768 1024 1536 2048

(unbatched) 1.53 4.67 8.38 26.10 52.96
2 1.22 3.09 5.27 15.02 29.43
4 0.81 1.93 3.18 8.63 16.41
8 0.70 1.55 2.42 6.03 10.81

described in Table 1. In all experiments we used the smallest possible values for the encryption
exponent e.

Batching provides almost a factor-of-five improvement over plain RSA with b = 8 and n = 2048.
This is to be expected. More important, even with standard 1024-bit keys, batching improves
performance significantly. With b = 4, RSA decryption is accelerated by a factor of 2.6; with
b = 8, by a factor of almost 3.5. These improvements can be leveraged to improve SSL handshake
performance.

At small key sizes, for example n = 512, an increase in batch size beyond b = 4 provides only a
modest improvement in RSA performance. Because of the increased latency that large batch sizes
impose on SSL handshakes, especially when the web server is not under high load, large batch sizes
are of limited utility for real-world deployment.

5.2 SSL Handshake

To measure SSL handshake performance improvements using batching, we wrote a simple web
server that responds to SSL handshake requests and simple HTTP requests. The server uses the
batching architecture described in Sect. 4. The server is a pre-forked server, relying on “thundering
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Table 2: SSL handshakes per second as a function of batch size. 1024 bit keys.

batch load
size 16 32 48

(unbatched) 105 98 98
2-of-2 149 141 134
4-of-4 218 201 187
4-of-6 215 198 185
8-of-8 274 248 227

herd” behavior for scheduling [10, §27.6]. All pre-forked server processes contact an additional
batching server process for all RSA decryptions, as described in Sect. 4.

Our multi-threaded SSL test client bombards the web server with concurrent HTTP HEAD re-
quests. The server sends a 187-byte response. Handshake throughput results for 1024-bit RSA
keys are summarized in Table 2, above. Here “load” is the number of simultaneous connections
the client makes to the server. The “b-of-k” in the first column refers to a total of k distinct public
exponents on the server where any subset of b can be batched. See Sect. 4.4.

The tests above measure server performance under a constant high load, so moving from k = 4
to k = 6 provides no advantage.

Batching is clearly an improvement, increasing handshake throughput by a factor of 2.0 to 2.5,
depending on the batch size. At better than 200 handshakes per second, the batching web server is
competitive with hardware-accelerated SSL web servers, without the need for expensive specialized
hardware.

6 The Downside of Batch SSL

As we saw in previous sections, batching SSL handshakes leads to a significant improvement on
the web server. Nevertheless, there are a few issues with using the batching technique. Below, we
discuss these issues, by order of severity.

1. When employing batching, the web-server administrator must obtain multiple certificates for
the web site. In the previous section we gave the example of obtaining four or six certificates
(all using the same RSA modulus). We note that these certificates are used by the same site
and consequently have the same X.500 Distinguished Name. In an ideal world, Certificate
Authorities (CA’s) would be willing to issue multiple certificates (using a single RSA modulus)
for the same site at no extra charge. Unfortunately, currently CA’s charge per certificate
regardless of whether the certificate is for the same site.

2. Batching relies on RSA with very small public exponents, namely e = 3, 5, 7, 11, etc. Although
there are no known attacks on the resulting handshake protocol, web sites commonly use a
slightly larger public exponent, namely e = 65537. This is not a serious concern, but is worth
mentioning.

3. One might wish further to speed up batching by using a commercial off-the-shelf crypto
hardware accelerator. This works fine — the accelerator can be used to perform the full RSA
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decryption at the top of the batching tree. However, since the accelerator card only does the
decryption at the top of the tree, the main CPU has to perform all the other computations
involved in batching. That is, the main CPU has to percolate values up the tree and back down
the tree. Consequently, when using batching, the CPU has to work harder per handshake,
compared to regular RSA, where the entire decryption is done on the card. Hence, although
handshake time is reduced, the CPU has less time for other web tasks. Ideally, one would
expect the accelerator card to perform the entire batching process.

7 Conclusions

We presented the first implementation of batch RSA in an SSL web server. Our first set of results
describes several substantial improvements to the basic batch RSA decryption algorithm. We
showed how to reduce the number of inversions in the batch tree to a single inversion. We obtained
a further speedup by proper use of the CRT and use of simultaneous multiple exponentiation.

We also presented an architecture for building a batching SSL web server. The architecture is
based on using a batch server process that functions as a fast decryption oracle for the main web
server processes. The batching server process includes a scheduling algorithm to determine which
subset of pending requests to batch.

Our experiments show a substantial speedup to the SSL handshake. We hope these results will
promote the use of batching to speed up secure web servers. We intend to make our code available
for anyone wishing to experiment with it.
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A Impossibility of Batching with a Single Public Key

Fiat showed that when using relatively prime public exponents e1, e2, with a common modulus,
it is possible to batch the decryption of v1, v2. The fact that batching only works when different
public exponents are used forces batching web servers to manage multiple certificates. It is natural
to ask whether one can batch the decryption of two ciphertexts encrypted using the same RSA
public key. More precisely, can we batch the computation of v

1/e
1 and v

1/e
2 ? We show that batching

using a single public key is not possible using arithmetic operations.
Given an RSA public key 〈N, e〉 we say that batch decryption of ciphertexts v1, v2 is possible if

there exist rational functions f , g1, g2 over ZN and an integer m such that

v
1/e
1 = g1(A, v1, v2) ; v

1/e
2 = g2(A, v1, v2) where A =

[
f(v1, v2)

]1/m

For efficiency one would like the functions f , g1, g2 to be of low degree. Fiat gives such f , g1, g2

when relatively prime exponents e1, e2 are used. Fiat uses m = e1 · e2. Note that batch RSA works
in any field —there is nothing specific to ZN .

We show that no such f , g1, g2, m exist when a single public key is used. More precisely, we
show that no such expressions exists when all arithmetic is done in characteristic 0 (e.g., over the
rationals). Since batching is generally oblivious to the underlying field, our inability to batch in
characteristic 0 indicates that no such batching exists in ZN either.

Let Q be the field of rational numbers, and v1, v2 ∈ Q. The existence of g1, g2 implies that
Q[v1/e

1 , v
1/e
2 ] is a subfield of Q[A] for all v1, v2. This cannot be, as stated in the following lemma:

Lemma A.1. For any e > 1 and f , g1, g2, m as above, there exist v1, v2 ∈ Q such that Q[v1/e
1 , v

1/e
2 ]

is not a subfield of Q[f(v1, v2)1/m]

Proof sketch. Let f, g1, g2,m be a candidate batching scheme. Let v1, v2 be distinct integer primes
and set A = f(v1, v2). We show that Q[v1/e

1 , v
1/e
2 ] is not a subfield of Q[A1/m]. Consequently,

f, g1, g2,m is an invalid batching scheme.
Let K = Q[v1/e

1 , v
1/e
2 ] and L = Q[A1/m]. We know that [K : Q] = e2. Similarly [L : Q] = m′

for some m′ dividing m. Assume, towards a contradiction, that K is a subfield of L. Then [K : Q]
divides [L : Q]. Hence, e divides m.

Define L0 as an extension of L by adjoining a primitive m’th root of unity. Then L0 is a Galois
extension of Q. Similarly, let K0 be an extension of K by adjoining a primitive m’th root of unity.
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Then K0 is a Galois extension of Q (since by assmuption e divides m). Observe that if K ⊆ L then
K0 ⊆ L0. Consequently, to prove the lemma it suffices to show that K0 6⊆ L0.

Let T be an extension of Q obtained by adjoining a primitive m’th root of unity. Then K0

and L0 are Galois extensions of T . To show that K0 is not contained in L0 we consider the Galois
group of K0 and L0 over T .

Let G be the Galois group of K0 over T and let H be the Galois group of L0 over T . If K0 ⊆ L0

then the fundamental theorem of Galois theory says that there exists a normal subgroup H0 of H
such that G = H/H0. Hence, it suffices to prove that G does not arise as a factor group of H.
The lemma now follows from the following three simple facts:

1. The Galois group G is isomorphic to Ze × Ze.

2. The Galois group H is isomorphic to Zm′ .

3. For any pair m′, e the group Zm′ does not have a factor group isomorphic to Ze × Ze.

Fact 3 follows from the fact that all factor groups of Zm′ are cyclic, but Ze × Ze is not.

To conclude, we note that the proof shows that any batching scheme f , g1, g2, m will fail to
work correctly in characteristic 0 for many inputs v1, v2.
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