
A Survey of Two Signature Aggregation Techniques

Dan Boneh
dabo@cs.stanford.edu

Craig Gentry
cgentry@docomolabs-usa.com

Ben Lynn
blynn@cs.stanford.edu

Hovav Shacham
hovav@cs.stanford.edu

Abstract

We survey two recent signature constructions that support signature aggregation: Given n
signatures on n distinct messages from n distinct users, it is possible to aggregate all these sig-
natures into a single signature. This single signature (and all n original messages) will convince
any verifier that the n users signed the n original messages (i.e., for i = 1, . . . , n user i signed
message number i). We survey two constructions. The first is based on the short signature
scheme of Boneh, Lynn, and Shacham and supports general aggregation. The second, based on
a multisignature scheme of Micali, Ohta, and Reyzin, is built from any trapdoor permutation
but only supports sequential aggregation. Aggregate signatures are useful for reducing the size
of certificate chains (by aggregating all signatures in the chain) and for reducing message size
in secure routing protocols such as SBGP.

1 Introduction

Security systems often manage signatures on many different messages generated by many different
users. For example, in a Public Key Infrastructure (PKI) of depth n, user signatures are accom-
panied by a chain of n certificates. The chain contains n signatures by n Certificate Authorities
(CAs) on n distinct certificates. Similarly, in the Secure BGP protocol (SBGP) [16] each router
receives a list of n signatures attesting to a certain path of length n in the network. A router signs
its own segment in the path and forwards the resulting list of n + 1 signatures to the next router.
As a result, the number of signatures in routing messages is linear in the length of the path. Both
systems would benefit from a method for compressing the list of signatures on distinct messages
issued by distinct parties. For example, certificate chains could be shortened by compressing the
n signatures in the chain into a single signature. Note that one would still need to store the data
in all certificates in the chain— only the signatures in the chain are compressed.

An aggregate signature scheme enables us to achieve precisely this type of compression. In this
paper we survey two mechanisms for signature aggregation: general aggregation and sequential
aggregation. We assume each of n users has a public-private key pair (PKi,SKi). User i wishes to
sign message Mi.

General aggregate signatures. In a general signature aggregation scheme each user i signs her
message Mi to obtain a signature σi. Then anyone can use a public aggregation algorithm to take all
n signatures σ1, . . . , σn and compress them into a single signature σ. Moreover, the aggregation can
be performed incrementally— signatures σ1, σ2 can be aggregated into σ12 which can then be further

1

aggregated with σ3 to obtain σ123, and so on. There is also an aggregate verification algorithm
that takes PK1, . . . , PKn, M1, . . . ,Mn, and σ and decides whether the aggregate signature is valid.
Thus, an aggregate signature provides non-repudiation at once on many different messages by many
users. We refer to this mechanism as general aggregation since aggregation can be done by anyone
and without the cooperation of the signers. In the next section we describe a general aggregate
signature scheme due to Boneh, Gentry, Lynn, and Shacham [5]. The scheme uses bilinear maps
from algebraic geometry.

Sequential aggregate signatures. In a sequential aggregation scheme, signature aggregation
can only be done during the signing process. Each signer in turn sequentially adds her signature
to the current aggregate. Thus, there is an explicit order imposed on the aggregate signature
and the signers must communicate with each other during the aggregation process. Operationally,
sequential aggregation works as follows: User 1 signs M1 to obtain σ1; user 2 then combines σ1

and M2 to obtain σ2; and so on. The final signature σn binds user i to Mi for all i = 1, . . . , n.
In Section 3 we describe a sequential aggregate signature scheme based on homomorphic trapdoor
permutations such as RSA. The scheme is related to a multisignature scheme due to Micali, Ohta,
and Reyzin [20] and analyzed by Lysyanskaya et al. in [17].

Although general aggregation is more powerful than sequential aggregation, the fact that sequen-
tial aggregation can be built from standard primitives such as RSA has its benefits. Interestingly,
either mechanism can be used for compressing signatures in a certificate chain.

Aggregate signatures are related to multisignatures [25, 24, 21, 3]. In multisignatures, a set of
users all sign the same message and the result is a single signature. Recently, Micali, Ohta, and
Reyzin [21], presented a clear security model and new constructions for multisignatures. Another
efficient construction was presented by Boldyreva [3]. Multisignatures are insufficient for the appli-
cations we have in mind, such as certificate chains and SBGP. For these applications we must be
able to combine signatures on distinct messages into an aggregate.

The application of aggregate signatures to compressing certificate chains is related to an open
problem posed by Micali and Rivest [22]: Given a certificate chain and some special additional
signatures, can intermediate links in the chain be cut out? Aggregate signatures allow the com-
pression of certificate chains without any additional signatures, but a verifier must still be aware
of all intermediate links in the chain.

2 General Aggregate Signatures

In a general aggregate signature scheme, signatures are generated by individual users. They can
then be combined into an aggregate signature by some aggregating party. The aggregating party
need not be one of the users, and need not be trusted by them. Every aggregate signature scheme
is a generalization of an ordinary signature scheme. An aggregate signature is the same length as
an ordinary signature in the underlying scheme.

The aggregation algorithm takes as input signatures σ1, . . . , σn on respective messages M1, . . . ,Mn

under respective public keys PK1, . . . ,PKn. (The assignment of indices is arbitrary.) It outputs a
single aggregate signature σ.

The aggregate verification algorithm, given an aggregate signature σ, messages M1, . . . ,Mn,
and public keys PK1, . . . ,PKn, verifies that σ is a valid aggregate signature on the given messages
under the given keys.

2

2.1 Bilinear Maps

We start by reviewing the mathematical underpinnings of general aggregate signatures: Gap Diffie-
Hellman groups and bilinear groups. Gap Diffie-Hellman groups arise from a separation between
Computational and Decision Diffie-Hellman. Bilinear groups arise from the presence of a bilinear
map, a function with certain properties.

Consider a multiplicative cyclic group G of prime order p, with generator g. On this group, the
familiar Diffie-Hellman problems proceed as follows.

Computational Diffie-Hellman (CDH). Given g, ga, h ∈ G, compute ha ∈ G.

Decision Diffie-Hellman (DDH). Given g, ga, h, hb ∈ G, decide whether a equals b. Tuples of
this form — (g, ga, h, ha) —are termed Diffie-Hellman tuples.

Loosely stated, the CDH assumption is that it is computationally infeasible to solve random in-
stances of the CDH problem; the DDH assumption is similarly defined.

GDH Groups. For many choices of group G, such as subgroups of Z∗
q , both the CDH and DDH

assumptions are believed to hold. As we will see, however, on certain elliptic-curve groups, the
DDH problem is easy to solve, whereas CDH is believed hard [6, 23]. We term groups that have
this property Gap Diffie-Hellman (GDH) groups. GDH is an instance of a family of gap problems
discussed by Okamoto and Pointcheval [26].

Bilinear groups. Currently, the only known examples of GDH groups have additional structure,
namely, a bilinear map. A bilinear map is a map e : G × G → GT — where GT is another
multiplicative cyclic group of prime order p — with the following properties:

• Computable: there exists an efficiently-computable algorithm for computing e(u, v), for
all u, v ∈ G.

• Bilinear: for all u, v ∈ G and a, b ∈ Z, e(ua, vb) = e(u, v)ab.

• Non-degenerate: e(g, g) 6= 1.

A bilinear group is any group that possesses such a map e, and on which CDH is hard.
Joux and Nguyen [15] noted that a bilinear map e provides an algorithm for solving DDH. For

a tuple (g, ga, h, hb) we have

a = b mod p ⇐⇒ e(h, ga) = e(hb, g) .

Consequently, if a group G is a bilinear group then G is also a GDH group. (The converse is
probably not true.)

We now describe the elliptic curve groups mentioned above. Let E/Fq be an elliptic curve, and
let G be a subgroup (of prime order p) of the curve’s group of points E(Fq). On certain curves,
the Weil and modified Tate pairings [14, 12, 13] yield a bilinear map e : G×G→ GT . The target
group GT is a subgroup of Fqα , where α is a security multiplier that depends on the curve and on
the group G.

The multiplier α provides a tradeoff between efficiency and security. The smaller the value of α,
the faster is the computation of the bilinear map; the larger the value of α, the more difficult is the

3

CDH problem on G. Current CDH algorithms on G require solving the discrete logarithm problem
either in the generic group G (of order p) or in the finite field Fqα [18, 19]. We note that members
of the MNT family of curves [23] have large subgroups with security multiplier α = 6, which is
suitable for our needs.

2.2 The BLS Signature Scheme

We now describe the BLS short signature scheme. The scheme works in any Gap Diffie-Hellman
group G. It requires, in addition, a hash function from the message space onto the group G. The
scheme is related to the undeniable signature scheme of Chaum and Pedersen [7].

Specifically, let G = 〈g〉 be a GDH group of prime order p, with a hash function H : {0, 1}∗ → G,
viewed as a random oracle [2]. Any string can be signed; a signature is a single element of G. The
scheme comprises the three algorithms below.

Key Generation. Pick random x
R← Zp and compute v ← gx. The public key is v ∈ G. The

private key is x ∈ Zp.

Signing. Given a private key x and a message M ∈ {0, 1}∗, compute h ← H(M), where h ∈ G,
and σ ← hx. The signature is σ ∈ G.

Verification. Given a public key v, a message M , and a signature σ, compute h ← H(M) and
verify that (g, v, h, σ) is a valid Diffie-Hellman tuple.

The intuition is: On a correct signature, v = gx, and σ = hx, so (g, v, h, σ) is a Diffie-Hellman
tuple. This establishes the validity of the scheme. Its security against existential forgery under a
chosen message attack can be shown based on the CDH assumption in G [6].

Signature length. Points on an elliptic curve group G < E(Fq) are usually represented as a pair
(x, y) of elements of Fq, but BLS remains valid and secure even if only the x-coordinate of every
signature point σ ∈ G is transmitted. Thus, on an MNT curve (with α = 6) over a 170-bit field,
BLS signatures are 170 bits long, and provide security comparable to that of 1024-bit RSA [27, 4]
or 320-bit DSA [11]. In other words, BLS signatures are half the size of DSA with comparable
security.

Because of their simple mathematical structure, BLS signatures are amenable to a variety of
extensions, including threshold signatures, multisignatures, and blind signatures [3].

2.3 Bilinear Aggregate Signatures

We now describe the bilinear aggregate signature scheme [5]. Unlike the BLS signature scheme on
which it is based, the bilinear aggregate signature scheme requires the group G to be a bilinear
group— a general Gap Diffie-Hellman group is insufficient. As in the BLS scheme, any string can
be signed. The scheme employs a random oracle hash function, but one that takes both a string
and an element of G as input: H : G× {0, 1}∗ → G.

The bilinear aggregate signature scheme enables general aggregation. An arbitrary aggregating
party unrelated to, and untrusted by, the original signers can combine pre-existing signatures into
an aggregate. The system does not impose an order on the aggregated elements. Note that, when
needed, an order can be imposed by prepending index numbers to the messages being signed.

4

For notational convenience, we number the users whose signatures are aggregated 1, 2, . . . , n in
the description below. This numbering is arbitrary. The number of signatures n in an aggregate is
effectively unbounded (viz., polynomial in the security parameter).

The scheme includes the three usual algorithms for generating and verifying individual signa-
tures, as well as two additional algorithms that provide the aggregation capability.

Key Generation. For a particular user, pick random x
R← Zp, and compute v ← gx. The user’s

public key is v ∈ G. The user’s private key is x ∈ Zp.

Signing. For a particular user, given the public key v, the private key x, and a message M ∈ {0, 1}∗,
compute h← H(v,M), where h ∈ G, and σ ← hx. The signature is σ ∈ G.

Verification. Given a user’s public key v, a message M , and a signature σ, compute h← H(v,M);
accept if e(σ, g) = e(h, v) holds.

Aggregation. Arbitrarily assign to each user whose signature will be aggregated an index i, rang-
ing from 1 to n. Each user i provides a signature σi ∈ G on a message Mi ∈ {0, 1}∗ of her
choice. Compute σ ←

∏n
i=1 σi. The aggregate signature is σ ∈ G.

Aggregate Verification. We are given an aggregate signature σ ∈ G for a set of users, indexed
as before, and are given the original messages Mi ∈ {0, 1}∗ and public keys vi ∈ G. To
verify the aggregate signature σ, compute hi ← H(vi,Mi) for 1 ≤ i ≤ n, and accept if
e(σ, g) =

∏n
i=1 e(hi, vi) holds.

The test employed in the verification of individual signatures is the same DDH test used in BLS
verification, but rewritten in bilinear-map notation. Note that a bilinear aggregate signature, like a
BLS signature, is a single element of G. Unlike in BLS, the signing process signs both the message
and the user’s public key.

The intuition behind bilinear aggregate signatures is as follows. User i has a private key xi ∈ Zp

and a public key vi = gxi . User i’s signature, if correctly formed, is σi = hxi
i , where hi is the hash

of the user’s chosen message, Mi, along with her public key vi. The aggregate signature σ is thus
σ =

∏
i σi =

∏
i h

xi
i . Using the properties of the bilinear map, the left-hand side of the verification

equation expands:

e(σ, g) = e
(∏

i
hxi

i , g
)

=
∏

i
e(hi, g)xi

=
∏

i
e(hi, g

xi)

=
∏

i
e(hi, vi) ,

which is the right-hand side, as required. This establishes the validity of the scheme; its security
against forgery can be demonstrated. Even when the would-be forger possesses all but one of the
private keys, he cannot frame the remaining honest user. See [5] for the exact security model and
proof of security based on CDH in G.

5

Incremental Aggregation. Consider an aggregate signature σ on messages M1, . . . ,Mn under
public keys v1, . . . , vn. An additional signature σn+1 (on a message Mn+1 under public key vn+1)
can be folded into the aggregate: σ′ ← σ · σn+1. If some signature σj included in σ is known,
it can be removed from the aggregate: σ′ ← σ/σj . If, however, only the messages, public keys,
and the aggregate signature σ are known, recovering the individual signatures σ1, . . . , σn from the
aggregate is hard. This hardness assumption, the basis for other signature constructions [5], was
shown by Coron and Naccache to be equivalent to Computational Diffie-Hellman [10].

3 Sequential Aggregate Signatures

Sequential aggregate signatures are a variant of aggregate signatures. In a sequential aggregate
signature scheme, signatures are not individually generated and then combined into an aggregate.
Rather, a would-be signer transforms a sequential aggregate into another that includes a signature
on a message of his choice. Signing and aggregation are a single operation. Sequential aggregate
signatures are built in layers, like an onion; the first signature in the aggregate is the inmost.
As with general aggregate signatures, the resulting sequential aggregate is the same length as an
ordinary signature. This behavior closely mirrors the sequential nature of certificate chains in a
PKI.

For sequential aggregate signatures, aggregation and signing are performed in a single combined
operation. The operation takes as input a private key SK, a message Mi to sign, and a sequential
aggregate signature σ′ on messages M1, . . . ,Mi−1 under respective public keys PK1, . . . ,PKi−1,
where M1 is the inmost message. It adds a signature on Mi under SK to the aggregate, outputting
a sequential aggregate σ on all i messages M1, . . . ,Mi.

The aggregate verification algorithm, given a sequential aggregate signature σ, messages M1, . . . ,Mi,
and public keys PK1, . . . ,PKi, verifies that σ is a valid sequential aggregate (with M1 inmost) on
the given messages under the given keys.

3.1 Trapdoor Homomorphic Permutations

Sequential aggregate signatures are built from trapdoor homomorphic permutations. We first
review trapdoor permutations and then describe the sequential aggregate scheme to which they
give rise.

A permutation family Π is a collection of permutations of some domain D. Each permuta-
tion in Π has a description s ∈ S. Anyone given a description s can evaluate the corresponding
permutation.

Loosely speaking, a permutation family is one-way if, given a permutation description s, it
is infeasible to invert the corresponding permutation. A permutation family is trapdoor if each
description s has some corresponding trapdoor t ∈ T such that it is easy to invert the permutation
corresponding to s with t, but infeasible without t. A trapdoor permutation family is necessarily
one-way. (Here S and T are arbitrary sets.)

More formally, a trapdoor permutation family Π comprises three algorithms: Generate, Evaluate,
and Invert. The randomized generation algorithm Generate outputs the description s ∈ S of a per-
mutation along with the corresponding trapdoor t ∈ T . The evaluation algorithm Evaluate, given
the permutation description s and a value x ∈ D, outputs a ∈ D, the image of x under the permu-
tation. The inversion algorithm Invert, given the permutation description s, the trapdoor t, and a

6

value a ∈ D, outputs the preimage of a under the permutation.
We require that Evaluate(s, ·) be a permutation of D for all (s, t) R← Generate, and that

Invert(s, t,Evaluate(s, x)) = x hold for all (s, t) R← Generate and for all x ∈ D.
A trapdoor permutation is homomorphic if D is a group with some operation ∗ and if, for all (s, t)

generated by Generate, the permutation π : D → D induced by Evaluate(s, ·) is an automorphism
on D. That is, if a = π(x) and b = π(y), then a ∗ b = π(x ∗ y).

When it engenders no ambiguity, we consider the output of the generation algorithm Generate
as a probability distribution Π on permutations, and write (π, π−1) R← Π; here π is the permuta-
tion Evaluate(s, ·), and π−1 is the inverse permutation Invert(s, t, ·).

It can happen that each permutation Evaluate(s, ·) is over a different domain Ds. For example,
the RSA permutation family gives permutations over domains Z∗

N , where each user has a distinct
modulus N . We consider this further in Section 3.4. For now we assume that all permutations in
the family are over the same domain D.

3.2 Full-domain signatures

We review the full-domain hash signature scheme. The scheme, introduced by Bellare and Rog-
away [1] and further analyzed by Coron [8], works in any trapdoor permutation family.

Like the others discussed above, the full-domain hash signature scheme employs a random-
oracle hash function H : {0, 1}∗ → D. The hash function maps bit strings into the entire domain D
(rather than some subset of D), a fact which gives the scheme its name.

Key Generation. For a particular user, pick random (s, t) R← Generate. The user’s public key PK
is s. The user’s private key SK is (s, t).

Signing. For a particular user, given the private key (s, t) and a message M ∈ {0, 1}∗, compute
h← H(M), where h ∈ D, and σ ← Invert(s, t, h). The signature is σ ∈ D.

Verification. Given a user’s public key s, a message M , and a signature σ, compute h← H(M);
accept if h = Evaluate(s, σ) holds.

These algorithms can also be described using the simplified notation given above. A user signs a
message by publishing σ = π−1(H(M)); the signature is valid if π(σ) = H(M) holds.

The signature scheme is secure against existential forgery under a chosen message attack if Π
is a trapdoor permutation family [1]. If Π is homomorphic as well, then the security reduction can
be made more efficient [8].

3.3 Sequential Aggregate Signatures

We now describe the trapdoor sequential aggregate signature scheme. The scheme is related to
the full-domain hash signature scheme, but must be instantiated on a homomorphic trapdoor
permutation. The scheme is based on a multisignature scheme due to Micali, Ohta, and Reyzin [20].

To simplify the presentation of the scheme, we introduce some notation for vectors. We write a
vector as x, its length as |x|, and its elements as x1,x2, . . . ,x|x|. We denote vector concatenation
as x‖y and appending an element to a vector as x‖z. For a vector x, x|ba is the sub-vector containing
elements xa,xa+1, . . . ,xb. It is necessarily the case that 1 ≤ a ≤ b ≤ |x|.

7

Like the others, this scheme employs a full-domain random-oracle hash function H mapping
inputs into D. A signer provides to H every public key and every message in the aggregate signature
she is creating. Thus H is of the form H :

⋃∞
j=1

[
(S)j × ({0, 1}∗)j

]
→ D.

Key Generation. For a particular user, pick random (s, t) R← Generate. The user’s public key PK
is s. The user’s private key SK is (s, t).

Aggregate Signing. The input is a private key (s, t), a message M ∈ {0, 1}∗ to be signed, and a
sequential aggregate signature σ′ on a vector of messages M under a vector of public keys s.
No key may appear twice in s. Furthermore, the vectors M and s must have the same length.
Let i equal |M|. If i is 0, σ′ must equal 1, the unit of D.
Compute h ← H(s‖s,M‖M), where h ∈ D, and σ ← Invert(s, t, h ∗ σ′). The sequential
aggregate signature is σ ∈ D.

Aggregate Verification. The input is a sequential aggregate signature σ on messages M under
public keys s, where |M| = |s| = i. To verify, set σi ← σ. Then, for j = i, . . . , 1, set
σj−1 ← Evaluate(sj , σj) ∗H(s|j1 , M|j1)−1. Accept if σ0 equals 1.

Written using π-notation, a sequential aggregate signature is of the form

π−1
i (hi ∗ π−1

i−1(hi−1 ∗ π−1
i−2(· · ·π

−1
2 (h2 ∗ π−1

1 (h1)) · · ·))),

where hj = H(s|j1 , M|j1). Verification evaluates the permutations in the forward direction, peeling
layers away until the center is reached.

The trapdoor sequential aggregate signature scheme is secure against forgery, assuming Π is a
homomorphic trapdoor permutation family. Even when the would-be forger possesses all but one
of the private keys, he cannot frame the remaining honest user. For the precise security model and
proof of security see [17].

3.4 Aggregating with RSA

We consider the details of instantiating the sequential aggregate signature scheme presented above
using the RSA permutation family.

The RSA function was introduced by Rivest, Shamir, and Adleman [27]. If N = pq is the
product of two large primes and ed = 1 mod φ(N), then π(x) = xe mod N is a permutation on Z∗

N ,
and π−1(x) = xd mod N is its inverse. Setting s = (N, e) and t = (d) gives a trapdoor permutation
that is multiplicatively homomorphic.

A difficulty arises since two users cannot share the same modulus N . Thus the domains of the
one-way permutations belonging to the aggregating users differ, making it difficult to treat RSA
as a family of trapdoor permutations. We give two approaches that allow us to create sequential
aggregate signatures from RSA nonetheless. The first method imposes more restrictions on the
choices of signing keys than the second. Aggregate signatures created by the second method grow
by one bit per signature.

Suppose the n users have moduli N1, . . . , Nn, with N1 inmost. We assume that the moduli are
approximately the same size, i.e., that blog2 N1c = blog2 N2c = · · · = blog2 Nnc. Let N be the
minimum of N1, . . . , Nn. The hash function H maps into the set {1, . . . , N − 1}; hashes not in

8

Z∗
Ni

for some i can be dealt with by iterating the hash, using the method given by Bellare and
Rogaway [1, Section 4].

In the first method, the moduli are constrained so that N1 < N2 < · · · < Nn. A sequential
aggregate signature σi under the keys with moduli N1, . . . , Ni is such that σi < Ni < Ni+1. Thus
(except with negligibly small probability) σi is in the domain of the permutation with modulus
Ni+1. Letting πi(x) = xei mod Ni, we can apply the sequential aggregate signature scheme of
Section 3.3 otherwise unchanged.

In the second method, the moduli are not ordered and increasing. It can then happen that σi

is larger than Ni+1. We deal with this by truncating σi so that it fits. Let ` equal blog2 Nc. Then
2` < N1, . . . , Nn < 2`+1. Now, if some i-element sequential aggregate signature σi is such that
σi ≥ 2`, we emit the bit bi ← 1 and continue aggregation using σ′i ← σi− 2`; otherwise we emit the
bit bi ← 0 and continue aggregation using σ′i ← σi. The n-bit vector b1, . . . , bn can be appended to
the sequential aggregate signature, which then grows by a single bit per aggregating user, or it can
be omitted and recovered by an exhaustive search of the 2n possibilities.

These two schemes are no longer full-domain hash signature schemes, but, since the moduli are
all approximately the same size, Coron’s partial-domain hash analysis [9] applies to either.

4 Conclusions

We surveyed two techniques for signature aggregation. Both methods provide the ability to com-
press multiple signatures by distinct signers on distinct messages into a single signature. The first
method, based on bilinear maps, provides general aggregation, where anyone can combine signa-
tures into an aggregate at any time, without the cooperation of the signers. The second method,
based on homomorphic trapdoor permutations such as RSA, provides only sequential aggregation
where aggregation must be done during the signing process. General aggregation is more a power-
ful mechanism than sequential aggregation. For example, sequential aggregation can be built from
general aggregation. Also, general aggregation seems easier to use.

We discussed two applications for signature aggregation: compressing certificate chains in a PKI
and compressing messages in secure routing protocols. Both aggregation techniques are adequate
for these applications.

References

[1] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In D. Denning, R. Pyle, R. Ganesan, R. Sandhu, and V. Ashby, editors, Proceedings
of CCS 1993, pages 62–73. ACM Press, Nov. 1993.

[2] M. Bellare and P. Rogaway. The exact security of digital signatures: How to sign with RSA
and Rabin. In U. Maurer, editor, Proceedings of Eurocrypt 1996, volume 1070 of LNCS, pages
399–416. Springer-Verlag, May 1996.

[3] A. Boldyreva. Threshold signature, multisignature and blind signature schemes based on the
gap-Diffie-Hellman-group signature scheme. In Y. Desmedt, editor, Proceedings of PKC 2003,
volume 2567 of LNCS, pages 31–46. Springer-Verlag, Jan. 2003.

9

[4] D. Boneh. Twenty years of attacks on the RSA cryptosystem. Notices of the AMS, 46(2):203–
13, 1999.

[5] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted signatures
from bilinear maps. In E. Biham, editor, Proceedings of Eurocrypt 2003, volume 2656 of LNCS,
pages 416–32. Springer-Verlag, May 2003.

[6] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In C. Boyd,
editor, Proceedings of Asiacrypt 2001, volume 2248 of LNCS, pages 514–32. Springer-Verlag,
Dec. 2001.

[7] D. Chaum and T. Pedersen. Wallet databases with observers. In E. Brickell, editor, Proceedings
of Crypto 1992, volume 740 of LNCS, pages 89–105. Springer-Verlag, Aug. 1992.

[8] J.-S. Coron. On the exact security of full domain hash. In M. Bellare, editor, Proceedings of
Crypto 2000, volume 1880 of LNCS, pages 229–35. Springer-Verlag, Aug. 2000.

[9] J.-S. Coron. Security proof for partial-domain hash signature schemes. In M. Yung, editor,
Proceedings of Crypto 2002, volume 2442 of LNCS, pages 613–26. Springer-Verlag, Aug. 2002.

[10] J.-S. Coron and D. Naccache. Boneh et al.’s k-element aggregate extraction assumption is
equivalent to the Diffie-Hellman assumption. In C. S. Laih, editor, Proceedings of Asiacrypt
2003, volume 2894 of LNCS, pages 392–7. Springer-Verlag, Dec. 2003.

[11] FIPS 186-2. Digital signature standard, 2000.

[12] G. Frey, M. Muller, and H. Rück. The Tate pairing and the discrete logarithm applied to
elliptic curve cryptosystems. IEEE Trans. Info. Th., 45(5):1717–9, 1999.

[13] S. Galbraith, K. Harrison, and D. Soldera. Implementing the Tate pairing. In C. Fieker and
D. Kohel, editors, Proceedings of ANTS V, volume 2369 of LNCS, pages 324–37. Springer-
Verlag, July 2002.

[14] P. Gaudry, F. Hess, and N. Smart. Constructive and destructive facets of Weil descent on
elliptic curves. J. Cryptology, 15(1):19–46, 2002.

[15] A. Joux and K. Nguyen. Separating decision Diffie-Hellman from computational Diffie-Hellman
in cryptographic groups. J. Cryptology, 16(4):239–47, Sept. 2003.

[16] S. Kent, C. Lynn, and K. Seo. Secure border gateway protocol (Secure-BGP). IEEE J. Selected
Areas in Comm., 18(4):582–92, April 2000.

[17] A. Lysyanskaya, S. Micali, L. Reyzin, and H. Shacham. Sequential aggregate signatures from
trapdoor permutations. Cryptology ePrint Archive, Report 2003/091, 2003. http://eprint.
iacr.org/.

[18] U. Maurer. Towards the equivalence of breaking the Diffie-Hellman protocol and computing
discrete logarithms. In Y. Desmedt, editor, Proceedings of Crypto 1994, volume 839 of LNCS,
pages 271–81. Springer-Verlag, Aug. 1994.

10

http://eprint.iacr.org/
http://eprint.iacr.org/

[19] A. Menezes, T. Okamoto, and P. Vanstone. Reducing elliptic curve logarithms to logarithms
in a finite field. IEEE Trans. Info. Th., 39(5):1639–46, 1993.

[20] S. Micali, K. Ohta, and L. Reyzin. Provable-subgroup signatures. Unpublished manuscript,
1999.

[21] S. Micali, K. Ohta, and L. Reyzin. Accountable-subgroup multisignatures (extended abstract).
In P. Samarati, editor, Proceedings of CCS 2001, pages 245–54. ACM Press, Nov. 2001.

[22] S. Micali and R. Rivest. Transitive signature schemes. In B. Preneel, editor, Proceedings of
CT-RSA 2002, volume 2271 of LNCS, pages 236–43. Springer-Verlag, Feb. 2002.

[23] A. Miyaji, M. Nakabayashi, and S. Takano. New explicit conditions of elliptic curve traces for
FR-reduction. IEICE Trans. Fundamentals, E84-A(5):1234–43, May 2001.

[24] K. Ohta and T. Okamoto. Multisignature schemes secure against active insider attacks. IEICE
Trans. Fundamentals, E82-A(1):21–31, 1999.

[25] T. Okamoto. A digital multisignature scheme using bijective public-key cryptosystems. ACM
Trans. Computer Systems, 6(4):432–41, November 1988.

[26] T. Okamoto and D. Pointcheval. The gap problems: A new class of problems for the security of
cryptographic primitives. In K. Kim, editor, Proceedings of PKC 2001, volume 1992 of LNCS,
pages 104–18. Springer-Verlag, Feb. 2001.

[27] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public
key cryptosystems. Commun. ACM, 21(2):120–6, Feb. 1978.

11

	Introduction
	General Aggregate Signatures
	Bilinear Maps
	The BLS Signature Scheme
	Bilinear Aggregate Signatures

	Sequential Aggregate Signatures
	Trapdoor Homomorphic Permutations
	Full-domain signatures
	Sequential Aggregate Signatures
	Aggregating with RSA

	Conclusions
	References

